WXK
2025-02-05 961c1174bbf1aaae5fa2f672806ed4eaf2f917be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
 
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <hal/nrf_radio.h>
#include <hal/nrf_ccm.h>
#include <hal/nrf_aar.h>
#include <hal/nrf_timer.h>
#include <hal/nrf_ppi.h>
#include <hal/nrf_rtc.h>
#include "nimble_syscfg.h"
#include "os/os.h"
/* Keep os_cputime explicitly to enable build on non-Mynewt platforms */
#include "os/os_cputime.h"
#include "ble/xcvr.h"
#include "nimble/ble.h"
#include "nimble/nimble_opt.h"
#include "nimble/nimble_npl.h"
#include "controller/ble_phy.h"
#include "controller/ble_phy_trace.h"
#include "controller/ble_ll.h"
#include "controller/ble_ll_plna.h"
#include "nrfx.h"
#if MYNEWT
#include "mcu/nrf52_clock.h"
#include "mcu/cmsis_nvic.h"
#include "hal/hal_gpio.h"
#else
#include "core_cm4.h"
#endif
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
#if !MYNEWT_VAL_CHOICE(MCU_TARGET, nRF52840) && !MYNEWT_VAL_CHOICE(MCU_TARGET, nRF52811)
#error LE Coded PHY can only be enabled on nRF52811 or nRF52840
#endif
#endif
 
#if BABBLESIM
extern void tm_tick(void);
#endif
 
/*
 * NOTE: This code uses a couple of PPI channels so care should be taken when
 *       using PPI somewhere else.
 *
 * Pre-programmed channels: CH20, CH21, CH23, CH25, CH31
 * Regular channels: CH4, CH5 and optionally CH6, CH7, CH17, CH18, CH19
 *  - CH4 = cancel wfr timer on address match
 *  - CH5 = disable radio on wfr timer expiry
 *  - CH6 = PA/LNA control (enable)
 *  - CH7 = PA/LNA control (disable)
 *  - CH17 = (optional) gpio debug for radio ramp-up
 *  - CH18 = (optional) gpio debug for wfr timer RX enabled
 *  - CH19 = (optional) gpio debug for wfr timer radio disabled
 *
 */
 
/* XXX: 4) Make sure RF is higher priority interrupt than schedule */
 
/*
 * XXX: Maximum possible transmit time is 1 msec for a 60ppm crystal
 * and 16ms for a 30ppm crystal! We need to limit PDU size based on
 * crystal accuracy. Look at this in the spec.
 */
 
/* XXX: private header file? */
extern uint8_t g_nrf_num_irks;
extern uint32_t g_nrf_irk_list[];
 
/* To disable all radio interrupts */
#define NRF_RADIO_IRQ_MASK_ALL  (0x34FF)
 
/*
 * We configure the nrf with a 1 byte S0 field, 8 bit length field, and
 * zero bit S1 field. The preamble is 8 bits long.
 */
#define NRF_LFLEN_BITS          (8)
#define NRF_S0LEN               (1)
#define NRF_S1LEN_BITS          (0)
#define NRF_CILEN_BITS          (2)
#define NRF_TERMLEN_BITS        (3)
 
/* Maximum length of frames */
#define NRF_MAXLEN              (255)
#define NRF_BALEN               (3)     /* For base address of 3 bytes */
 
/* NRF_RADIO->PCNF0 configuration values */
#define NRF_PCNF0               (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) | \
                                (RADIO_PCNF0_S1INCL_Msk) | \
                                (NRF_S0LEN << RADIO_PCNF0_S0LEN_Pos) | \
                                (NRF_S1LEN_BITS << RADIO_PCNF0_S1LEN_Pos)
#define NRF_PCNF0_1M            (NRF_PCNF0) | \
                                (RADIO_PCNF0_PLEN_8bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_2M            (NRF_PCNF0) | \
                                (RADIO_PCNF0_PLEN_16bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_CODED         (NRF_PCNF0) | \
                                (RADIO_PCNF0_PLEN_LongRange << RADIO_PCNF0_PLEN_Pos) | \
                                (NRF_CILEN_BITS << RADIO_PCNF0_CILEN_Pos) | \
                                (NRF_TERMLEN_BITS << RADIO_PCNF0_TERMLEN_Pos)
 
/* BLE PHY data structure */
struct ble_phy_obj
{
    uint8_t phy_stats_initialized;
    int8_t  phy_txpwr_dbm;
    uint8_t phy_chan;
    uint8_t phy_state;
    uint8_t phy_transition;
    uint8_t phy_transition_late;
    uint8_t phy_rx_started;
    uint8_t phy_encrypted;
    uint8_t phy_privacy;
    uint8_t phy_tx_pyld_len;
    uint8_t phy_cur_phy_mode;
    uint8_t phy_tx_phy_mode;
    uint8_t phy_rx_phy_mode;
    uint8_t phy_bcc_offset;
    int8_t  rx_pwr_compensation;
    uint32_t phy_aar_scratch;
    uint32_t phy_access_address;
    struct ble_mbuf_hdr rxhdr;
    void *txend_arg;
    ble_phy_tx_end_func txend_cb;
    uint32_t phy_start_cputime;
};
struct ble_phy_obj g_ble_phy_data;
 
/* XXX: if 27 byte packets desired we can make this smaller */
/* Global transmit/receive buffer */
static uint32_t g_ble_phy_tx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
static uint32_t g_ble_phy_rx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/* Make sure word-aligned for faster copies */
static uint32_t g_ble_phy_enc_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
#endif
 
/* RF center frequency for each channel index (offset from 2400 MHz) */
static const uint8_t g_ble_phy_chan_freq[BLE_PHY_NUM_CHANS] = {
     4,  6,  8, 10, 12, 14, 16, 18, 20, 22, /* 0-9 */
    24, 28, 30, 32, 34, 36, 38, 40, 42, 44, /* 10-19 */
    46, 48, 50, 52, 54, 56, 58, 60, 62, 64, /* 20-29 */
    66, 68, 70, 72, 74, 76, 78,  2, 26, 80, /* 30-39 */
};
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
/* packet start offsets (in usecs) */
static const uint16_t g_ble_phy_mode_pkt_start_off[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 40,
    [BLE_PHY_MODE_2M] = 24,
    [BLE_PHY_MODE_CODED_125KBPS] = 376,
    [BLE_PHY_MODE_CODED_500KBPS] = 376
};
#endif
 
/* Various radio timings */
/* Radio ramp-up times in usecs (fast mode) */
#define BLE_PHY_T_TXENFAST      (XCVR_TX_RADIO_RAMPUP_USECS)
#define BLE_PHY_T_RXENFAST      (XCVR_RX_RADIO_RAMPUP_USECS)
 
#if BABBLESIM
/* delay between EVENTS_READY and start of tx */
static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 1,
    [BLE_PHY_MODE_2M] = 1,
};
/* delay between EVENTS_END and end of txd packet */
static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 1,
    [BLE_PHY_MODE_2M] = 1,
};
/* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */
static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 9,
    [BLE_PHY_MODE_2M] = 5,
};
/* delay between end of rxd packet and EVENTS_END */
static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 9,
    [BLE_PHY_MODE_2M] = 5,
};
#else
/* delay between EVENTS_READY and start of tx */
static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 4,
    [BLE_PHY_MODE_2M] = 3,
    [BLE_PHY_MODE_CODED_125KBPS] = 5,
    [BLE_PHY_MODE_CODED_500KBPS] = 5
};
/* delay between EVENTS_END and end of txd packet */
static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 4,
    [BLE_PHY_MODE_2M] = 3,
    [BLE_PHY_MODE_CODED_125KBPS] = 9,
    [BLE_PHY_MODE_CODED_500KBPS] = 3
};
/* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */
static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 6,
    [BLE_PHY_MODE_2M] = 2,
    [BLE_PHY_MODE_CODED_125KBPS] = 17,
    [BLE_PHY_MODE_CODED_500KBPS] = 17
};
/* delay between end of rxd packet and EVENTS_END */
static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 6,
    [BLE_PHY_MODE_2M] = 2,
    [BLE_PHY_MODE_CODED_125KBPS] = 27,
    [BLE_PHY_MODE_CODED_500KBPS] = 22
};
#endif
 
/* Statistics */
STATS_SECT_START(ble_phy_stats)
    STATS_SECT_ENTRY(phy_isrs)
    STATS_SECT_ENTRY(tx_good)
    STATS_SECT_ENTRY(tx_fail)
    STATS_SECT_ENTRY(tx_late)
    STATS_SECT_ENTRY(tx_bytes)
    STATS_SECT_ENTRY(rx_starts)
    STATS_SECT_ENTRY(rx_aborts)
    STATS_SECT_ENTRY(rx_valid)
    STATS_SECT_ENTRY(rx_crc_err)
    STATS_SECT_ENTRY(rx_late)
    STATS_SECT_ENTRY(radio_state_errs)
    STATS_SECT_ENTRY(rx_hw_err)
    STATS_SECT_ENTRY(tx_hw_err)
STATS_SECT_END
STATS_SECT_DECL(ble_phy_stats) ble_phy_stats;
 
STATS_NAME_START(ble_phy_stats)
    STATS_NAME(ble_phy_stats, phy_isrs)
    STATS_NAME(ble_phy_stats, tx_good)
    STATS_NAME(ble_phy_stats, tx_fail)
    STATS_NAME(ble_phy_stats, tx_late)
    STATS_NAME(ble_phy_stats, tx_bytes)
    STATS_NAME(ble_phy_stats, rx_starts)
    STATS_NAME(ble_phy_stats, rx_aborts)
    STATS_NAME(ble_phy_stats, rx_valid)
    STATS_NAME(ble_phy_stats, rx_crc_err)
    STATS_NAME(ble_phy_stats, rx_late)
    STATS_NAME(ble_phy_stats, radio_state_errs)
    STATS_NAME(ble_phy_stats, rx_hw_err)
    STATS_NAME(ble_phy_stats, tx_hw_err)
STATS_NAME_END(ble_phy_stats)
 
