/*
|
* Licensed to the Apache Software Foundation (ASF) under one
|
* or more contributor license agreements. See the NOTICE file
|
* distributed with this work for additional information
|
* regarding copyright ownership. The ASF licenses this file
|
* to you under the Apache License, Version 2.0 (the
|
* "License"); you may not use this file except in compliance
|
* with the License. You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing,
|
* software distributed under the License is distributed on an
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
* KIND, either express or implied. See the License for the
|
* specific language governing permissions and limitations
|
* under the License.
|
*/
|
|
#include <stdint.h>
|
#include <string.h>
|
#include <assert.h>
|
#include "nimble_syscfg.h"
|
#include "os/os.h"
|
#include "ble/xcvr.h"
|
#include "nimble/ble.h"
|
#include "nimble/nimble_opt.h"
|
#include "controller/ble_phy.h"
|
#include "controller/ble_phy_trace.h"
|
#include "controller/ble_ll.h"
|
#include "nrfx.h"
|
|
#if MYNEWT
|
#include "mcu/nrf51_clock.h"
|
#include "mcu/cmsis_nvic.h"
|
#else
|
#include "core_cm0.h"
|
#endif
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_2M_PHY)
|
#error LE 2M PHY cannot be enabled on nRF51
|
#endif
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
|
#error LE Coded PHY cannot be enabled on nRF51
|
#endif
|
|
/* XXX: 4) Make sure RF is higher priority interrupt than schedule */
|
|
/*
|
* XXX: Maximum possible transmit time is 1 msec for a 60ppm crystal
|
* and 16ms for a 30ppm crystal! We need to limit PDU size based on
|
* crystal accuracy. Look at this in the spec.
|
*/
|
|
/* XXX: private header file? */
|
extern uint8_t g_nrf_num_irks;
|
extern uint32_t g_nrf_irk_list[];
|
|
/* To disable all radio interrupts */
|
#define NRF_RADIO_IRQ_MASK_ALL (0x34FF)
|
|
/*
|
* We configure the nrf with a 1 byte S0 field, 8 bit length field, and
|
* zero bit S1 field. The preamble is 8 bits long.
|
*/
|
#define NRF_LFLEN_BITS (8)
|
#define NRF_S0_LEN (1)
|
|
/* Maximum length of frames */
|
#define NRF_MAXLEN (255)
|
#define NRF_BALEN (3) /* For base address of 3 bytes */
|
|
/* Maximum tx power */
|
#define NRF_TX_PWR_MAX_DBM (4)
|
#define NRF_TX_PWR_MIN_DBM (-40)
|
|
/* Max. encrypted payload length */
|
#define NRF_MAX_ENCRYPTED_PYLD_LEN (27)
|
#define NRF_ENC_HDR_SIZE (3)
|
#define NRF_ENC_BUF_SIZE \
|
(NRF_MAX_ENCRYPTED_PYLD_LEN + NRF_ENC_HDR_SIZE + BLE_LL_DATA_MIC_LEN)
|
|
/* BLE PHY data structure */
|
struct ble_phy_obj
|
{
|
uint8_t phy_stats_initialized;
|
int8_t phy_txpwr_dbm;
|
uint8_t phy_chan;
|
uint8_t phy_state;
|
uint8_t phy_transition;
|
uint8_t phy_rx_started;
|
uint8_t phy_encrypted;
|
uint8_t phy_privacy;
|
uint8_t phy_tx_pyld_len;
|
uint8_t *rxdptr;
|
int8_t rx_pwr_compensation;
|
uint32_t phy_aar_scratch;
|
uint32_t phy_access_address;
|
struct ble_mbuf_hdr rxhdr;
|
void *txend_arg;
|
ble_phy_tx_end_func txend_cb;
|
uint32_t phy_start_cputime;
|
};
|
struct ble_phy_obj g_ble_phy_data;
|
|
/* XXX: if 27 byte packets desired we can make this smaller */
|
/* Global transmit/receive buffer */
|
static uint32_t g_ble_phy_tx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
|
static uint32_t g_ble_phy_rx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
/* Make sure word-aligned for faster copies */
|
static uint32_t g_ble_phy_enc_buf[(NRF_ENC_BUF_SIZE + 3) / 4];
|
#endif
|
|
/* RF center frequency for each channel index (offset from 2400 MHz) */
|
static const uint8_t g_ble_phy_chan_freq[BLE_PHY_NUM_CHANS] = {
|
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, /* 0-9 */
|
24, 28, 30, 32, 34, 36, 38, 40, 42, 44, /* 10-19 */
|
46, 48, 50, 52, 54, 56, 58, 60, 62, 64, /* 20-29 */
|
66, 68, 70, 72, 74, 76, 78, 2, 26, 80, /* 30-39 */
|
};
|
|
/* Statistics */
|
STATS_SECT_START(ble_phy_stats)
|
STATS_SECT_ENTRY(phy_isrs)
|
STATS_SECT_ENTRY(tx_good)
|
STATS_SECT_ENTRY(tx_fail)
|
STATS_SECT_ENTRY(tx_late)
|
STATS_SECT_ENTRY(tx_bytes)
|
STATS_SECT_ENTRY(rx_starts)
|
STATS_SECT_ENTRY(rx_aborts)
|
STATS_SECT_ENTRY(rx_valid)
|
STATS_SECT_ENTRY(rx_crc_err)
|
STATS_SECT_ENTRY(rx_late)
|
STATS_SECT_ENTRY(radio_state_errs)
|
STATS_SECT_ENTRY(rx_hw_err)
|
STATS_SECT_ENTRY(tx_hw_err)
|
STATS_SECT_END
|
STATS_SECT_DECL(ble_phy_stats) ble_phy_stats;
|
|
STATS_NAME_START(ble_phy_stats)
|
STATS_NAME(ble_phy_stats, phy_isrs)
|
STATS_NAME(ble_phy_stats, tx_good)
|
STATS_NAME(ble_phy_stats, tx_fail)
|
STATS_NAME(ble_phy_stats, tx_late)
|
STATS_NAME(ble_phy_stats, tx_bytes)
|
STATS_NAME(ble_phy_stats, rx_starts)
|
STATS_NAME(ble_phy_stats, rx_aborts)
|
STATS_NAME(ble_phy_stats, rx_valid)
|
STATS_NAME(ble_phy_stats, rx_crc_err)
|
STATS_NAME(ble_phy_stats, rx_late)
|
STATS_NAME(ble_phy_stats, radio_state_errs)
|
STATS_NAME(ble_phy_stats, rx_hw_err)
|
STATS_NAME(ble_phy_stats, tx_hw_err)
|
STATS_NAME_END(ble_phy_stats)
|
|
/*
|
* NOTE:
|
* Tested the following to see what would happen:
|
* -> NVIC has radio irq enabled (interrupt # 1, mask 0x2).
|
* -> Set up nrf to receive. Clear ADDRESS event register.
|
* -> Enable ADDRESS interrupt on nrf5 by writing to INTENSET.
|
* -> Enable RX.
|
* -> Disable interrupts globally using OS_ENTER_CRITICAL().
|
* -> Wait until a packet is received and the ADDRESS event occurs.
|
* -> Call ble_phy_disable().
|
*
|
* At this point I wanted to see the state of the cortex NVIC. The IRQ
|
* pending bit was TRUE for the radio interrupt (as expected) as we never
|
* serviced the radio interrupt (interrupts were disabled).