/*
 * NOTE:
 * Tested the following to see what would happen:
 *  -> NVIC has radio irq enabled (interrupt # 1, mask 0x2).
 *  -> Set up nrf to receive. Clear ADDRESS event register.
 *  -> Enable ADDRESS interrupt on nrf5 by writing to INTENSET.
 *  -> Enable RX.
 *  -> Disable interrupts globally using OS_ENTER_CRITICAL().
 *  -> Wait until a packet is received and the ADDRESS event occurs.
 *  -> Call ble_phy_disable().
 *
 *  At this point I wanted to see the state of the cortex NVIC. The IRQ
 *  pending bit was TRUE for the radio interrupt (as expected) as we never
 *  serviced the radio interrupt (interrupts were disabled).
 *
 *  What was unexpected was this: without clearing the pending IRQ in the NVIC,
 *  when radio interrupts were re-enabled (address event bit in INTENSET set to
 *  1) and the radio ADDRESS event register read 1 (it was never cleared after
 *  the first address event), the radio did not enter the ISR! I would have
 *  expected that if the following were true, an interrupt would occur:
 *      -> NVIC ISER bit set to TRUE
 *      -> NVIC ISPR bit reads TRUE, meaning interrupt is pending.
 *      -> Radio peripheral interrupts are enabled for some event (or events).
 *      -> Corresponding event register(s) in radio peripheral read 1.
 *
 *  Not sure what the end result of all this is. We will clear the pending
 *  bit in the NVIC just to be sure when we disable the PHY.
 */
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
 
/*
 * Per nordic, the number of bytes needed for scratch is 16 + MAX_PKT_SIZE.
 * However, when I used a smaller size it still overwrote the scratchpad. Until
 * I figure this out I am just going to allocate 67 words so we have enough
 * space for 267 bytes of scratch. I used 268 bytes since not sure if this
 * needs to be aligned and burning a byte is no big deal.
 */
//#define NRF_ENC_SCRATCH_WORDS (((MYNEWT_VAL(BLE_LL_MAX_PKT_SIZE) + 16) + 3) / 4)
#define NRF_ENC_SCRATCH_WORDS   (67)
 
uint32_t g_nrf_encrypt_scratchpad[NRF_ENC_SCRATCH_WORDS];
 
struct nrf_ccm_data
{
    uint8_t key[16];
    uint64_t pkt_counter;
    uint8_t dir_bit;
    uint8_t iv[8];
} __attribute__((packed));
 
struct nrf_ccm_data g_nrf_ccm_data;
#endif
 
static int g_ble_phy_gpiote_idx;
 
#if MYNEWT_VAL(BLE_LL_PA) || MYNEWT_VAL(BLE_LL_LNA)
 
#define PLNA_SINGLE_GPIO \
        (!MYNEWT_VAL(BLE_LL_PA) || !MYNEWT_VAL(BLE_LL_LNA) || \
         (MYNEWT_VAL(BLE_LL_PA_GPIO) == MYNEWT_VAL(BLE_LL_LNA_GPIO)))
 
#if PLNA_SINGLE_GPIO
static uint8_t plna_idx;
#else
#if MYNEWT_VAL(BLE_LL_PA)
static uint8_t plna_pa_idx;
#endif
#if MYNEWT_VAL(BLE_LL_LNA)
static uint8_t plna_lna_idx;
#endif
#endif
 
#endif
 
#ifndef BABBLESIM
static void
ble_phy_apply_errata_102_106_107(void)
{
    /* [102] RADIO: PAYLOAD/END events delayed or not triggered after ADDRESS
     * [106] RADIO: Higher CRC error rates for some access addresses
     * [107] RADIO: Immediate address match for access addresses containing MSBs 0x00
     */
    *(volatile uint32_t *)0x40001774 = ((*(volatile uint32_t *)0x40001774) &
                         0xfffffffe) | 0x01000000;
}
#endif
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
 
/* Packet start offset (in usecs). This is the preamble plus access address.
 * For LE Coded PHY this also includes CI and TERM1. */
uint32_t
ble_phy_mode_pdu_start_off(int phy_mode)
{
    return g_ble_phy_mode_pkt_start_off[phy_mode];
}
 
#if NRF52840_XXAA
static inline bool
ble_phy_mode_is_coded(uint8_t phy_mode)
{
    return (phy_mode == BLE_PHY_MODE_CODED_125KBPS) ||
           (phy_mode == BLE_PHY_MODE_CODED_500KBPS);
}
 
static void
ble_phy_apply_nrf52840_errata(uint8_t new_phy_mode)
{
    bool new_coded = ble_phy_mode_is_coded(new_phy_mode);
    bool cur_coded = ble_phy_mode_is_coded(g_ble_phy_data.phy_cur_phy_mode);
 
    /*
     * Workarounds should be applied only when switching to/from LE Coded PHY
     * so no need to apply them every time.
     *
     * nRF52840 Engineering A Errata v1.2
     * [164] RADIO: Low sensitivity in long range mode
     *
     * nRF52840 Rev 1 Errata
     * [191] RADIO: High packet error rate in BLE Long Range mode
     */
    if (new_coded == cur_coded) {
        return;
    }
 
    if (new_coded) {
#if MYNEWT_VAL(BLE_PHY_NRF52840_ERRATA_164)
        /* [164] */
        *(volatile uint32_t *)0x4000173C |= 0x80000000;
        *(volatile uint32_t *)0x4000173C =
                        ((*(volatile uint32_t *)0x4000173C & 0xFFFFFF00) | 0x5C);
#endif
#if MYNEWT_VAL(BLE_PHY_NRF52840_ERRATA_191)
        /* [191] */
        *(volatile uint32_t *) 0x40001740 =
                        ((*((volatile uint32_t *) 0x40001740)) & 0x7FFF00FF) |
                        0x80000000 | (((uint32_t)(196)) << 8);
#endif
    } else {
#if MYNEWT_VAL(BLE_PHY_NRF52840_ERRATA_164)
        /* [164] */
        *(volatile uint32_t *)0x4000173C &= ~0x80000000;
#endif
#if MYNEWT_VAL(BLE_PHY_NRF52840_ERRATA_191)
        /* [191] */
        *(volatile uint32_t *) 0x40001740 =
                        ((*((volatile uint32_t *) 0x40001740)) & 0x7FFFFFFF);
#endif
    }
}
#endif
 
static void
ble_phy_mode_apply(uint8_t phy_mode)
{
    if (phy_mode == g_ble_phy_data.phy_cur_phy_mode) {
        return;
    }
 
#if NRF52840_XXAA
    ble_phy_apply_nrf52840_errata(phy_mode);
#endif
 
    switch (phy_mode) {
    case BLE_PHY_MODE_1M:
        NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_1Mbit;
        NRF_RADIO->PCNF0 = NRF_PCNF0_1M;
        break;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_2M_PHY)
    case BLE_PHY_MODE_2M:
        NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_2Mbit;
        NRF_RADIO->PCNF0 = NRF_PCNF0_2M;
        break;
#endif
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    case BLE_PHY_MODE_CODED_125KBPS:
        NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_LR125Kbit;
        NRF_RADIO->PCNF0 = NRF_PCNF0_CODED;
        break;
    case BLE_PHY_MODE_CODED_500KBPS:
        NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_LR500Kbit;
        NRF_RADIO->PCNF0 = NRF_PCNF0_CODED;
        break;
#endif
    default:
        assert(0);
    }
 
    g_ble_phy_data.phy_cur_phy_mode = phy_mode;
}
 
void
ble_phy_mode_set(uint8_t tx_phy_mode, uint8_t rx_phy_mode)
{
    g_ble_phy_data.phy_tx_phy_mode = tx_phy_mode;
    g_ble_phy_data.phy_rx_phy_mode = rx_phy_mode;
}
#endif
 
static void
ble_phy_plna_enable_pa(void)
{
#if MYNEWT_VAL(BLE_LL_PA)
    ble_ll_plna_pa_enable();
 
#if !PLNA_SINGLE_GPIO
    NRF_PPI->CH[6].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_SET[plna_pa_idx]);
    NRF_PPI->CH[7].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_CLR[plna_pa_idx]);
#endif
 
    NRF_PPI->CHENSET = PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk;
#endif
}
 
static void
ble_phy_plna_enable_lna(void)
{
#if MYNEWT_VAL(BLE_LL_LNA)
    ble_ll_plna_lna_enable();
 
#if !PLNA_SINGLE_GPIO
    NRF_PPI->CH[6].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_SET[plna_lna_idx]);
    NRF_PPI->CH[7].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_CLR[plna_lna_idx]);
#endif
 
    NRF_PPI->CHENSET = PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk;
#endif
}
 
int
ble_phy_get_cur_phy(void)
{
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    switch (g_ble_phy_data.phy_cur_phy_mode) {
        case BLE_PHY_MODE_1M:
            return BLE_PHY_1M;
        case BLE_PHY_MODE_2M:
            return BLE_PHY_2M;
        case BLE_PHY_MODE_CODED_125KBPS:
        case BLE_PHY_MODE_CODED_500KBPS:
            return BLE_PHY_CODED;
        default:
            assert(0);
            return -1;
    }
#else
    return BLE_PHY_1M;
#endif
}
 
/**
 * Copies the data from the phy receive buffer into a mbuf chain.
 *
 * @param dptr Pointer to receive buffer
 * @param rxpdu Pointer to already allocated mbuf chain
 *
 * NOTE: the packet header already has the total mbuf length in it. The
 * lengths of the individual mbufs are not set prior to calling.
 *
 */
void
ble_phy_rxpdu_copy(uint8_t *dptr, struct os_mbuf *rxpdu)
{
    uint32_t rem_len;
    uint32_t copy_len;
    uint32_t block_len;
    uint32_t block_rem_len;
    void *dst;
    void *src;
    struct os_mbuf * om;
 
    /* Better be aligned */
    assert(((uint32_t)dptr & 3) == 0);
 
    block_len = rxpdu->om_omp->omp_databuf_len;
    rem_len = OS_MBUF_PKTHDR(rxpdu)->omp_len;
    src = dptr;
 
    /*
     * Setup for copying from first mbuf which is shorter due to packet header
     * and extra leading space
     */
    copy_len = block_len - rxpdu->om_pkthdr_len - 4;
    om = rxpdu;
    dst = om->om_data;
 
    while (true) {
        /*
         * Always copy blocks of length aligned to word size, only last mbuf
         * will have remaining non-word size bytes appended.
         */
        block_rem_len = copy_len;
        copy_len = min(copy_len, rem_len);
        copy_len &= ~3;
 
        dst = om->om_data;
        om->om_len = copy_len;
        rem_len -= copy_len;
        block_rem_len -= copy_len;
 
#if BABBLESIM
        memcpy(dst, src, copy_len);
        dst += copy_len;
        src += copy_len;
#else
        __asm__ volatile (".syntax unified              \n"
                          "   mov  r4, %[len]           \n"
                          "   b    2f                   \n"
                          "1: ldr  r3, [%[src], %[len]] \n"
                          "   str  r3, [%[dst], %[len]] \n"
                          "2: subs %[len], #4           \n"
                          "   bpl  1b                   \n"
                          "   adds %[src], %[src], r4   \n"
                          "   adds %[dst], %[dst], r4   \n"
                          : [dst] "+r" (dst), [src] "+r" (src),
                            [len] "+r" (copy_len)
                          :
                          : "r3", "r4", "memory"
                         );
#endif
 
        if ((rem_len < 4) && (block_rem_len >= rem_len)) {
            break;
        }
 
        /* Move to next mbuf */
        om = SLIST_NEXT(om, om_next);
        copy_len = block_len;
    }
 
    /* Copy remaining bytes, if any, to last mbuf */
    om->om_len += rem_len;
 
#if BABBLESIM
    memcpy(dst, src, rem_len);
#else
    __asm__ volatile (".syntax unified              \n"
                      "   b    2f                   \n"
                      "1: ldrb r3, [%[src], %[len]] \n"
                      "   strb r3, [%[dst], %[len]] \n"
                      "2: subs %[len], #1           \n"
                      "   bpl  1b                   \n"
                      : [len] "+r" (rem_len)
                      : [dst] "r" (dst), [src] "r" (src)
                      : "r3", "memory"
                     );
#endif
 
    /* Copy header */
    memcpy(BLE_MBUF_HDR_PTR(rxpdu), &g_ble_phy_data.rxhdr,
           sizeof(struct ble_mbuf_hdr));
}
 
/**
 * Called when we want to wait if the radio is in either the rx or tx
 * disable states. We want to wait until that state is over before doing
 * anything to the radio
 */
static void
nrf_wait_disabled(void)
{
    uint32_t state;
 
    state = NRF_RADIO->STATE;
    if (state != RADIO_STATE_STATE_Disabled) {
        if ((state == RADIO_STATE_STATE_RxDisable) ||
            (state == RADIO_STATE_STATE_TxDisable)) {
            /* This will end within a short time (6 usecs). Just poll */
            while (NRF_RADIO->STATE == state) {
                /* If this fails, something is really wrong. Should last
                 * no more than 6 usecs */
#if BABBLESIM
                tm_tick();
#endif
            }
        }
    }
}
 
/**
 *
 *
 */
static int
ble_phy_set_start_time(uint32_t cputime, uint8_t rem_usecs, bool tx)
{
    uint32_t next_cc;
    uint32_t cur_cc;
    uint32_t cntr;
    uint32_t delta;
 
    /*
     * We need to adjust start time to include radio ramp-up and TX pipeline
     * delay (the latter only if applicable, so only for TX).
     *
     * Radio ramp-up time is 40 usecs and TX delay is 3 or 5 usecs depending on
     * phy, thus we'll offset RTC by 2 full ticks (61 usecs) and then compensate
     * using TIMER0 with 1 usec precision.
     */
 
    cputime -= 2;
    rem_usecs += 61;
    if (tx) {
        rem_usecs -= BLE_PHY_T_TXENFAST;
        rem_usecs -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
    } else {
        rem_usecs -= BLE_PHY_T_RXENFAST;
    }
 
    /*
     * rem_usecs will be no more than 2 ticks, but if it is more than single
     * tick then we should better count one more low-power tick rather than
     * 30 high-power usecs. Also make sure we don't set TIMER0 CC to 0 as the
     * compare won't occur.
     */
 
    if (rem_usecs > 30) {
        cputime++;
        rem_usecs -= 30;
    }
 
    /*
     * Can we set the RTC compare to start TIMER0? We can do it if:
     *      a) Current compare value is not N+1 or N+2 ticks from current
     *      counter.
     *      b) The value we want to set is not at least N+2 from current
     *      counter.
     *
     * NOTE: since the counter can tick 1 while we do these calculations we
     * need to account for it.
     */
    next_cc = cputime & 0xffffff;
    cur_cc = NRF_RTC0->CC[0];
    cntr = NRF_RTC0->COUNTER;
 
    delta = (cur_cc - cntr) & 0xffffff;
    if ((delta <= 3) && (delta != 0)) {
        return -1;
    }
    delta = (next_cc - cntr) & 0xffffff;
    if ((delta & 0x800000) || (delta < 3)) {
        return -1;
    }
 
    /* Clear and set TIMER0 to fire off at proper time */
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CLEAR);
    nrf_timer_cc_set(NRF_TIMER0, 0, rem_usecs);
    NRF_TIMER0->EVENTS_COMPARE[0] = 0;
 
    /* Set RTC compare to start TIMER0 */
    NRF_RTC0->EVENTS_COMPARE[0] = 0;
    nrf_rtc_cc_set(NRF_RTC0, 0, next_cc);
    nrf_rtc_event_enable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
 
    /* Enable PPI */
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH31_Msk);
 
    /* Store the cputime at which we set the RTC */
    g_ble_phy_data.phy_start_cputime = cputime;
 
    return 0;
}
 
static int
ble_phy_set_start_now(void)
{
    os_sr_t sr;
    uint32_t now;
 
    OS_ENTER_CRITICAL(sr);
 
    /*
     * Set TIMER0 to fire immediately. We can't set CC to 0 as compare will not
     * occur in such case.
     */
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CLEAR);
    nrf_timer_cc_set(NRF_TIMER0, 0, 1);
    NRF_TIMER0->EVENTS_COMPARE[0] = 0;
 
    /*
     * Set RTC compare to start TIMER0. We need to set it to at least N+2 ticks
     * from current value to guarantee triggering compare event, but let's set
     * it to N+3 to account for possible extra tick on RTC0 during these
     * operations.
     */
    now = os_cputime_get32();
    NRF_RTC0->EVENTS_COMPARE[0] = 0;
    nrf_rtc_cc_set(NRF_RTC0, 0, now + 3);
    nrf_rtc_event_enable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
 
    /* Enable PPI */
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH31_Msk);
    /*
     * Store the cputime at which we set the RTC
     *
     * XXX Compare event may be triggered on previous CC value (if it was set to
     * less than N+2) so in rare cases actual start time may be 2 ticks earlier
     * than what we expect. Since this is only used on RX, it may cause AUX scan
     * to be scheduled 1 or 2 ticks too late so we'll miss it - it's acceptable
     * for now.
     */
    g_ble_phy_data.phy_start_cputime = now + 3;
 
    OS_EXIT_CRITICAL(sr);
 
    return 0;
}
 
/**
 * Function is used to set PPI so that we can time out waiting for a reception
 * to occur. This happens for two reasons: we have sent a packet and we are
 * waiting for a response (txrx should be set to ENABLE_TXRX) or we are
 * starting a connection event and we are a slave and we are waiting for the
 * master to send us a packet (txrx should be set to ENABLE_RX).
 *
 * NOTE: when waiting for a txrx turn-around, wfr_usecs is not used as there
 * is no additional time to wait; we know when we should receive the address of
 * the received frame.
 *
 * @param txrx Flag denoting if this wfr is a txrx turn-around or not.
 * @param tx_phy_mode phy mode for last TX (only valid for TX->RX)
 * @param wfr_usecs Amount of usecs to wait.
 */
void
ble_phy_wfr_enable(int txrx, uint8_t tx_phy_mode, uint32_t wfr_usecs)
{
    uint32_t end_time;
    uint8_t phy;
 
    phy = g_ble_phy_data.phy_cur_phy_mode;
 
    if (txrx == BLE_PHY_WFR_ENABLE_TXRX) {
        /* RX shall start exactly T_IFS after TX end captured in CC[2] */
        end_time = NRF_TIMER0->CC[2] + BLE_LL_IFS;
        /* Adjust for delay between EVENT_END and actual TX end time */
        end_time += g_ble_phy_t_txenddelay[tx_phy_mode];
        /* Wait a bit longer due to allowed active clock accuracy */
        end_time += 2;
        /*
         * It's possible that we'll capture PDU start time at the end of timer
         * cycle and since wfr expires at the beginning of calculated timer
         * cycle it can be almost 1 usec too early. Let's compensate for this
         * by waiting 1 usec more.
         */
        end_time += 1;
    } else {
        /*
         * RX shall start no later than wfr_usecs after RX enabled.
         * CC[0] is the time of RXEN so adjust for radio ram-up.
         * Do not add jitter since this is already covered by LL.
         */
        end_time = NRF_TIMER0->CC[0] + BLE_PHY_T_RXENFAST + wfr_usecs;
    }
 
    /*
     * Note: on LE Coded EVENT_ADDRESS is fired after TERM1 is received, so
     *       we are actually calculating relative to start of packet payload
     *       which is fine.
     */
 
    /* Adjust for receiving access address since this triggers EVENT_ADDRESS */
    end_time += ble_phy_mode_pdu_start_off(phy);
    /* Adjust for delay between actual access address RX and EVENT_ADDRESS */
    end_time += g_ble_phy_t_rxaddrdelay[phy];
 