|
*
|
* What was unexpected was this: without clearing the pending IRQ in the NVIC,
|
* when radio interrupts were re-enabled (address event bit in INTENSET set to
|
* 1) and the radio ADDRESS event register read 1 (it was never cleared after
|
* the first address event), the radio did not enter the ISR! I would have
|
* expected that if the following were true, an interrupt would occur:
|
* -> NVIC ISER bit set to TRUE
|
* -> NVIC ISPR bit reads TRUE, meaning interrupt is pending.
|
* -> Radio peripheral interrupts are enabled for some event (or events).
|
* -> Corresponding event register(s) in radio peripheral read 1.
|
*
|
* Not sure what the end result of all this is. We will clear the pending
|
* bit in the NVIC just to be sure when we disable the PHY.
|
*/
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
/* Per nordic, the number of bytes needed for scratch is 16 + MAX_PKT_SIZE. */
|
#define NRF_ENC_SCRATCH_WORDS (((NRF_MAX_ENCRYPTED_PYLD_LEN + 16) + 3) / 4)
|
|
uint32_t g_nrf_encrypt_scratchpad[NRF_ENC_SCRATCH_WORDS];
|
|
struct nrf_ccm_data
|
{
|
uint8_t key[16];
|
uint64_t pkt_counter;
|
uint8_t dir_bit;
|
uint8_t iv[8];
|
} __attribute__((packed));
|
|
struct nrf_ccm_data g_nrf_ccm_data;
|
#endif
|
|
/**
|
* Copies the data from the phy receive buffer into a mbuf chain.
|
*
|
* @param dptr Pointer to receive buffer
|
* @param rxpdu Pointer to already allocated mbuf chain
|
*
|
* NOTE: the packet header already has the total mbuf length in it. The
|
* lengths of the individual mbufs are not set prior to calling.
|
*
|
*/
|
void
|
ble_phy_rxpdu_copy(uint8_t *dptr, struct os_mbuf *rxpdu)
|
{
|
uint32_t rem_len;
|
uint32_t copy_len;
|
uint32_t block_len;
|
uint32_t block_rem_len;
|
void *dst;
|
void *src;
|
struct os_mbuf * om;
|
|
/* Better be aligned */
|
assert(((uint32_t)dptr & 3) == 0);
|
|
block_len = rxpdu->om_omp->omp_databuf_len;
|
rem_len = OS_MBUF_PKTHDR(rxpdu)->omp_len;
|
src = dptr;
|
|
/*
|
* Setup for copying from first mbuf which is shorter due to packet header
|
* and extra leading space
|
*/
|
copy_len = block_len - rxpdu->om_pkthdr_len - 4;
|
om = rxpdu;
|
dst = om->om_data;
|
|
while (true) {
|
/*
|
* Always copy blocks of length aligned to word size, only last mbuf
|
* will have remaining non-word size bytes appended.
|
*/
|
block_rem_len = copy_len;
|
copy_len = min(copy_len, rem_len);
|
copy_len &= ~3;
|
|
dst = om->om_data;
|
om->om_len = copy_len;
|
rem_len -= copy_len;
|
block_rem_len -= copy_len;
|
|
__asm__ volatile (".syntax unified \n"
|
" mov r4, %[len] \n"
|
" b 2f \n"
|
"1: ldr r3, [%[src], %[len]] \n"
|
" str r3, [%[dst], %[len]] \n"
|
"2: subs %[len], #4 \n"
|
" bpl 1b \n"
|
" adds %[src], %[src], r4 \n"
|
" adds %[dst], %[dst], r4 \n"
|
: [dst] "+l" (dst), [src] "+l" (src),
|
[len] "+l" (copy_len)
|
:
|
: "r3", "r4", "memory"
|
);
|
|
if ((rem_len < 4) && (block_rem_len >= rem_len)) {
|
break;
|
}
|
|
/* Move to next mbuf */
|
om = SLIST_NEXT(om, om_next);
|
copy_len = block_len;
|
}
|
|
/* Copy remaining bytes, if any, to last mbuf */
|
om->om_len += rem_len;
|
__asm__ volatile (".syntax unified \n"
|
" b 2f \n"
|
"1: ldrb r3, [%[src], %[len]] \n"
|
" strb r3, [%[dst], %[len]] \n"
|
"2: subs %[len], #1 \n"
|
" bpl 1b \n"
|
: [len] "+l" (rem_len)
|
: [dst] "l" (dst), [src] "l" (src)
|
: "r3", "memory"
|
);
|
|
/* Copy header */
|
memcpy(BLE_MBUF_HDR_PTR(rxpdu), &g_ble_phy_data.rxhdr,
|
sizeof(struct ble_mbuf_hdr));
|
}
|
|
/**
|
* Called when we want to wait if the radio is in either the rx or tx
|
* disable states. We want to wait until that state is over before doing
|
* anything to the radio
|
*/
|
static void
|
nrf_wait_disabled(void)
|
{
|
uint32_t state;
|
|
/*
|
* RX and TX states have the same values except for 3rd bit (0=RX, 1=TX) so
|
* we use RX symbols only.
|
*/
|
state = NRF_RADIO->STATE & 0x07;
|
|
if (state != RADIO_STATE_STATE_Disabled) {
|
/* If PHY is in idle state for whatever reason, disable it now */
|
if (state == RADIO_STATE_STATE_RxIdle) {
|
NRF_RADIO->TASKS_DISABLE = 1;
|
STATS_INC(ble_phy_stats, radio_state_errs);
|
}
|
|
if (state == RADIO_STATE_STATE_RxDisable) {
|
/* This will end within a short time (6 usecs). Just poll */
|
while (NRF_RADIO->STATE == state) {
|
/* If this fails, something is really wrong. Should last
|
* no more than 6 usecs */
|
}
|
}
|
}
|
}
|
|
/**
|
*
|
*
|
*/
|
int
|
ble_phy_set_start_time(uint32_t cputime, uint8_t rem_usecs)
|
{
|
uint32_t next_cc;
|
uint32_t cur_cc;
|
uint32_t cntr;
|
uint32_t delta;
|
|
/*
|
* XXX: The TXEN time is 140 usecs but there may be additional delays
|
* Need to look at this.
|
*/
|
|
/*
|
* With the 32.768 kHz crystal, we may need to adjust the RTC compare
|
* value by 1 tick due to the time it takes for TXEN. The code uses a 5 RTC
|
* tick offset, which is 152.5 usecs. The TXEN time is 140 usecs. This
|
* means that with a remainder of 0, TIMER0 should be set to 12 or 13 (as
|
* TIMER0 counts at 1MHz). A remainder of 19 or more we will need to add
|
* 1 tick. We dont need to add 1 tick per se, but it does give us slightly
|
* more time and thus less of a chance to miss a tick. Another note: we
|
* cant set TIMER0 CC to 0 as the compare wont occur; it must be 1 or more.
|
* This is why we subtract 18 (as opposed to 19) as rem_uses will be >= 1.
|
*/
|
if (rem_usecs <= 18) {
|
cputime -= 5;
|
rem_usecs += 12;
|
} else {
|
cputime -= 4;
|
rem_usecs -= 18;
|
}
|
|
/*
|
* Can we set the RTC compare to start TIMER0? We can do it if:
|
* a) Current compare value is not N+1 or N+2 ticks from current
|
* counter.