    /* wfr_secs is the time from rxen until timeout */
    nrf_timer_cc_set(NRF_TIMER0, 3, end_time);
    NRF_TIMER0->EVENTS_COMPARE[3] = 0;
 
    /* Enable wait for response PPI */
    nrf_ppi_channels_enable(NRF_PPI, (PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk));
 
    /*
     * It may happen that if CPU is halted for a brief moment (e.g. during flash
     * erase or write), TIMER0 already counted past CC[3] and thus wfr will not
     * fire as expected. In case this happened, let's just disable PPIs for wfr
     * and trigger wfr manually (i.e. disable radio).
     *
     * Note that the same applies to RX start time set in CC[0] but since it
     * should fire earlier than wfr, fixing wfr is enough.
     *
     * CC[1] is only used as a reference on RX start, we do not need it here so
     * it can be used to read TIMER0 counter.
     */
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CAPTURE1);
    if (NRF_TIMER0->CC[1] > NRF_TIMER0->CC[3]) {
        nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk);
        nrf_radio_task_trigger(NRF_RADIO, NRF_RADIO_TASK_DISABLE);
    }
}
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
static uint32_t
ble_phy_get_ccm_datarate(void)
{
#if BLE_LL_BT5_PHY_SUPPORTED
    switch (g_ble_phy_data.phy_cur_phy_mode) {
    case BLE_PHY_MODE_1M:
        return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
    case BLE_PHY_MODE_2M:
        return CCM_MODE_DATARATE_2Mbit << CCM_MODE_DATARATE_Pos;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    case BLE_PHY_MODE_CODED_125KBPS:
        return CCM_MODE_DATARATE_125Kbps << CCM_MODE_DATARATE_Pos;
    case BLE_PHY_MODE_CODED_500KBPS:
        return CCM_MODE_DATARATE_500Kbps << CCM_MODE_DATARATE_Pos;
#endif
    }
 
    assert(0);
    return 0;
#else
    return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
#endif
}
#endif
 
/**
 * Setup transceiver for receive.
 */
static void
ble_phy_rx_xcvr_setup(void)
{
    uint8_t *dptr;
 
    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
    dptr += 3;
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    if (g_ble_phy_data.phy_encrypted) {
        NRF_RADIO->PACKETPTR = (uint32_t)&g_ble_phy_enc_buf[0];
        NRF_CCM->INPTR = (uint32_t)&g_ble_phy_enc_buf[0];
        NRF_CCM->OUTPTR = (uint32_t)dptr;
        NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
        NRF_CCM->MODE = CCM_MODE_LENGTH_Msk | CCM_MODE_MODE_Decryption |
                                                    ble_phy_get_ccm_datarate();
        NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
        NRF_CCM->SHORTS = 0;
        NRF_CCM->EVENTS_ERROR = 0;
        NRF_CCM->EVENTS_ENDCRYPT = 0;
        nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_KSGEN);
        nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH25_Msk);
    } else {
        NRF_RADIO->PACKETPTR = (uint32_t)dptr;
    }
#else
    NRF_RADIO->PACKETPTR = (uint32_t)dptr;
#endif
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    if (g_ble_phy_data.phy_privacy) {
        NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Enabled;
        NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
        NRF_AAR->SCRATCHPTR = (uint32_t)&g_ble_phy_data.phy_aar_scratch;
        NRF_AAR->EVENTS_END = 0;
        NRF_AAR->EVENTS_RESOLVED = 0;
        NRF_AAR->EVENTS_NOTRESOLVED = 0;
    } else {
        if (g_ble_phy_data.phy_encrypted == 0) {
            NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
        }
    }
#endif
 
    /* Turn off trigger TXEN on output compare match and AAR on bcmatch */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH20_Msk | PPI_CHEN_CH23_Msk);
 
    /* Reset the rx started flag. Used for the wait for response */
    g_ble_phy_data.phy_rx_started = 0;
    g_ble_phy_data.phy_state = BLE_PHY_STATE_RX;
 
#if BLE_LL_BT5_PHY_SUPPORTED
    /*
     * On Coded PHY there are CI and TERM1 fields before PDU starts so we need
     * to take this into account when setting up BCC.
     */
    if (g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_125KBPS ||
            g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_500KBPS) {
        g_ble_phy_data.phy_bcc_offset = 5;
    } else {
        g_ble_phy_data.phy_bcc_offset = 0;
    }
#else
    g_ble_phy_data.phy_bcc_offset = 0;
#endif
 
    /* I want to know when 1st byte received (after address) */
    nrf_radio_bcc_set(NRF_RADIO, 8 + g_ble_phy_data.phy_bcc_offset); /* in bits */
    NRF_RADIO->EVENTS_ADDRESS = 0;
    NRF_RADIO->EVENTS_DEVMATCH = 0;
    NRF_RADIO->EVENTS_BCMATCH = 0;
    NRF_RADIO->EVENTS_RSSIEND = 0;
    NRF_RADIO->EVENTS_CRCOK = 0;
    NRF_RADIO->SHORTS = RADIO_SHORTS_END_DISABLE_Msk |
                        RADIO_SHORTS_READY_START_Msk |
                        RADIO_SHORTS_ADDRESS_BCSTART_Msk |
                        RADIO_SHORTS_ADDRESS_RSSISTART_Msk |
                        RADIO_SHORTS_DISABLED_RSSISTOP_Msk;
 
    nrf_radio_int_enable(NRF_RADIO, RADIO_INTENSET_ADDRESS_Msk |
                         RADIO_INTENSET_DISABLED_Msk);
}
 
/**
 * Called from interrupt context when the transmit ends
 *
 */
static void
ble_phy_tx_end_isr(void)
{
    uint8_t tx_phy_mode;
    uint8_t was_encrypted;
    uint8_t transition;
    uint32_t rx_time;
 
    /* Store PHY on which we've just transmitted smth */
    tx_phy_mode = g_ble_phy_data.phy_cur_phy_mode;
 
    /* If this transmission was encrypted we need to remember it */
    was_encrypted = g_ble_phy_data.phy_encrypted;
    (void)was_encrypted;
 
    /* Better be in TX state! */
    assert(g_ble_phy_data.phy_state == BLE_PHY_STATE_TX);
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    /*
     * XXX: not sure what to do. We had a HW error during transmission.
     * For now I just count a stat but continue on like all is good.
     */
    if (was_encrypted) {
        if (NRF_CCM->EVENTS_ERROR) {
            STATS_INC(ble_phy_stats, tx_hw_err);
            NRF_CCM->EVENTS_ERROR = 0;
        }
    }
#endif
 
    /* Call transmit end callback */
    if (g_ble_phy_data.txend_cb) {
        g_ble_phy_data.txend_cb(g_ble_phy_data.txend_arg);
    }
 
    transition = g_ble_phy_data.phy_transition;
    if (transition == BLE_PHY_TRANSITION_TX_RX) {
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
        ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif
 
        /* Packet pointer needs to be reset. */
        ble_phy_rx_xcvr_setup();
 
        ble_phy_wfr_enable(BLE_PHY_WFR_ENABLE_TXRX, tx_phy_mode, 0);
 
        /* Schedule RX exactly T_IFS after TX end captured in CC[2] */
        rx_time = NRF_TIMER0->CC[2] + BLE_LL_IFS;
        /* Adjust for delay between EVENT_END and actual TX end time */
        rx_time += g_ble_phy_t_txenddelay[tx_phy_mode];
        /* Adjust for radio ramp-up */
        rx_time -= BLE_PHY_T_RXENFAST;
        /* Start listening a bit earlier due to allowed active clock accuracy */
        rx_time -= 2;
 
        nrf_timer_cc_set(NRF_TIMER0, 0, rx_time);
        NRF_TIMER0->EVENTS_COMPARE[0] = 0;
        nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH21_Msk);
 
        ble_phy_plna_enable_lna();
    } else {
        /*
         * XXX: not sure we need to stop the timer here all the time. Or that
         * it should be stopped here.
         */
        nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
        NRF_TIMER0->TASKS_SHUTDOWN = 1;
        nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk |
                                 PPI_CHEN_CH20_Msk | PPI_CHEN_CH31_Msk);
        assert(transition == BLE_PHY_TRANSITION_NONE);
    }
}
 
static inline uint8_t
ble_phy_get_cur_rx_phy_mode(void)
{
    uint8_t phy;
 
    phy = g_ble_phy_data.phy_cur_phy_mode;
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    /*
     * For Coded PHY mode can be set to either codings since actual coding is
     * set in packet header. However, here we need actual coding of received
     * packet as this determines pipeline delays so need to figure this out
     * using CI field.
     */
    if ((phy == BLE_PHY_MODE_CODED_125KBPS) ||
                                    (phy == BLE_PHY_MODE_CODED_500KBPS)) {
        phy = NRF_RADIO->PDUSTAT & RADIO_PDUSTAT_CISTAT_Msk ?
                                   BLE_PHY_MODE_CODED_500KBPS :
                                   BLE_PHY_MODE_CODED_125KBPS;
    }
#endif
 
    return phy;
}
 
static void
ble_phy_rx_end_isr(void)
{
    int rc;
    uint8_t *dptr;
    uint8_t crcok;
    uint32_t tx_time;
    struct ble_mbuf_hdr *ble_hdr;
 
    /* Disable automatic RXEN */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH21_Msk);
 
    /* Set RSSI and CRC status flag in header */
    ble_hdr = &g_ble_phy_data.rxhdr;
    assert(NRF_RADIO->EVENTS_RSSIEND != 0);
    ble_hdr->rxinfo.rssi = (-1 * NRF_RADIO->RSSISAMPLE) +
                           g_ble_phy_data.rx_pwr_compensation;
 
    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
    dptr += 3;
 
    /* Count PHY crc errors and valid packets */
    crcok = NRF_RADIO->EVENTS_CRCOK;
    if (!crcok) {
        STATS_INC(ble_phy_stats, rx_crc_err);
    } else {
        STATS_INC(ble_phy_stats, rx_valid);
        ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_CRC_OK;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
        if (g_ble_phy_data.phy_encrypted) {
            /* Only set MIC failure flag if frame is not zero length */
            if ((dptr[1] != 0) && (NRF_CCM->MICSTATUS == 0)) {
                ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_MIC_FAILURE;
            }
 
            /*
             * XXX: not sure how to deal with this. This should not
             * be a MIC failure but we should not hand it up. I guess
             * this is just some form of rx error and that is how we
             * handle it? For now, just set CRC error flags
             */
            if (NRF_CCM->EVENTS_ERROR) {
                STATS_INC(ble_phy_stats, rx_hw_err);
                ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
            }
 
            /*
             * XXX: This is a total hack work-around for now but I dont
             * know what else to do. If ENDCRYPT is not set and we are
             * encrypted we need to not trust this frame and drop it.
             */
            if (NRF_CCM->EVENTS_ENDCRYPT == 0) {
                STATS_INC(ble_phy_stats, rx_hw_err);
                ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
            }
        }
#endif
    }
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif
 
    /*
     * Let's schedule TX now and we will just cancel it after processing RXed
     * packet if we don't need TX.
     *
     * We need this to initiate connection in case AUX_CONNECT_REQ was sent on
     * LE Coded S8. In this case the time we process RXed packet is roughly the
     * same as the limit when we need to have TX scheduled (i.e. TIMER0 and PPI
     * armed) so we may simply miss the slot and set the timer in the past.
     *
     * When TX is scheduled in advance, we may event process packet a bit longer
     * during radio ramp-up - this gives us extra 40 usecs which is more than
     * enough.
     */
 
    /* Schedule TX exactly T_IFS after RX end captured in CC[2] */
    tx_time = NRF_TIMER0->CC[2] + BLE_LL_IFS;
    /* Adjust for delay between actual RX end time and EVENT_END */
    tx_time -= g_ble_phy_t_rxenddelay[ble_hdr->rxinfo.phy_mode];
    /* Adjust for radio ramp-up */
    tx_time -= BLE_PHY_T_TXENFAST;
    /* Adjust for delay between EVENT_READY and actual TX start time */
    tx_time -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
 
    nrf_timer_cc_set(NRF_TIMER0, 0, tx_time);
    NRF_TIMER0->EVENTS_COMPARE[0] = 0;
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH20_Msk);
 
    ble_phy_plna_enable_pa();
 
    /*
     * XXX: Hack warning!
     *
     * It may happen (during flash erase) that CPU is stopped for a moment and
     * TIMER0 already counted past CC[0]. In such case we will be stuck waiting
     * for TX to start since EVENTS_COMPARE[0] will not happen any time soon.
     * For now let's set a flag denoting that we are late in RX-TX transition so
     * ble_phy_tx() will fail - this allows everything to cleanup nicely without
     * the need for extra handling in many places.
     *
     * Note: CC[3] is used only for wfr which we do not need here.
     */
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_CAPTURE3);
    if (NRF_TIMER0->CC[3] > NRF_TIMER0->CC[0]) {
        nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH20_Msk);
        g_ble_phy_data.phy_transition_late = 1;
    }
 
    /*
     * XXX: This is a horrible ugly hack to deal with the RAM S1 byte
     * that is not sent over the air but is present here. Simply move the
     * data pointer to deal with it. Fix this later.
     */
    dptr[2] = dptr[1];
    dptr[1] = dptr[0];
    rc = ble_ll_rx_end(dptr + 1, ble_hdr);
    if (rc < 0) {
        ble_phy_disable();
    }
}
 
static bool
ble_phy_rx_start_isr(void)
{
    int rc;
    uint32_t state;
    uint32_t usecs;
    uint32_t pdu_usecs;
    uint32_t ticks;
    struct ble_mbuf_hdr *ble_hdr;
    uint8_t *dptr;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    int adva_offset;
#endif
 
    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
 
    /* Clear events and clear interrupt */
    NRF_RADIO->EVENTS_ADDRESS = 0;
    nrf_radio_int_disable(NRF_RADIO, RADIO_INTENCLR_ADDRESS_Msk);
 
    /* Clear wfr timer channels */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk);
 
    /* Initialize the ble mbuf header */
    ble_hdr = &g_ble_phy_data.rxhdr;
    ble_hdr->rxinfo.flags = ble_ll_state_get();
    ble_hdr->rxinfo.channel = g_ble_phy_data.phy_chan;
    ble_hdr->rxinfo.handle = 0;
    ble_hdr->rxinfo.phy = ble_phy_get_cur_phy();
    ble_hdr->rxinfo.phy_mode = ble_phy_get_cur_rx_phy_mode();
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_EXT_ADV)
    ble_hdr->rxinfo.user_data = NULL;
#endif
 
    /*
     * Calculate accurate packets start time (with remainder)
     *
     * We may start receiving packet somewhere during preamble in which case
     * it is possible that actual transmission started before TIMER0 was
     * running - need to take this into account.
     */
    ble_hdr->beg_cputime = g_ble_phy_data.phy_start_cputime;
 
    usecs = NRF_TIMER0->CC[1];
    pdu_usecs = ble_phy_mode_pdu_start_off(ble_hdr->rxinfo.phy_mode) +
                g_ble_phy_t_rxaddrdelay[ble_hdr->rxinfo.phy_mode];
    if (usecs < pdu_usecs) {
        g_ble_phy_data.phy_start_cputime--;
        usecs += 30;
    }
    usecs -= pdu_usecs;
 
    ticks = os_cputime_usecs_to_ticks(usecs);
    usecs -= os_cputime_ticks_to_usecs(ticks);
    if (usecs == 31) {
        usecs = 0;
        ++ticks;
    }
 
    ble_hdr->beg_cputime += ticks;
    ble_hdr->rem_usecs = usecs;
 
    /* XXX: I wonder if we always have the 1st byte. If we need to wait for
     * rx chain delay, it could be 18 usecs from address interrupt. The
       nrf52 may be able to get here early. */
    /* Wait to get 1st byte of frame */
    while (1) {
        state = NRF_RADIO->STATE;
        if (NRF_RADIO->EVENTS_BCMATCH != 0) {
            break;
        }
 
        /*
         * If state is disabled, we should have the BCMATCH. If not,
         * something is wrong!
         */
        if (state == RADIO_STATE_STATE_Disabled) {
            nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
            NRF_RADIO->SHORTS = 0;
            return false;
        }
 
#if BABBLESIM
        tm_tick();
#endif
    }
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    /*
     * If privacy is enabled and received PDU has TxAdd bit set (i.e. random
     * address) we try to resolve address using AAR.
     */
    if (g_ble_phy_data.phy_privacy && (dptr[3] & 0x40)) {
        /*
         * AdvA is located at 4th octet in RX buffer (after S0, length an S1
         * fields). In case of extended advertising PDU we need to add 2 more
         * octets for extended header.
         */
        adva_offset = (dptr[3] & 0x0f) == 0x07 ? 2 : 0;
        NRF_AAR->ADDRPTR = (uint32_t)(dptr + 3 + adva_offset);
 
        /* Trigger AAR after last bit of AdvA is received */
        NRF_RADIO->EVENTS_BCMATCH = 0;
        nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH23_Msk);
        nrf_radio_bcc_set(NRF_RADIO, (BLE_LL_PDU_HDR_LEN + adva_offset +
            BLE_DEV_ADDR_LEN) * 8 + g_ble_phy_data.phy_bcc_offset);
    }
#endif
 
    /* Call Link Layer receive start function */
    rc = ble_ll_rx_start(dptr + 3,
                         g_ble_phy_data.phy_chan,
                         &g_ble_phy_data.rxhdr);
    if (rc >= 0) {
        /* Set rx started flag and enable rx end ISR */
        g_ble_phy_data.phy_rx_started = 1;
    } else {
        /* Disable PHY */
        ble_phy_disable();
        STATS_INC(ble_phy_stats, rx_aborts);
    }
 
    /* Count rx starts */
    STATS_INC(ble_phy_stats, rx_starts);
 
    return true;
}
 
static void
ble_phy_isr(void)
{
    uint32_t irq_en;
 
    os_trace_isr_enter();
 
    /* Read irq register to determine which interrupts are enabled */
    irq_en = NRF_RADIO->INTENSET;
 
    /*
     * NOTE: order of checking is important! Possible, if things get delayed,
     * we have both an ADDRESS and DISABLED interrupt in rx state. If we get
     * an address, we disable the DISABLED interrupt.
     */
 
    /* We get this if we have started to receive a frame */
    if ((irq_en & RADIO_INTENCLR_ADDRESS_Msk) && NRF_RADIO->EVENTS_ADDRESS) {
        /*
         * wfr timer is calculated to expire at the exact time we should start
         * receiving a packet (with 1 usec precision) so it is possible  it will
         * fire at the same time as EVENT_ADDRESS. If this happens, radio will
         * be disabled while we are waiting for EVENT_BCCMATCH after 1st byte
         * of payload is received and ble_phy_rx_start_isr() will fail. In this
         * case we should not clear DISABLED irq mask so it will be handled as
         * regular radio disabled event below. In other case radio was disabled
         * on purpose and there's nothing more to handle so we can clear mask.
         */
        if (ble_phy_rx_start_isr()) {
            irq_en &= ~RADIO_INTENCLR_DISABLED_Msk;
        }
    }
 