|
* b) The value we want to set is not at least N+2 from current
|
* counter.
|
*
|
* NOTE: since the counter can tick 1 while we do these calculations we
|
* need to account for it.
|
*/
|
next_cc = cputime & 0xffffff;
|
cur_cc = NRF_RTC0->CC[0];
|
cntr = NRF_RTC0->COUNTER;
|
|
delta = (cur_cc - cntr) & 0xffffff;
|
if ((delta <= 3) && (delta != 0)) {
|
return -1;
|
}
|
delta = (next_cc - cntr) & 0xffffff;
|
if ((delta & 0x800000) || (delta < 3)) {
|
return -1;
|
}
|
|
/* Clear and set TIMER0 to fire off at proper time */
|
NRF_TIMER0->TASKS_CLEAR = 1;
|
NRF_TIMER0->CC[0] = rem_usecs;
|
NRF_TIMER0->EVENTS_COMPARE[0] = 0;
|
|
/* Set RTC compare to start TIMER0 */
|
NRF_RTC0->EVENTS_COMPARE[0] = 0;
|
NRF_RTC0->CC[0] = next_cc;
|
NRF_RTC0->EVTENSET = RTC_EVTENSET_COMPARE0_Msk;
|
|
/* Enable PPI */
|
NRF_PPI->CHENSET = PPI_CHEN_CH31_Msk;
|
|
/* Store the cputime at which we set the RTC */
|
g_ble_phy_data.phy_start_cputime = cputime;
|
|
return 0;
|
}
|
|
/**
|
* Function is used to set PPI so that we can time out waiting for a reception
|
* to occur. This happens for two reasons: we have sent a packet and we are
|
* waiting for a response (txrx should be set to ENABLE_TXRX) or we are
|
* starting a connection event and we are a slave and we are waiting for the
|
* master to send us a packet (txrx should be set to ENABLE_RX).
|
*
|
* NOTE: when waiting for a txrx turn-around, wfr_usecs is not used as there
|
* is no additional time to wait; we know when we should receive the address of
|
* the received frame.
|
*
|
* @param txrx Flag denoting if this wfr is a txrx turn-around or not.
|
* @param tx_phy_mode phy mode for last TX (not used on nRF51)
|
* @param wfr_usecs Amount of usecs to wait.
|
*/
|
void
|
ble_phy_wfr_enable(int txrx, uint8_t tx_phy_mode, uint32_t wfr_usecs)
|
{
|
uint32_t end_time;
|
|
if (txrx == BLE_PHY_WFR_ENABLE_TXRX) {
|
/*
|
* Timeout occurs an IFS time plus time it takes to receive address
|
* from the transmit end. We add additional time to make sure the
|
* address event comes before the compare. Note that transmit end
|
* is captured in CC[2]. I just made up the 16 usecs I add here.
|
*/
|
end_time = NRF_TIMER0->CC[2] + BLE_LL_IFS +
|
ble_phy_mode_pdu_start_off(BLE_PHY_MODE_1M) + 16;
|
} else {
|
/* CC[0] is set to when RXEN occurs. */
|
end_time = NRF_TIMER0->CC[0] + XCVR_RX_START_DELAY_USECS + wfr_usecs +
|
ble_phy_mode_pdu_start_off(BLE_PHY_MODE_1M) + BLE_LL_JITTER_USECS;
|
}
|
|
/* wfr_secs is the time from rxen until timeout */
|
NRF_TIMER0->CC[3] = end_time;
|
NRF_TIMER0->EVENTS_COMPARE[3] = 0;
|
|
/* Enable wait for response PPI */
|
NRF_PPI->CHENSET = (PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk);
|
|
/* Enable the disabled interrupt so we time out on events compare */
|
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
|
}
|
|
/**
|
* Setup transceiver for receive.
|
*/
|
static void
|
ble_phy_rx_xcvr_setup(void)
|
{
|
uint8_t *dptr;
|
|
dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
if (g_ble_phy_data.phy_encrypted) {
|
dptr += 3;
|
NRF_RADIO->PACKETPTR = (uint32_t)&g_ble_phy_enc_buf[0];
|
NRF_CCM->INPTR = (uint32_t)&g_ble_phy_enc_buf[0];
|
NRF_CCM->OUTPTR = (uint32_t)dptr;
|
NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
|
NRF_CCM->MODE = CCM_MODE_MODE_Decryption;
|
NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
|
NRF_CCM->SHORTS = 0;
|
NRF_CCM->EVENTS_ERROR = 0;
|
NRF_CCM->EVENTS_ENDCRYPT = 0;
|
NRF_PPI->CHENSET = PPI_CHEN_CH24_Msk | PPI_CHEN_CH25_Msk;
|
} else {
|
NRF_RADIO->PACKETPTR = (uint32_t)dptr;
|
}
|
#else
|
NRF_RADIO->PACKETPTR = (uint32_t)dptr;
|
#endif
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
if (g_ble_phy_data.phy_privacy) {
|
dptr += 3;
|
NRF_RADIO->PACKETPTR = (uint32_t)dptr;
|
NRF_RADIO->PCNF0 = (6 << RADIO_PCNF0_LFLEN_Pos) |
|
(2 << RADIO_PCNF0_S1LEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Enabled;
|
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
|
NRF_AAR->SCRATCHPTR = (uint32_t)&g_ble_phy_data.phy_aar_scratch;
|
NRF_AAR->EVENTS_END = 0;
|
NRF_AAR->EVENTS_RESOLVED = 0;
|
NRF_AAR->EVENTS_NOTRESOLVED = 0;
|
} else {
|
if (g_ble_phy_data.phy_encrypted == 0) {
|
NRF_RADIO->PCNF0 = (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
/* XXX: do I only need to do this once? Figure out what I can do
|
once. */
|
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
|
}
|
}
|
#endif
|
|
/* Turn off trigger TXEN on output compare match and AAR on bcmatch */
|
NRF_PPI->CHENCLR = PPI_CHEN_CH20_Msk | PPI_CHEN_CH23_Msk;
|
|
/* Reset the rx started flag. Used for the wait for response */
|
g_ble_phy_data.phy_rx_started = 0;
|
g_ble_phy_data.phy_state = BLE_PHY_STATE_RX;
|
g_ble_phy_data.rxdptr = dptr;
|
|
/* I want to know when 1st byte received (after address) */
|
NRF_RADIO->BCC = 8; /* in bits */
|
NRF_RADIO->EVENTS_ADDRESS = 0;
|
NRF_RADIO->EVENTS_DEVMATCH = 0;
|
NRF_RADIO->EVENTS_BCMATCH = 0;
|
NRF_RADIO->EVENTS_RSSIEND = 0;
|
NRF_RADIO->SHORTS = RADIO_SHORTS_END_DISABLE_Msk |
|
RADIO_SHORTS_READY_START_Msk |
|
RADIO_SHORTS_DISABLED_TXEN_Msk |
|
RADIO_SHORTS_ADDRESS_BCSTART_Msk |
|
RADIO_SHORTS_ADDRESS_RSSISTART_Msk |
|
RADIO_SHORTS_DISABLED_RSSISTOP_Msk;
|
|
NRF_RADIO->INTENSET = RADIO_INTENSET_ADDRESS_Msk;
|
}
|
|
/**
|
* Called from interrupt context when the transmit ends
|
*
|
*/
|
static void
|
ble_phy_tx_end_isr(void)
|
{
|
uint8_t was_encrypted;
|
uint8_t transition;
|
uint8_t txlen;
|
uint32_t wfr_time;
|
|
/* If this transmission was encrypted we need to remember it */
|
was_encrypted = g_ble_phy_data.phy_encrypted;
|
(void)was_encrypted;
|
|
/* Better be in TX state! */
|
assert(g_ble_phy_data.phy_state == BLE_PHY_STATE_TX);
|
|
/* Clear events and clear interrupt on disabled event */
|
NRF_RADIO->EVENTS_DISABLED = 0;
|
NRF_RADIO->INTENCLR = RADIO_INTENCLR_DISABLED_Msk;
|
NRF_RADIO->EVENTS_END = 0;
|
wfr_time = NRF_RADIO->SHORTS;
|
(void)wfr_time;
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
/*
|
* XXX: not sure what to do. We had a HW error during transmission.