    /* Handle disabled event. This is enabled for both TX and RX. On RX, we
     * need to check phy_rx_started flag to make sure we actually were receiving
     * a PDU, otherwise this is due to wfr.
     */
    if ((irq_en & RADIO_INTENCLR_DISABLED_Msk) && NRF_RADIO->EVENTS_DISABLED) {
        BLE_LL_ASSERT(NRF_RADIO->EVENTS_END ||
                      ((g_ble_phy_data.phy_state == BLE_PHY_STATE_RX) &&
                       !g_ble_phy_data.phy_rx_started));
        NRF_RADIO->EVENTS_END = 0;
        NRF_RADIO->EVENTS_DISABLED = 0;
        nrf_radio_int_disable(NRF_RADIO, RADIO_INTENCLR_DISABLED_Msk);
 
        switch (g_ble_phy_data.phy_state) {
        case BLE_PHY_STATE_RX:
#if MYNEWT_VAL(BLE_LL_LNA)
            NRF_PPI->CHENCLR = PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk;
            ble_ll_plna_lna_disable();
#endif
            if (g_ble_phy_data.phy_rx_started) {
                ble_phy_rx_end_isr();
            } else {
                ble_ll_wfr_timer_exp(NULL);
            }
            break;
        case BLE_PHY_STATE_TX:
#if MYNEWT_VAL(BLE_LL_PA)
            NRF_PPI->CHENCLR = PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk;
            ble_ll_plna_pa_disable();
#endif
            ble_phy_tx_end_isr();
            break;
        default:
            BLE_LL_ASSERT(0);
        }
    }
 
    g_ble_phy_data.phy_transition_late = 0;
 
    /* Count # of interrupts */
    STATS_INC(ble_phy_stats, phy_isrs);
 
    os_trace_isr_exit();
}
 
#if MYNEWT_VAL(BLE_PHY_DBG_TIME_TXRXEN_READY_PIN) >= 0 || \
    MYNEWT_VAL(BLE_PHY_DBG_TIME_ADDRESS_END_PIN) >= 0 || \
    MYNEWT_VAL(BLE_PHY_DBG_TIME_WFR_PIN) >= 0 || \
    MYNEWT_VAL(BLE_LL_PA) || \
    MYNEWT_VAL(BLE_LL_LNA)
static int
ble_phy_gpiote_configure(int pin)
{
    NRF_GPIO_Type *port;
 
    g_ble_phy_gpiote_idx--;
 
#if NRF52840_XXAA
    port = pin > 31 ? NRF_P1 : NRF_P0;
    pin &= 0x1f;
#else
    port = NRF_P0;
#endif
 
    /* Configure GPIO directly to avoid dependency to hal_gpio (for porting) */
    port->DIRSET = (1 << pin);
    port->OUTCLR = (1 << pin);
 
    NRF_GPIOTE->CONFIG[g_ble_phy_gpiote_idx] =
                        (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
                        ((pin & 0x1F) << GPIOTE_CONFIG_PSEL_Pos) |
#if NRF52840_XXAA
                        ((port == NRF_P1) << GPIOTE_CONFIG_PORT_Pos);
#else
                        0;
#endif
 
    BLE_LL_ASSERT(g_ble_phy_gpiote_idx >= 0);
 
    return g_ble_phy_gpiote_idx;
}
#endif
 
static void
ble_phy_dbg_time_setup(void)
{
    int idx __attribute__((unused));
 
    /*
     * We setup GPIOTE starting from last configuration index to minimize risk
     * of conflict with GPIO setup via hal. It's not great solution, but since
     * this is just debugging code we can live with this.
     */
 
#if MYNEWT_VAL(BLE_PHY_DBG_TIME_TXRXEN_READY_PIN) >= 0
    idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_PHY_DBG_TIME_TXRXEN_READY_PIN));
 
    nrf_ppi_channel_endpoint_setup(NRF_PPI, 17, (uint32_t)&(NRF_RADIO->EVENTS_READY),
                                   (uint32_t)&(NRF_GPIOTE->TASKS_CLR[idx]));
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH17_Msk);
 
    /* CH[20] and PPI CH[21] are on to trigger TASKS_TXEN or TASKS_RXEN */
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 20, (uint32_t)&(NRF_GPIOTE->TASKS_SET[idx]));
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 21, (uint32_t)&(NRF_GPIOTE->TASKS_SET[idx]));
#endif
 
#if MYNEWT_VAL(BLE_PHY_DBG_TIME_ADDRESS_END_PIN) >= 0
    idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_PHY_DBG_TIME_ADDRESS_END_PIN));
 
    /* CH[26] and CH[27] are always on for EVENT_ADDRESS and EVENT_END */
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 26, (uint32_t)&(NRF_GPIOTE->TASKS_SET[idx]));
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 27, (uint32_t)&(NRF_GPIOTE->TASKS_CLR[idx]));
#endif
 
#if MYNEWT_VAL(BLE_PHY_DBG_TIME_WFR_PIN) >= 0
    idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_PHY_DBG_TIME_WFR_PIN));
 
#if NRF52840_XXAA
    nrf_ppi_channel_endpoint_setup(NRF_PPI, 18, (uint32_t)&(NRF_RADIO->EVENTS_RXREADY),
                                   (uint32_t)&(NRF_GPIOTE->TASKS_SET[idx]));
#else
    nrf_ppi_channel_endpoint_setup(NRF_PPI, 18, (uint32_t)&(NRF_RADIO->EVENTS_READY),
                                   (uint32_t)&(NRF_GPIOTE->TASKS_SET[idx]));
#endif
    nrf_ppi_channel_endpoint_setup(NRF_PPI, 19, (uint32_t)&(NRF_RADIO->EVENTS_DISABLED),
                                   (uint32_t)&(NRF_GPIOTE->TASKS_CLR[idx]));
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH18_Msk | PPI_CHEN_CH19_Msk);
 
    /* CH[4] and CH[5] are always on for wfr */
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 4, (uint32_t)&(NRF_GPIOTE->TASKS_CLR[idx]));
    nrf_ppi_fork_endpoint_setup(NRF_PPI, 5, (uint32_t)&(NRF_GPIOTE->TASKS_CLR[idx]));
#endif
}
 
/**
 * ble phy init
 *
 * Initialize the PHY.
 *
 * @return int 0: success; PHY error code otherwise
 */
int
ble_phy_init(void)
{
    int rc;
 
    g_ble_phy_gpiote_idx = 8;
 
    /* Default phy to use is 1M */
    g_ble_phy_data.phy_cur_phy_mode = BLE_PHY_MODE_1M;
    g_ble_phy_data.phy_tx_phy_mode = BLE_PHY_MODE_1M;
    g_ble_phy_data.phy_rx_phy_mode = BLE_PHY_MODE_1M;
 
    g_ble_phy_data.rx_pwr_compensation = 0;
 
    /* Set phy channel to an invalid channel so first set channel works */
    g_ble_phy_data.phy_chan = BLE_PHY_NUM_CHANS;
 
    /* Toggle peripheral power to reset (just in case) */
    nrf_radio_power_set(NRF_RADIO, false);
    nrf_radio_power_set(NRF_RADIO, true);
 
    /* Disable all interrupts */
    nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
 
    /* Set configuration registers */
    NRF_RADIO->MODE = RADIO_MODE_MODE_Ble_1Mbit;
    NRF_RADIO->PCNF0 = NRF_PCNF0;
 
    /* XXX: should maxlen be 251 for encryption? */
    NRF_RADIO->PCNF1 = NRF_MAXLEN |
                       (RADIO_PCNF1_ENDIAN_Little <<  RADIO_PCNF1_ENDIAN_Pos) |
                       (NRF_BALEN << RADIO_PCNF1_BALEN_Pos) |
                       RADIO_PCNF1_WHITEEN_Msk;
 
    /* Enable radio fast ramp-up */
    NRF_RADIO->MODECNF0 |= (RADIO_MODECNF0_RU_Fast << RADIO_MODECNF0_RU_Pos) &
                            RADIO_MODECNF0_RU_Msk;
 
    /* Set logical address 1 for TX and RX */
    NRF_RADIO->TXADDRESS  = 0;
    NRF_RADIO->RXADDRESSES  = (1 << 0);
 
    /* Configure the CRC registers */
    NRF_RADIO->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) | RADIO_CRCCNF_LEN_Three;
 
    /* Configure BLE poly */
    NRF_RADIO->CRCPOLY = 0x0000065B;
 
    /* Configure IFS */
    NRF_RADIO->TIFS = BLE_LL_IFS;
 
    /* Captures tx/rx start in timer0 cc 1 and tx/rx end in timer0 cc 2 */
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH26_Msk | PPI_CHEN_CH27_Msk);
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    nrf_ccm_int_disable(NRF_CCM, 0xffffffff);
    NRF_CCM->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
    NRF_CCM->EVENTS_ERROR = 0;
    memset(g_nrf_encrypt_scratchpad, 0, sizeof(g_nrf_encrypt_scratchpad));
#endif
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    g_ble_phy_data.phy_aar_scratch = 0;
    NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
    nrf_aar_int_disable(NRF_AAR, 0xffffffff);
    NRF_AAR->EVENTS_END = 0;
    NRF_AAR->EVENTS_RESOLVED = 0;
    NRF_AAR->EVENTS_NOTRESOLVED = 0;
    NRF_AAR->NIRK = 0;
#endif
 
    /* TIMER0 setup for PHY when using RTC */
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
    NRF_TIMER0->TASKS_SHUTDOWN = 1;
    NRF_TIMER0->BITMODE = 3;    /* 32-bit timer */
    NRF_TIMER0->MODE = 0;       /* Timer mode */
    NRF_TIMER0->PRESCALER = 4;  /* gives us 1 MHz */
 
    /*
     * PPI setup.
     * Channel 4: Captures TIMER0 in CC[3] when EVENTS_ADDRESS occurs. Used
     *            to cancel the wait for response timer.
     * Channel 5: TIMER0 CC[3] to TASKS_DISABLE on radio. This is the wait
     *            for response timer.
     */
    nrf_ppi_channel_endpoint_setup(NRF_PPI, NRF_PPI_CHANNEL4,
        (uint32_t)&(NRF_RADIO->EVENTS_ADDRESS),
        (uint32_t)&(NRF_TIMER0->TASKS_CAPTURE[3]));
    nrf_ppi_channel_endpoint_setup(NRF_PPI, NRF_PPI_CHANNEL5,
        (uint32_t)&(NRF_TIMER0->EVENTS_COMPARE[3]),
        (uint32_t)&(NRF_RADIO->TASKS_DISABLE));
 
#if MYNEWT_VAL(BLE_LL_PA) || MYNEWT_VAL(BLE_LL_LNA)
#if PLNA_SINGLE_GPIO
    plna_idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_LL_PA_GPIO));
    NRF_PPI->CH[6].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_SET[plna_idx]);
    NRF_PPI->CH[7].TEP = (uint32_t) &(NRF_GPIOTE->TASKS_CLR[plna_idx]);
#else
#if MYNEWT_VAL(BLE_LL_PA)
    plna_pa_idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_LL_PA_GPIO));
    NRF_GPIOTE->TASKS_CLR[plna_pa_idx] = 1;
#endif
#if MYNEWT_VAL(BLE_LL_LNA)
    plna_lna_idx = ble_phy_gpiote_configure(MYNEWT_VAL(BLE_LL_LNA_GPIO));
    NRF_GPIOTE->TASKS_CLR[plna_lna_idx] = 1;
#endif
#endif
 
    NRF_PPI->CH[6].EEP = (uint32_t)&(NRF_RADIO->EVENTS_READY);
    NRF_PPI->CH[7].EEP = (uint32_t)&(NRF_RADIO->EVENTS_DISABLED);
    NRF_PPI->CHENCLR = PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk;
#endif
 
    /* Set isr in vector table and enable interrupt */
#ifndef RIOT_VERSION
    NVIC_SetPriority(RADIO_IRQn, 0);
#endif
#if MYNEWT
    NVIC_SetVector(RADIO_IRQn, (uint32_t)ble_phy_isr);
#else
    ble_npl_hw_set_isr(RADIO_IRQn, ble_phy_isr);
#endif
    NVIC_EnableIRQ(RADIO_IRQn);
 
    /* Register phy statistics */
    if (!g_ble_phy_data.phy_stats_initialized) {
        rc = stats_init_and_reg(STATS_HDR(ble_phy_stats),
                                STATS_SIZE_INIT_PARMS(ble_phy_stats,
                                                      STATS_SIZE_32),
                                STATS_NAME_INIT_PARMS(ble_phy_stats),
                                "ble_phy");
        assert(rc == 0);
 
        g_ble_phy_data.phy_stats_initialized  = 1;
    }
 
    ble_phy_dbg_time_setup();
 
    return 0;
}
 
/**
 * Puts the phy into receive mode.
 *
 * @return int 0: success; BLE Phy error code otherwise
 */
int
ble_phy_rx(void)
{
    /*
     * Check radio state.
     *
     * In case radio is now disabling we'll wait for it to finish, but if for
     * any reason it's just in idle state we proceed with RX as usual since
     * nRF52 radio can ramp-up from idle state as well.
     *
     * Note that TX and RX states values are the same except for 3rd bit so we
     * can make a shortcut here when checking for idle state.
     */
    nrf_wait_disabled();
    if ((NRF_RADIO->STATE != RADIO_STATE_STATE_Disabled) &&
            ((NRF_RADIO->STATE & 0x07) != RADIO_STATE_STATE_RxIdle)) {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, radio_state_errs);
        return BLE_PHY_ERR_RADIO_STATE;
    }
 
    /* Make sure all interrupts are disabled */
    nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
 
    /* Clear events prior to enabling receive */
    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->EVENTS_DISABLED = 0;
 
    /* Setup for rx */
    ble_phy_rx_xcvr_setup();
 
    /* PPI to start radio automatically shall be set here */
    assert(NRF_PPI->CHEN & PPI_CHEN_CH21_Msk);
 
    return 0;
}
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/**
 * Called to enable encryption at the PHY. Note that this state will persist
 * in the PHY; in other words, if you call this function you have to call
 * disable so that future PHY transmits/receives will not be encrypted.
 *
 * @param pkt_counter
 * @param iv
 * @param key
 * @param is_master
 */
void
ble_phy_encrypt_enable(uint64_t pkt_counter, uint8_t *iv, uint8_t *key,
                       uint8_t is_master)
{
    memcpy(g_nrf_ccm_data.key, key, 16);
    g_nrf_ccm_data.pkt_counter = pkt_counter;
    memcpy(g_nrf_ccm_data.iv, iv, 8);
    g_nrf_ccm_data.dir_bit = is_master;
    g_ble_phy_data.phy_encrypted = 1;
    /* Enable the module (AAR cannot be on while CCM on) */
    NRF_AAR->ENABLE = AAR_ENABLE_ENABLE_Disabled;
    NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Enabled;
}
 
void
ble_phy_encrypt_set_pkt_cntr(uint64_t pkt_counter, int dir)
{
    g_nrf_ccm_data.pkt_counter = pkt_counter;
    g_nrf_ccm_data.dir_bit = dir;
}
 
void
ble_phy_encrypt_disable(void)
{
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH25_Msk);
    nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_STOP);
    NRF_CCM->EVENTS_ERROR = 0;
    NRF_CCM->ENABLE = CCM_ENABLE_ENABLE_Disabled;
 
    g_ble_phy_data.phy_encrypted = 0;
}
#endif
 
void
ble_phy_set_txend_cb(ble_phy_tx_end_func txend_cb, void *arg)
{
    /* Set transmit end callback and arg */
    g_ble_phy_data.txend_cb = txend_cb;
    g_ble_phy_data.txend_arg = arg;
}
 
/**
 * Called to set the start time of a transmission.
 *
 * This function is called to set the start time when we are not going from
 * rx to tx automatically.
 *
 * NOTE: care must be taken when calling this function. The channel should
 * already be set.
 *
 * @param cputime   This is the tick at which the 1st bit of the preamble
 *                  should be transmitted
 * @param rem_usecs This is used only when the underlying timing uses a 32.768
 *                  kHz crystal. It is the # of usecs from the cputime tick
 *                  at which the first bit of the preamble should be
 *                  transmitted.
 * @return int
 */
int
ble_phy_tx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
    int rc;
 
    ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_TX, cputime, rem_usecs);
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif
 
    /* XXX: This should not be necessary, but paranoia is good! */
    /* Clear timer0 compare to RXEN since we are transmitting */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH21_Msk);
 
    if (ble_phy_set_start_time(cputime, rem_usecs, true) != 0) {
        STATS_INC(ble_phy_stats, tx_late);
        ble_phy_disable();
        rc = BLE_PHY_ERR_TX_LATE;
    } else {
        /* Enable PPI to automatically start TXEN */
        nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH20_Msk);
        rc = 0;
 
        ble_phy_plna_enable_pa();
    }
 
    return rc;
}
 
/**
 * Called to set the start time of a reception
 *
 * This function acts a bit differently than transmit. If we are late getting
 * here we will still attempt to receive.
 *
 * NOTE: care must be taken when calling this function. The channel should
 * already be set.
 *
 * @param cputime
 *
 * @return int
 */
int
ble_phy_rx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
    bool late = false;
    int rc = 0;
 
    ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_RX, cputime, rem_usecs);
 
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif
 
    /* XXX: This should not be necessary, but paranoia is good! */
    /* Clear timer0 compare to TXEN since we are transmitting */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH20_Msk);
 
    if (ble_phy_set_start_time(cputime, rem_usecs, false) != 0) {
        STATS_INC(ble_phy_stats, rx_late);
 
        /* We're late so let's just try to start RX as soon as possible */
        ble_phy_set_start_now();
 
        late = true;
    }
 
    /* Enable PPI to automatically start RXEN */
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH21_Msk);
 
    ble_phy_plna_enable_lna();
 
    /* Start rx */
    rc = ble_phy_rx();
 
    /*
     * If we enabled receiver but were late, let's return proper error code so
     * caller can handle this.
     */
    if (!rc && late) {
        rc = BLE_PHY_ERR_RX_LATE;
    }
 
    return rc;
}
 
int
ble_phy_tx(ble_phy_tx_pducb_t pducb, void *pducb_arg, uint8_t end_trans)
{
    int rc;
    uint8_t *dptr;
    uint8_t *pktptr;
    uint8_t payload_len;
    uint8_t hdr_byte;
    uint32_t state;
    uint32_t shortcuts;
 
    if (g_ble_phy_data.phy_transition_late) {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, tx_late);
        return BLE_PHY_ERR_TX_LATE;
    }
 
    /*
     * This check is to make sure that the radio is not in a state where
     * it is moving to disabled state. If so, let it get there.
     */
    nrf_wait_disabled();
 
    /*
     * XXX: Although we may not have to do this here, I clear all the PPI
     * that should not be used when transmitting. Some of them are only enabled
     * if encryption and/or privacy is on, but I dont care. Better to be
     * paranoid, and if you are going to clear one, might as well clear them
     * all.
     */
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk |
                             PPI_CHEN_CH23_Msk | PPI_CHEN_CH25_Msk);
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    if (g_ble_phy_data.phy_encrypted) {
        dptr = (uint8_t *)&g_ble_phy_enc_buf[0];
        pktptr = (uint8_t *)&g_ble_phy_tx_buf[0];
        NRF_CCM->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
        NRF_CCM->INPTR = (uint32_t)dptr;
        NRF_CCM->OUTPTR = (uint32_t)pktptr;
        NRF_CCM->SCRATCHPTR = (uint32_t)&g_nrf_encrypt_scratchpad[0];
        NRF_CCM->EVENTS_ERROR = 0;
        NRF_CCM->MODE = CCM_MODE_LENGTH_Msk | ble_phy_get_ccm_datarate();
        NRF_CCM->CNFPTR = (uint32_t)&g_nrf_ccm_data;
    } else {
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
        NRF_AAR->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
#endif
        dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
        pktptr = dptr;
    }
#else
    dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
    pktptr = dptr;
#endif
 
    /* Set PDU payload */
    payload_len = pducb(&dptr[3], pducb_arg, &hdr_byte);
 