|
* For now I just count a stat but continue on like all is good.
|
*/
|
if (was_encrypted) {
|
if (NRF_CCM->EVENTS_ERROR) {
|
STATS_INC(ble_phy_stats, tx_hw_err);
|
NRF_CCM->EVENTS_ERROR = 0;
|
}
|
}
|
#endif
|
|
/* Call transmit end callback */
|
if (g_ble_phy_data.txend_cb) {
|
g_ble_phy_data.txend_cb(g_ble_phy_data.txend_arg);
|
}
|
|
transition = g_ble_phy_data.phy_transition;
|
if (transition == BLE_PHY_TRANSITION_TX_RX) {
|
/* Packet pointer needs to be reset. */
|
ble_phy_rx_xcvr_setup();
|
|
/*
|
* Enable the wait for response timer. Note that cc #1 on
|
* timer 0 contains the transmit start time
|
*/
|
txlen = g_ble_phy_data.phy_tx_pyld_len;
|
if (txlen && was_encrypted) {
|
txlen += BLE_LL_DATA_MIC_LEN;
|
}
|
ble_phy_wfr_enable(BLE_PHY_WFR_ENABLE_TXRX, 0, 0);
|
} else {
|
/*
|
* XXX: not sure we need to stop the timer here all the time. Or that
|
* it should be stopped here.
|
*/
|
NRF_TIMER0->TASKS_STOP = 1;
|
NRF_TIMER0->TASKS_SHUTDOWN = 1;
|
NRF_PPI->CHENCLR = PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk |
|
PPI_CHEN_CH20_Msk | PPI_CHEN_CH31_Msk;
|
assert(transition == BLE_PHY_TRANSITION_NONE);
|
}
|
}
|
|
static void
|
ble_phy_rx_end_isr(void)
|
{
|
int rc;
|
uint8_t *dptr;
|
uint8_t crcok;
|
struct ble_mbuf_hdr *ble_hdr;
|
|
/* Clear events and clear interrupt */
|
NRF_RADIO->EVENTS_END = 0;
|
NRF_RADIO->INTENCLR = RADIO_INTENCLR_END_Msk;
|
|
/* Disable automatic RXEN */
|
NRF_PPI->CHENCLR = PPI_CHEN_CH21_Msk;
|
|
/* Set RSSI and CRC status flag in header */
|
ble_hdr = &g_ble_phy_data.rxhdr;
|
assert(NRF_RADIO->EVENTS_RSSIEND != 0);
|
ble_hdr->rxinfo.rssi = (-1 * NRF_RADIO->RSSISAMPLE) +
|
g_ble_phy_data.rx_pwr_compensation;
|
|
dptr = g_ble_phy_data.rxdptr;
|
|
/* Count PHY crc errors and valid packets */
|
crcok = (uint8_t)NRF_RADIO->CRCSTATUS;
|
if (!crcok) {
|
STATS_INC(ble_phy_stats, rx_crc_err);
|
} else {
|
STATS_INC(ble_phy_stats, rx_valid);
|
ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_CRC_OK;
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
if (g_ble_phy_data.phy_encrypted) {
|
/* Only set MIC failure flag if frame is not zero length */
|
if ((dptr[1] != 0) && (NRF_CCM->MICSTATUS == 0)) {
|
ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_MIC_FAILURE;
|
}
|
|
/*
|
* XXX: not sure how to deal with this. This should not
|
* be a MIC failure but we should not hand it up. I guess
|
* this is just some form of rx error and that is how we
|
* handle it? For now, just set CRC error flags
|
*/
|
if (NRF_CCM->EVENTS_ERROR) {
|
STATS_INC(ble_phy_stats, rx_hw_err);
|
ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
|
}
|
|
/*
|
* XXX: This is a total hack work-around for now but I dont
|
* know what else to do. If ENDCRYPT is not set and we are
|
* encrypted we need to not trust this frame and drop it.
|
*/
|
if (NRF_CCM->EVENTS_ENDCRYPT == 0) {
|
STATS_INC(ble_phy_stats, rx_hw_err);
|
ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
|
}
|
}
|
#endif
|
}
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) || MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
if (g_ble_phy_data.phy_encrypted || g_ble_phy_data.phy_privacy) {
|
/*
|
* XXX: This is a horrible ugly hack to deal with the RAM S1 byte.
|
* This should get fixed as we should not be handing up the header
|
* and length as part of the pdu.
|
*/
|
dptr[2] = dptr[1];
|
dptr[1] = dptr[0];
|
++dptr;
|
}
|
#endif
|
rc = ble_ll_rx_end(dptr, ble_hdr);
|
if (rc < 0) {
|
ble_phy_disable();
|
}
|
}
|
|
static void
|
ble_phy_rx_start_isr(void)
|
{
|
int rc;
|
uint32_t state;
|
uint32_t usecs;
|
uint32_t ticks;
|
struct ble_mbuf_hdr *ble_hdr;
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
uint8_t *dptr;
|
|
dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
|
#endif
|
|
/* Clear events and clear interrupt */
|
NRF_RADIO->EVENTS_ADDRESS = 0;
|
|
/* Clear wfr timer channels and DISABLED interrupt */
|
NRF_RADIO->INTENCLR = RADIO_INTENCLR_DISABLED_Msk | RADIO_INTENCLR_ADDRESS_Msk;
|
NRF_PPI->CHENCLR = PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk;
|
|
/* Initialize flags, channel and state in ble header at rx start */
|
ble_hdr = &g_ble_phy_data.rxhdr;
|
ble_hdr->rxinfo.flags = ble_ll_state_get();
|
ble_hdr->rxinfo.channel = g_ble_phy_data.phy_chan;
|
ble_hdr->rxinfo.handle = 0;
|
ble_hdr->rxinfo.phy = BLE_PHY_1M;
|
ble_hdr->rxinfo.phy_mode = BLE_PHY_MODE_1M;
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_EXT_ADV)
|
ble_hdr->rxinfo.user_data = NULL;
|
#endif
|
|
/*
|
* Calculate receive start time.
|
*
|
* XXX: possibly use other routine with remainder!
|
*/
|
usecs = NRF_TIMER0->CC[1] - ble_phy_mode_pdu_start_off(BLE_PHY_MODE_1M);
|
ticks = os_cputime_usecs_to_ticks(usecs);
|
ble_hdr->rem_usecs = usecs - os_cputime_ticks_to_usecs(ticks);
|
if (ble_hdr->rem_usecs == 31) {
|
ble_hdr->rem_usecs = 0;
|
++ticks;
|
}
|
ble_hdr->beg_cputime = g_ble_phy_data.phy_start_cputime + ticks;
|
|
/* Wait to get 1st byte of frame */
|
while (1) {
|
state = NRF_RADIO->STATE;
|
if (NRF_RADIO->EVENTS_BCMATCH != 0) {
|
break;
|
}
|
|
/*
|
* If state is disabled, we should have the BCMATCH. If not,
|
* something is wrong!
|
*/
|
if (state == RADIO_STATE_STATE_Disabled) {
|
NRF_RADIO->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
|
NRF_RADIO->SHORTS = 0;
|
return;
|
}
|
}
|
|
/* Call Link Layer receive start function */
|
rc = ble_ll_rx_start(g_ble_phy_data.rxdptr, g_ble_phy_data.phy_chan,
|
&g_ble_phy_data.rxhdr);
|
if (rc >= 0) {
|
/* Set rx started flag and enable rx end ISR */
|
g_ble_phy_data.phy_rx_started = 1;
|
NRF_RADIO->INTENSET = RADIO_INTENSET_END_Msk;
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
/* Must start aar if we need to */
|
if (g_ble_phy_data.phy_privacy) {
|
NRF_RADIO->EVENTS_BCMATCH = 0;
|
NRF_PPI->CHENSET = PPI_CHEN_CH23_Msk;
|
/*
|
* Setup AAR to resolve AdvA and trigger it after complete address
|
* is received, i.e. after PDU header and AdvA is received.
|
*
|
* AdvA starts at 4th octet in receive buffer, after S0, len and S1
|
* fields.
|
*
|
* In case of extended advertising AdvA is located after extended
|
* header (+2 octets).
|
*/
|
if (BLE_MBUF_HDR_EXT_ADV(&g_ble_phy_data.rxhdr)) {
|
NRF_AAR->ADDRPTR = (uint32_t)(dptr + 5);
|
NRF_RADIO->BCC = (BLE_DEV_ADDR_LEN + BLE_LL_PDU_HDR_LEN + 2) * 8;
|
|
} else {
|
NRF_AAR->ADDRPTR = (uint32_t)(dptr + 3);
|
NRF_RADIO->BCC = (BLE_DEV_ADDR_LEN + BLE_LL_PDU_HDR_LEN) * 8;
|
}
|
}
|
#endif
|
} else {
|
/* Disable PHY */
|
ble_phy_disable();
|
STATS_INC(ble_phy_stats, rx_aborts);
|
}
|
|
/* Count rx starts */
|
STATS_INC(ble_phy_stats, rx_starts);
|
}
|
|
static void
|
ble_phy_isr(void)
|
{
|
uint32_t irq_en;
|
|
os_trace_isr_enter();
|
|
/* Read irq register to determine which interrupts are enabled */
|
irq_en = NRF_RADIO->INTENCLR;
|
|
/*
|
* NOTE: order of checking is important! Possible, if things get delayed,
|
* we have both an ADDRESS and DISABLED interrupt in rx state. If we get
|
* an address, we disable the DISABLED interrupt.
|
*/
|
|
/* We get this if we have started to receive a frame */
|
if ((irq_en & RADIO_INTENCLR_ADDRESS_Msk) && NRF_RADIO->EVENTS_ADDRESS) {
|
irq_en &= ~RADIO_INTENCLR_DISABLED_Msk;
|
ble_phy_rx_start_isr();
|
}
|
|
/* Check for disabled event. This only happens for transmits now */
|
if ((irq_en & RADIO_INTENCLR_DISABLED_Msk) && NRF_RADIO->EVENTS_DISABLED) {
|
if (g_ble_phy_data.phy_state == BLE_PHY_STATE_RX) {
|
NRF_RADIO->EVENTS_DISABLED = 0;
|
ble_ll_wfr_timer_exp(NULL);
|
} else {
|
ble_phy_tx_end_isr();
|
}
|
}
|
|
/* Receive packet end (we dont enable this for transmit) */
|
if ((irq_en & RADIO_INTENCLR_END_Msk) && NRF_RADIO->EVENTS_END) {
|
ble_phy_rx_end_isr();
|
}
|
|
/* Ensures IRQ is cleared */
|
irq_en = NRF_RADIO->SHORTS;
|
|
/* Count # of interrupts */
|
STATS_INC(ble_phy_stats, phy_isrs);
|
|
os_trace_isr_exit();
|
}
|
|
/**
|
* ble phy init
|
*
|
* Initialize the PHY.
|
*
|
* @return int 0: success; PHY error code otherwise
|
*/
|
int
|
ble_phy_init(void)
|
{
|
int rc;
|
|
/* Set phy channel to an invalid channel so first set channel works */
|
g_ble_phy_data.phy_chan = BLE_PHY_NUM_CHANS;
|
|
g_ble_phy_data.rx_pwr_compensation = 0;
|
|
/* Toggle peripheral power to reset (just in case) */
|
NRF_RADIO->POWER = 0;
|
NRF_RADIO->POWER = 1;
|
|
/* Disable all interrupts */
|
NRF_RADIO->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
|
|
/* Set configuration registers */
|
NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_1Mbit;
|
NRF_RADIO->PCNF0 = (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
/* XXX: should maxlen be 251 for encryption? */
|
NRF_RADIO->PCNF1 = NRF_MAXLEN |
|
(RADIO_PCNF1_ENDIAN_Little << RADIO_PCNF1_ENDIAN_Pos) |
|
(NRF_BALEN << RADIO_PCNF1_BALEN_Pos) |
|
RADIO_PCNF1_WHITEEN_Msk;
|
|
/* Set base0 with the advertising access address */
|
NRF_RADIO->BASE0 = (BLE_ACCESS_ADDR_ADV << 8) & 0xFFFFFF00;
|
NRF_RADIO->PREFIX0 = (BLE_ACCESS_ADDR_ADV >> 24) & 0xFF;
|
|
/* Configure the CRC registers */
|
NRF_RADIO->CRCCNF = RADIO_CRCCNF_SKIPADDR_Msk | RADIO_CRCCNF_LEN_Three;
|
|
/* Configure BLE poly */
|
NRF_RADIO->CRCPOLY = 0x0100065B;
|
|
/* Configure IFS */
|
NRF_RADIO->TIFS = BLE_LL_IFS;
|
|
/* Captures tx/rx start in timer0 cc 1 and tx/rx end in timer0 cc 2 */
|
NRF_PPI->CHENSET = PPI_CHEN_CH26_Msk | PPI_CHEN_CH27_Msk;
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
NRF_CCM->INTENCLR = 0xffffffff;
|
NRF_CCM->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
|
NRF_CCM->EVENTS_ERROR = 0;
|
memset(g_nrf_encrypt_scratchpad, 0, sizeof(g_nrf_encrypt_scratchpad));
|
#endif
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
g_ble_phy_data.phy_aar_scratch = 0;
|
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
|
NRF_AAR->INTENCLR = 0xffffffff;
|
NRF_AAR->EVENTS_END = 0;
|
NRF_AAR->EVENTS_RESOLVED = 0;
|
NRF_AAR->EVENTS_NOTRESOLVED = 0;
|
NRF_AAR->NIRK = 0;
|
#endif
|
|
/* TIMER0 setup for PHY when using RTC */
|
NRF_TIMER0->TASKS_STOP = 1;
|
NRF_TIMER0->TASKS_SHUTDOWN = 1;
|
NRF_TIMER0->BITMODE = 3; /* 32-bit timer */
|
NRF_TIMER0->MODE = 0; /* Timer mode */
|
NRF_TIMER0->PRESCALER = 4; /* gives us 1 MHz */
|
|
/*
|
* PPI setup.