    /* RAM representation has S0, LENGTH and S1 fields. (3 bytes) */
    dptr[0] = hdr_byte;
    dptr[1] = payload_len;
    dptr[2] = 0;
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    /* Start key-stream generation and encryption (via short) */
    if (g_ble_phy_data.phy_encrypted) {
        nrf_ccm_task_trigger(NRF_CCM, NRF_CCM_TASK_KSGEN);
    }
#endif
 
    NRF_RADIO->PACKETPTR = (uint32_t)pktptr;
 
    /* Clear the ready, end and disabled events */
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->EVENTS_DISABLED = 0;
 
    /* Enable shortcuts for transmit start/end. */
    shortcuts = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk;
    NRF_RADIO->SHORTS = shortcuts;
    nrf_radio_int_enable(NRF_RADIO, RADIO_INTENSET_DISABLED_Msk);
 
    /* Set the PHY transition */
    g_ble_phy_data.phy_transition = end_trans;
 
    /* Set transmitted payload length */
    g_ble_phy_data.phy_tx_pyld_len = payload_len;
 
    /* If we already started transmitting, abort it! */
    state = NRF_RADIO->STATE;
    if (state != RADIO_STATE_STATE_Tx) {
        /* Set phy state to transmitting and count packet statistics */
        g_ble_phy_data.phy_state = BLE_PHY_STATE_TX;
        STATS_INC(ble_phy_stats, tx_good);
        STATS_INCN(ble_phy_stats, tx_bytes, payload_len + BLE_LL_PDU_HDR_LEN);
        rc = BLE_ERR_SUCCESS;
    } else {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, tx_late);
        rc = BLE_PHY_ERR_RADIO_STATE;
    }
 
    return rc;
}
 
/**
 * ble phy txpwr set
 *
 * Set the transmit output power (in dBm).
 *
 * NOTE: If the output power specified is within the BLE limits but outside
 * the chip limits, we "rail" the power level so we dont exceed the min/max
 * chip values.
 *
 * @param dbm Power output in dBm.
 *
 * @return int 0: success; anything else is an error
 */
int
ble_phy_txpwr_set(int dbm)
{
    /* "Rail" power level if outside supported range */
    dbm = ble_phy_txpower_round(dbm);
 
    NRF_RADIO->TXPOWER = dbm;
    g_ble_phy_data.phy_txpwr_dbm = dbm;
 
    return 0;
}
 
/**
 * ble phy txpwr round
 *
 * Get the rounded transmit output power (in dBm).
 *
 * @param dbm Power output in dBm.
 *
 * @return int Rounded power in dBm
 */
int ble_phy_txpower_round(int dbm)
{
    /* TODO this should be per nRF52XXX */
 
    /* "Rail" power level if outside supported range */
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Pos4dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Pos4dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Pos3dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Pos3dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_0dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_0dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm;
    }
 
    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm;
    }
 
    return (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm;
}
 
/**
 * ble phy set access addr
 *
 * Set access address.
 *
 * @param access_addr Access address
 *
 * @return int 0: success; PHY error code otherwise
 */
static int
ble_phy_set_access_addr(uint32_t access_addr)
{
    NRF_RADIO->BASE0 = (access_addr << 8);
    NRF_RADIO->PREFIX0 = (NRF_RADIO->PREFIX0 & 0xFFFFFF00) | (access_addr >> 24);
 
    g_ble_phy_data.phy_access_address = access_addr;
 
#ifndef BABBLESIM
    ble_phy_apply_errata_102_106_107();
#endif
    return 0;
}
 
/**
 * ble phy txpwr get
 *
 * Get the transmit power.
 *
 * @return int  The current PHY transmit power, in dBm
 */
int
ble_phy_txpwr_get(void)
{
    return g_ble_phy_data.phy_txpwr_dbm;
}
 
void
ble_phy_set_rx_pwr_compensation(int8_t compensation)
{
    g_ble_phy_data.rx_pwr_compensation = compensation;
}
 
/**
 * ble phy setchan
 *
 * Sets the logical frequency of the transceiver. The input parameter is the
 * BLE channel index (0 to 39, inclusive). The NRF frequency register works like
 * this: logical frequency = 2400 + FREQ (MHz).
 *
 * Thus, to get a logical frequency of 2402 MHz, you would program the
 * FREQUENCY register to 2.
 *
 * @param chan This is the Data Channel Index or Advertising Channel index
 *
 * @return int 0: success; PHY error code otherwise
 */
int
ble_phy_setchan(uint8_t chan, uint32_t access_addr, uint32_t crcinit)
{
    assert(chan < BLE_PHY_NUM_CHANS);
 
    /* Check for valid channel range */
    if (chan >= BLE_PHY_NUM_CHANS) {
        return BLE_PHY_ERR_INV_PARAM;
    }
 
    /* Set current access address */
    ble_phy_set_access_addr(access_addr);
 
    /* Configure crcinit */
    NRF_RADIO->CRCINIT = crcinit;
 
    /* Set the frequency and the data whitening initial value */
    g_ble_phy_data.phy_chan = chan;
    NRF_RADIO->FREQUENCY = g_ble_phy_chan_freq[chan];
    NRF_RADIO->DATAWHITEIV = chan;
 
    return 0;
}
 
/**
 * Stop the timer used to count microseconds when using RTC for cputime
 */
static void
ble_phy_stop_usec_timer(void)
{
    nrf_timer_task_trigger(NRF_TIMER0, NRF_TIMER_TASK_STOP);
    NRF_TIMER0->TASKS_SHUTDOWN = 1;
    nrf_rtc_event_disable(NRF_RTC0, RTC_EVTENSET_COMPARE0_Msk);
}
 
/**
 * ble phy disable irq and ppi
 *
 * This routine is to be called when reception was stopped due to either a
 * wait for response timeout or a packet being received and the phy is to be
 * restarted in receive mode. Generally, the disable routine is called to stop
 * the phy.
 */
static void
ble_phy_disable_irq_and_ppi(void)
{
    nrf_radio_int_disable(NRF_RADIO, NRF_RADIO_IRQ_MASK_ALL);
    NRF_RADIO->SHORTS = 0;
    nrf_radio_task_trigger(NRF_RADIO, NRF_RADIO_TASK_DISABLE);
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH4_Msk | PPI_CHEN_CH5_Msk |
        PPI_CHEN_CH20_Msk | PPI_CHEN_CH21_Msk | PPI_CHEN_CH23_Msk |
        PPI_CHEN_CH25_Msk | PPI_CHEN_CH31_Msk);
    nrf_ppi_channels_disable(NRF_PPI, PPI_CHEN_CH6_Msk | PPI_CHEN_CH7_Msk);
    NVIC_ClearPendingIRQ(RADIO_IRQn);
    g_ble_phy_data.phy_state = BLE_PHY_STATE_IDLE;
}
 
void
ble_phy_restart_rx(void)
{
    ble_phy_stop_usec_timer();
    ble_phy_disable_irq_and_ppi();
 
    ble_phy_set_start_now();
    /* Enable PPI to automatically start RXEN */
    nrf_ppi_channels_enable(NRF_PPI, PPI_CHEN_CH21_Msk);
 
    ble_phy_rx();
}
 
/**
 * ble phy disable
 *
 * Disables the PHY. This should be called when an event is over. It stops
 * the usec timer (if used), disables interrupts, disables the RADIO, disables
 * PPI and sets state to idle.
 */
void
ble_phy_disable(void)
{
    ble_phy_trace_void(BLE_PHY_TRACE_ID_DISABLE);
 
    ble_phy_stop_usec_timer();
    ble_phy_disable_irq_and_ppi();
}
 
/* Gets the current access address */
uint32_t ble_phy_access_addr_get(void)
{
    return g_ble_phy_data.phy_access_address;
}
 
/**
 * Return the phy state
 *
 * @return int The current PHY state.
 */
int
ble_phy_state_get(void)
{
    return g_ble_phy_data.phy_state;
}
 
/**
 * Called to see if a reception has started
 *
 * @return int
 */
int
ble_phy_rx_started(void)
{
    return g_ble_phy_data.phy_rx_started;
}
 
/**
 * Return the transceiver state
 *
 * @return int transceiver state.
 */
uint8_t
ble_phy_xcvr_state_get(void)
{
    uint32_t state;
    state = NRF_RADIO->STATE;
    return (uint8_t)state;
}
 
/**
 * Called to return the maximum data pdu payload length supported by the
 * phy. For this chip, if encryption is enabled, the maximum payload is 27
 * bytes.
 *
 * @return uint8_t Maximum data channel PDU payload size supported
 */
uint8_t
ble_phy_max_data_pdu_pyld(void)
{
    return BLE_LL_DATA_PDU_MAX_PYLD;
}
 
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
void
ble_phy_resolv_list_enable(void)
{
    NRF_AAR->NIRK = (uint32_t)g_nrf_num_irks;
    g_ble_phy_data.phy_privacy = 1;
}
 
void
ble_phy_resolv_list_disable(void)
{
    g_ble_phy_data.phy_privacy = 0;
}
#endif
 
#if MYNEWT_VAL(BLE_LL_DTM)
void ble_phy_enable_dtm(void)
{
    /* When DTM is enabled we need to disable whitening as per
     * Bluetooth v5.0 Vol 6. Part F. 4.1.1
     */
    NRF_RADIO->PCNF1 &= ~RADIO_PCNF1_WHITEEN_Msk;
}
 
void ble_phy_disable_dtm(void)
{
    /* Enable whitening */
    NRF_RADIO->PCNF1 |= RADIO_PCNF1_WHITEEN_Msk;
}
#endif
 
void
ble_phy_rfclk_enable(void)
{
#if MYNEWT
    nrf52_clock_hfxo_request();
#else
    nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTART);
#endif
}
 
void
ble_phy_rfclk_disable(void)
{
#if MYNEWT
    nrf52_clock_hfxo_release();
#else
    nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTOP);
#endif
}