|
* Channel 4: Captures TIMER0 in CC[3] when EVENTS_ADDRESS occurs. Used
|
* to cancel the wait for response timer.
|
* Channel 5: TIMER0 CC[3] to TASKS_DISABLE on radio. This is the wait
|
* for response timer.
|
*/
|
NRF_PPI->CH[4].EEP = (uint32_t)&(NRF_RADIO->EVENTS_ADDRESS);
|
NRF_PPI->CH[4].TEP = (uint32_t)&(NRF_TIMER0->TASKS_CAPTURE[3]);
|
NRF_PPI->CH[5].EEP = (uint32_t)&(NRF_TIMER0->EVENTS_COMPARE[3]);
|
NRF_PPI->CH[5].TEP = (uint32_t)&(NRF_RADIO->TASKS_DISABLE);
|
|
/* Set isr in vector table and enable interrupt */
|
#ifndef RIOT_VERSION
|
NVIC_SetPriority(RADIO_IRQn, 0);
|
#endif
|
#if MYNEWT
|
NVIC_SetVector(RADIO_IRQn, (uint32_t)ble_phy_isr);
|
#else
|
ble_npl_hw_set_isr(RADIO_IRQn, ble_phy_isr);
|
#endif
|
NVIC_EnableIRQ(RADIO_IRQn);
|
|
/* Register phy statistics */
|
if (!g_ble_phy_data.phy_stats_initialized) {
|
rc = stats_init_and_reg(STATS_HDR(ble_phy_stats),
|
STATS_SIZE_INIT_PARMS(ble_phy_stats,
|
STATS_SIZE_32),
|
STATS_NAME_INIT_PARMS(ble_phy_stats),
|
"ble_phy");
|
assert(rc == 0);
|
|
g_ble_phy_data.phy_stats_initialized = 1;
|
}
|
|
return 0;
|
}
|
|
/**
|
* Puts the phy into receive mode.
|
*
|
* @return int 0: success; BLE Phy error code otherwise
|
*/
|
int
|
ble_phy_rx(void)
|
{
|
/* Check radio state */
|
nrf_wait_disabled();
|
if (NRF_RADIO->STATE != RADIO_STATE_STATE_Disabled) {
|
ble_phy_disable();
|
STATS_INC(ble_phy_stats, radio_state_errs);
|
return BLE_PHY_ERR_RADIO_STATE;
|
}
|
|
/* Make sure all interrupts are disabled */
|
NRF_RADIO->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
|
|
/* Clear events prior to enabling receive */
|
NRF_RADIO->EVENTS_END = 0;
|
NRF_RADIO->EVENTS_DISABLED = 0;
|
|
/* Setup for rx */
|
ble_phy_rx_xcvr_setup();
|
|
/* Start the receive task in the radio if not automatically going to rx */
|
if ((NRF_PPI->CHEN & PPI_CHEN_CH21_Msk) == 0) {
|
NRF_RADIO->TASKS_RXEN = 1;
|
}
|
|
return 0;
|
}
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
/**
|
* Called to enable encryption at the PHY. Note that this state will persist
|
* in the PHY; in other words, if you call this function you have to call
|
* disable so that future PHY transmits/receives will not be encrypted.
|
*
|
* @param pkt_counter
|
* @param iv
|
* @param key
|
* @param is_master
|
*/
|
void
|
ble_phy_encrypt_enable(uint64_t pkt_counter, uint8_t *iv, uint8_t *key,
|
uint8_t is_master)
|
{
|
memcpy(g_nrf_ccm_data.key, key, 16);
|
g_nrf_ccm_data.pkt_counter = pkt_counter;
|
memcpy(g_nrf_ccm_data.iv, iv, 8);
|
g_nrf_ccm_data.dir_bit = is_master;
|
g_ble_phy_data.phy_encrypted = 1;
|
|
/* Encryption uses LFLEN=5, S1LEN = 3. */
|
NRF_RADIO->PCNF0 = (5 << RADIO_PCNF0_LFLEN_Pos) |
|
(3 << RADIO_PCNF0_S1LEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
|
/* Enable the module (AAR cannot be on while CCM on) */
|
NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
|
NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Enabled;
|
}
|
|
void
|
ble_phy_encrypt_set_pkt_cntr(uint64_t pkt_counter, int dir)
|
{
|
g_nrf_ccm_data.pkt_counter = pkt_counter;
|
g_nrf_ccm_data.dir_bit = dir;
|
}
|
|
void
|
ble_phy_encrypt_disable(void)
|
{
|
NRF_PPI->CHENCLR = (PPI_CHEN_CH24_Msk | PPI_CHEN_CH25_Msk);
|
NRF_CCM->TASKS_STOP = 1;
|
NRF_CCM->EVENTS_ERROR = 0;
|
NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Disabled;
|
|
/* Switch back to normal length */
|
NRF_RADIO->PCNF0 = (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
|
g_ble_phy_data.phy_encrypted = 0;
|
}
|
#endif
|
|
void
|
ble_phy_set_txend_cb(ble_phy_tx_end_func txend_cb, void *arg)
|
{
|
/* Set transmit end callback and arg */
|
g_ble_phy_data.txend_cb = txend_cb;
|
g_ble_phy_data.txend_arg = arg;
|
}
|
|
/**
|
* Called to set the start time of a transmission.
|
*
|
* This function is called to set the start time when we are not going from
|
* rx to tx automatically.
|
*
|
* NOTE: care must be taken when calling this function. The channel should
|
* already be set.
|
*
|
* @param cputime This is the tick at which the 1st bit of the preamble
|
* should be transmitted
|
* @param rem_usecs This is used only when the underlying timing uses a 32.768
|
* kHz crystal. It is the # of usecs from the cputime tick
|
* at which the first bit of the preamble should be
|
* transmitted.
|
* @return int
|
*/
|
int
|
ble_phy_tx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
|
{
|
int rc;
|
|
ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_TX, cputime, rem_usecs);
|
|
/* XXX: This should not be necessary, but paranoia is good! */
|
/* Clear timer0 compare to RXEN since we are transmitting */
|
NRF_PPI->CHENCLR = PPI_CHEN_CH21_Msk;
|
|
/*
|
* XXX: The TXEN time is 140 usecs but there may be additional delays
|
* Need to look at this.
|
*/
|
if (ble_phy_set_start_time(cputime, rem_usecs) != 0) {
|
STATS_INC(ble_phy_stats, tx_late);
|
ble_phy_disable();
|
rc = BLE_PHY_ERR_TX_LATE;
|
} else {
|
/* Enable PPI to automatically start TXEN */
|
NRF_PPI->CHENSET = PPI_CHEN_CH20_Msk;
|
rc = 0;
|
}
|
return rc;
|
}
|
/**
|
* Called to set the start time of a reception
|
*
|
* This function acts a bit differently than transmit. If we are late getting
|
* here we will still attempt to receive.
|
*
|
* NOTE: care must be taken when calling this function. The channel should
|
* already be set.
|
*
|
* @param cputime
|
*
|
* @return int
|
*/
|
int
|
ble_phy_rx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
|
{
|
int rc;
|
|
ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_RX, cputime, rem_usecs);
|
|
/* XXX: This should not be necessary, but paranoia is good! */
|
/* Clear timer0 compare to TXEN since we are transmitting */
|
NRF_PPI->CHENCLR = PPI_CHEN_CH20_Msk;
|
|
/*
|
* XXX: The RXEN time is 138 usecs but there may be additional delays
|
* Need to look at this.
|
*/
|
if (ble_phy_set_start_time(cputime, rem_usecs) != 0) {
|
STATS_INC(ble_phy_stats, rx_late);
|
NRF_PPI->CHENCLR = PPI_CHEN_CH21_Msk;
|
NRF_RADIO->TASKS_RXEN = 1;
|
rc = BLE_PHY_ERR_RX_LATE;
|
} else {
|
/* Enable PPI to automatically start RXEN */
|
NRF_PPI->CHENSET = PPI_CHEN_CH21_Msk;
|
|
/* Start rx */
|
rc = ble_phy_rx();
|
}
|
return rc;
|
}
|
|
int
|
ble_phy_tx(ble_phy_tx_pducb_t pducb, void *pducb_arg, uint8_t end_trans)
|
{
|
int rc;
|
uint8_t *dptr;
|
uint8_t payload_len;
|
uint8_t payload_off;
|
uint8_t hdr_byte;
|
uint32_t state;
|
uint32_t shortcuts;
|
|
/*
|
* This check is to make sure that the radio is not in a state where
|
* it is moving to disabled state. If so, let it get there.
|
*/
|
nrf_wait_disabled();
|
|
/*
|
* XXX: Although we may not have to do this here, I clear all the PPI
|
* that should not be used when transmitting. Some of them are only enabled
|
* if encryption and/or privacy is on, but I dont care. Better to be
|
* paranoid, and if you are going to clear one, might as well clear them
|
* all.
|
*/
|
NRF_PPI->CHENCLR = PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk | PPI_CHEN_CH23_Msk |
|
PPI_CHEN_CH25_Msk;
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
if (g_ble_phy_data.phy_encrypted) {
|
/* RAM representation has S0, LENGTH and S1 fields. (3 bytes) */
|
dptr = (uint8_t *)&g_ble_phy_enc_buf[0];
|
payload_off = 3;
|
|
NRF_CCM->SHORTS = 1;
|
NRF_CCM->INPTR = (uint32_t)&g_ble_phy_enc_buf[0];
|
NRF_CCM->OUTPTR = (uint32_t)&g_ble_phy_tx_buf[0];
|
NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
|
NRF_CCM->EVENTS_ERROR = 0;
|
NRF_CCM->MODE = CCM_MODE_MODE_Encryption;
|
NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
|
NRF_PPI->CHENSET = PPI_CHEN_CH24_Msk;
|
} else {
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
/* Reconfigure PCNF0 */
|
NRF_RADIO->PCNF0 = (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
|
#endif
|
/* RAM representation has S0 and LENGTH fields (2 bytes) */
|
dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
|
payload_off = 2;
|
}
|
#else
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
/* Reconfigure PCNF0 */
|
NRF_RADIO->PCNF0 = (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) |
|
(NRF_S0_LEN << RADIO_PCNF0_S0LEN_Pos);
|
#endif
|
|
/* RAM representation has S0 and LENGTH fields (2 bytes) */
|
dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
|
payload_off = 2;
|
#endif
|
|
NRF_RADIO->PACKETPTR = (uint32_t)&g_ble_phy_tx_buf[0];
|
|
/* Clear the ready, end and disabled events */
|
NRF_RADIO->EVENTS_READY = 0;
|
NRF_RADIO->EVENTS_END = 0;
|
NRF_RADIO->EVENTS_DISABLED = 0;
|
|
/* Enable shortcuts for transmit start/end. */
|
shortcuts = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk;
|
if (end_trans == BLE_PHY_TRANSITION_TX_RX) {
|
shortcuts |= RADIO_SHORTS_DISABLED_RXEN_Msk;
|
}
|
NRF_RADIO->SHORTS = shortcuts;
|
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
|
|
/* Set PDU payload */
|
payload_len = pducb(&dptr[payload_off], pducb_arg, &hdr_byte);
|
|
/* Set PDU header */
|
dptr[0] = hdr_byte;
|
dptr[1] = payload_len;
|
if (payload_off > 2) {
|
dptr[2] = 0;
|
}
|
|
/* Set the PHY transition */
|
g_ble_phy_data.phy_transition = end_trans;
|
|
/* Set transmitted payload length */
|
g_ble_phy_data.phy_tx_pyld_len = payload_len;
|
|
/* If we already started transmitting, abort it! */
|
state = NRF_RADIO->STATE;
|
if (state != RADIO_STATE_STATE_Tx) {
|
|
/* Set phy state to transmitting and count packet statistics */
|
g_ble_phy_data.phy_state = BLE_PHY_STATE_TX;
|
STATS_INC(ble_phy_stats, tx_good);
|
STATS_INCN(ble_phy_stats, tx_bytes, payload_len + BLE_LL_PDU_HDR_LEN);
|
rc = BLE_ERR_SUCCESS;
|
} else {
|
ble_phy_disable();
|
STATS_INC(ble_phy_stats, tx_late);
|
rc = BLE_PHY_ERR_RADIO_STATE;
|
}
|
|
return rc;
|
}
|
|
/**
|
* ble phy txpwr set
|
*
|
* Set the transmit output power (in dBm).
|
*
|
* NOTE: If the output power specified is within the BLE limits but outside
|
* the chip limits, we "rail" the power level so we dont exceed the min/max
|
* chip values.
|
*
|
* @param dbm Power output in dBm.
|
*
|
* @return int 0: success; anything else is an error
|
*/
|
int
|
ble_phy_txpwr_set(int dbm)
|
{
|
/* Check valid range */
|
assert(dbm <= BLE_PHY_MAX_PWR_DBM);
|
|
/* "Rail" power level if outside supported range */
|
if (dbm > NRF_TX_PWR_MAX_DBM) {
|
dbm = NRF_TX_PWR_MAX_DBM;
|
} else {
|
if (dbm < NRF_TX_PWR_MIN_DBM) {
|
dbm = NRF_TX_PWR_MIN_DBM;
|
}
|
}
|
|
NRF_RADIO->TXPOWER = dbm;
|
g_ble_phy_data.phy_txpwr_dbm = dbm;
|
|
return 0;
|
}
|
|
/**
|
* ble phy txpwr round
|
*
|
* Get the rounded transmit output power (in dBm).
|
*
|
* @param dbm Power output in dBm.
|
*
|
* @return int Rounded power in dBm
|
*/
|
int ble_phy_txpower_round(int dbm)
|
{
|
/* "Rail" power level if outside supported range */
|
if (dbm > NRF_TX_PWR_MAX_DBM) {
|
dbm = NRF_TX_PWR_MAX_DBM;
|
} else {
|
if (dbm < NRF_TX_PWR_MIN_DBM) {
|
dbm = NRF_TX_PWR_MIN_DBM;
|
}
|
}
|
|
return dbm;
|
}
|
|
/**
|
* ble phy txpwr get
|
*
|
* Get the transmit power.
|
*
|
* @return int The current PHY transmit power, in dBm
|
*/
|
int
|
ble_phy_txpwr_get(void)
|
{
|
return g_ble_phy_data.phy_txpwr_dbm;
|
}
|
|
void
|
ble_phy_set_rx_pwr_compensation(int8_t compensation)
|
{
|
g_ble_phy_data.rx_pwr_compensation = compensation;
|
}
|
|
/**
|
* ble phy setchan
|
*
|
* Sets the logical frequency of the transceiver. The input parameter is the
|
* BLE channel index (0 to 39, inclusive). The NRF frequency register works like
|
* this: logical frequency = 2400 + FREQ (MHz).
|
*
|
* Thus, to get a logical frequency of 2402 MHz, you would program the
|
* FREQUENCY register to 2.
|
*
|
* @param chan This is the Data Channel Index or Advertising Channel index
|
*
|
* @return int 0: success; PHY error code otherwise
|
*/
|
int
|
ble_phy_setchan(uint8_t chan, uint32_t access_addr, uint32_t crcinit)
|
{
|
uint32_t prefix;
|
|
assert(chan < BLE_PHY_NUM_CHANS);
|
|
/* Check for valid channel range */
|
if (chan >= BLE_PHY_NUM_CHANS) {
|
return BLE_PHY_ERR_INV_PARAM;
|
}
|
|
/* Get correct frequency */
|
if (chan < BLE_PHY_NUM_DATA_CHANS) {
|
/* Set current access address */
|
g_ble_phy_data.phy_access_address = access_addr;
|
|
/* Configure logical address 1 and crcinit */
|
prefix = NRF_RADIO->PREFIX0;
|
prefix &= 0xffff00ff;
|
prefix |= ((access_addr >> 24) & 0xFF) << 8;
|
NRF_RADIO->BASE1 = (access_addr << 8) & 0xFFFFFF00;
|
NRF_RADIO->PREFIX0 = prefix;
|
NRF_RADIO->TXADDRESS = 1;
|
NRF_RADIO->RXADDRESSES = (1 << 1);
|
NRF_RADIO->CRCINIT = crcinit;
|
} else {
|
/* Logical address 0 preconfigured */
|
NRF_RADIO->TXADDRESS = 0;
|
NRF_RADIO->RXADDRESSES = (1 << 0);
|
NRF_RADIO->CRCINIT = BLE_LL_CRCINIT_ADV;
|
|
/* Set current access address */
|
g_ble_phy_data.phy_access_address = BLE_ACCESS_ADDR_ADV;
|
}
|
|
/* Set the frequency and the data whitening initial value */
|
g_ble_phy_data.phy_chan = chan;
|
NRF_RADIO->FREQUENCY = g_ble_phy_chan_freq[chan];
|
NRF_RADIO->DATAWHITEIV = chan;
|
|
return 0;
|
}
|
|
/**
|
* Stop the timer used to count microseconds when using RTC for cputime
|
*/
|
static void
|
ble_phy_stop_usec_timer(void)
|
{
|
NRF_TIMER0->TASKS_STOP = 1;
|
NRF_TIMER0->TASKS_SHUTDOWN = 1;
|
NRF_RTC0->EVTENCLR = RTC_EVTENSET_COMPARE0_Msk;
|
}
|
|
/**
|
* ble phy disable irq and ppi
|
*
|
* This routine is to be called when reception was stopped due to either a
|
* wait for response timeout or a packet being received and the phy is to be
|
* restarted in receive mode. Generally, the disable routine is called to stop
|
* the phy.
|
*/
|
static void
|
ble_phy_disable_irq_and_ppi(void)
|
{
|
NRF_RADIO->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
|
NRF_RADIO->SHORTS = 0;
|
NRF_RADIO->TASKS_DISABLE = 1;
|
NRF_PPI->CHENCLR = PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk | PPI_CHEN_CH20_Msk |
|
PPI_CHEN_CH21_Msk | PPI_CHEN_CH23_Msk | PPI_CHEN_CH24_Msk |
|
PPI_CHEN_CH25_Msk | PPI_CHEN_CH31_Msk;
|
NVIC_ClearPendingIRQ(RADIO_IRQn);
|
g_ble_phy_data.phy_state = BLE_PHY_STATE_IDLE;
|
}
|
|
void
|
ble_phy_restart_rx(void)
|
{
|
ble_phy_stop_usec_timer();
|
ble_phy_disable_irq_and_ppi();
|
ble_phy_rx();
|
}
|
|
/**
|
* ble phy disable
|
*
|
* Disables the PHY. This should be called when an event is over. It stops
|
* the usec timer (if used), disables interrupts, disables the RADIO, disables
|
* PPI and sets state to idle.
|
*/
|
void
|
ble_phy_disable(void)
|
{
|
ble_phy_trace_void(BLE_PHY_TRACE_ID_DISABLE);
|
|
ble_phy_stop_usec_timer();
|
ble_phy_disable_irq_and_ppi();
|
}
|
|
/* Gets the current access address */
|
uint32_t ble_phy_access_addr_get(void)
|
{
|
return g_ble_phy_data.phy_access_address;
|
}
|
|
/**
|
* Return the phy state
|
*
|
* @return int The current PHY state.
|
*/
|
int
|
ble_phy_state_get(void)
|
{
|
return g_ble_phy_data.phy_state;
|
}
|
|
/**
|
* Called to see if a reception has started
|
*
|
* @return int
|
*/
|
int
|
ble_phy_rx_started(void)
|
{
|
return g_ble_phy_data.phy_rx_started;
|
}
|
|
/**
|
* Return the transceiver state
|
*
|
* @return int transceiver state.
|
*/
|
uint8_t
|
ble_phy_xcvr_state_get(void)
|
{
|
uint32_t state;
|
state = NRF_RADIO->STATE;
|
return (uint8_t)state;
|
}
|
|
/**
|
* Called to return the maximum data pdu payload length supported by the
|
* phy. For this chip, if encryption is enabled, the maximum payload is 27
|
* bytes.
|
*
|
* @return uint8_t Maximum data channel PDU payload size supported
|
*/
|
uint8_t
|
ble_phy_max_data_pdu_pyld(void)
|
{
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
|
return NRF_MAX_ENCRYPTED_PYLD_LEN;
|
#else
|
return BLE_LL_DATA_PDU_MAX_PYLD;
|
#endif
|
}
|
|
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
|
void
|
ble_phy_resolv_list_enable(void)
|
{
|
NRF_AAR->NIRK = (uint32_t)g_nrf_num_irks;
|
g_ble_phy_data.phy_privacy = 1;
|
}
|
|
void
|
ble_phy_resolv_list_disable(void)
|
{
|
g_ble_phy_data.phy_privacy = 0;
|
}
|
#endif
|
|
void
|
ble_phy_rfclk_enable(void)
|
{
|
#if MYNEWT
|
nrf51_clock_hfxo_request();
|
#else
|
NRF_CLOCK->TASKS_HFCLKSTART = 1;
|
#endif
|
}
|
|
void
|
ble_phy_rfclk_disable(void)
|
{
|
#if MYNEWT
|
nrf51_clock_hfxo_release();
|
#else
|
NRF_CLOCK->TASKS_HFCLKSTOP = 1;
|
#endif
|
}
|