1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/**************************************************************************//**
* @file     pan_hal_uart.c
* @version  V0.0.0
* $Revision: 1 $
* $Date:    23/09/10 $
* @brief    Panchip series UART (Universal Asynchronous Receiver-Transmitter) HAL source file.
* @note
* Copyright (C) 2023 Panchip Technology Corp. All rights reserved.
*****************************************************************************/
#include "pan_hal.h"
 
#if (BLE_EN == 1)
#define PAN_HAL_BLE_IRQ_SPLIT_CALLBACK      1
#endif
 
HAL_UART_HandleTypeDef UART_Handle_Array[PAN_HAL_UART_INST_COUNT] =
{
    {
        .pUartx = UART0,
        .initObj = {0},
        .interruptObj =
        {
            .txTrigLevel = HAL_UART_TX_FIFO_HALF_FULL,
            .rxTrigLevel = HAL_UART_RX_FIFO_HALF_FULL,
            .IrqPriority = 2,
            .IRQn = UART0_IRQn,
        },
        .pTxBuffPtr = NULL,
        .txXferSize = 0,
        .txXferCount = 0,
        .pRxBuffPtr = NULL,
        .rxXferSize = 0,
        .rxXferCount = 0,
        .isTxBusy = false,
        .isRxBusy = false,
        .dmaSrc = DMAC_Peripheral_UART0_Rx,
        .dmaDst = DMAC_Peripheral_UART0_Tx,
    },
    {
        .pUartx = UART1,
        .initObj = {0},
        .interruptObj =
        {
            .txTrigLevel = HAL_UART_TX_FIFO_HALF_FULL,
            .rxTrigLevel = HAL_UART_RX_FIFO_HALF_FULL,
            .IrqPriority = 2,
            .IRQn = UART1_IRQn,
        },
        .pTxBuffPtr = NULL,
        .txXferSize = 0,
        .txXferCount = 0,
        .pRxBuffPtr = NULL,
        .rxXferSize = 0,
        .rxXferCount = 0,
        .isTxBusy = false,
        .isRxBusy = false,
        .dmaSrc = DMAC_Peripheral_UART1_Rx,
        .dmaDst = DMAC_Peripheral_UART1_Tx,
    }
};
 
HAL_Status HAL_UART_Init(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
    uint32_t tmpreg = 0x00;
    uint32_t integerdivider = 0x00;
    uint32_t fractionaldivider = 0x00;
    uint64_t apbclock = 0x00;
 
    if(pUart->pUartx == UART0)
    {
        CLK_APB1PeriphClockCmd(CLK_APB1Periph_UART0, ENABLE);
    }
    else if(pUart->pUartx == UART1)
    {
        CLK_APB2PeriphClockCmd(CLK_APB2Periph_UART1, ENABLE);
    }
 
    /*---------------------------- UART BRR Configuration -----------------------*/
    /* Configure the UART Baud Rate */
    apbclock = CLK_GetPeripheralFreq((void *)pUart->pUartx);
    /* Unlock to enable write & read divisor register */
    pUart->pUartx->LCR |= UART_LCR_DLAB_Msk;
    /* Determine the integer part baud_rate_divisor =  PCLK*100 / (16*required_baud_rate) */
    integerdivider = ((25 * apbclock) / (4 * (pUart->initObj.baudRate)));
 
    // Too high baudrate (too small divider) would cause DLL/DLH be all 0 which means UART disabled,
    // thus return false if this happens.
    if (integerdivider < 100)
        return HAL_ERROR;
 
    tmpreg = (integerdivider / 100);
    pUart->pUartx->RBR_THR_DLL = tmpreg & 0xFF;
    pUart->pUartx->IER_DLH = (tmpreg & 0xFF00) >> 8;
 
    /* Determine the fractional part */
    fractionaldivider = integerdivider - (100 * tmpreg);
 
    /* Implement the fractional part in the register */
    pUart->pUartx->DLF = ((((fractionaldivider * 16) + 50) / 100));
    pUart->pUartx->LCR &= ~UART_LCR_DLAB_Msk;
 
    /*---------------------------- UART Line Configuration -----------------------*/
    tmpreg = pUart->pUartx->LCR;
    tmpreg &= ~(UART_LCR_SP_Msk | UART_LCR_EPS_Msk | UART_LCR_PEN_Msk | UART_LCR_STOP_Msk | UART_LCR_DLS_Msk);
    tmpreg |= (pUart->initObj.format);
    pUart->pUartx->LCR = tmpreg;
 
    /*-------------------------------enable fifo----------------------------------*/
    UART_EnableFifo(pUart->pUartx);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_SendData(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size, uint32_t timeout)
{
    if (pUart->isTxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    uint32_t timeout_tick = HAL_TimeConvMsToTick(timeout);
    uint32_t uptime_ref = HAL_TimeGetCurrTick();
 
    pUart->isTxBusy = true;
    pUart->pTxBuffPtr = pBuf;
    pUart->txXferSize = size;
    pUart->txXferCount = 0;
 
    while (pUart->txXferCount < pUart->txXferSize)
    {
        // Wait until Transmitter Shift Register and Tx FIFO are both empty
        while (!(UART_GetLineStatus(pUart->pUartx) & UART_LSR_TEMT_Msk))
        {
            if (timeout_tick != HAL_TIME_FOREVER)
            {
                if (HAL_TimeGetCurrTick() - uptime_ref >= timeout_tick)
                {
                    pUart->isTxBusy = false;
                    return HAL_TIMEOUT;
                }
            }
        }
        // Put a byte to Tx FIFO
        UART_SendData(pUart->pUartx, pUart->pTxBuffPtr[pUart->txXferCount++]);
    }
 
    pUart->isTxBusy = false;
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveData(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size, uint32_t timeout)
{
    if (pUart->isRxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    uint32_t timeout_tick = HAL_TimeConvMsToTick(timeout);
    uint32_t uptime_ref = HAL_TimeGetCurrTick();
 
    pUart->isRxBusy = true;
    pUart->pRxBuffPtr = pBuf;
    pUart->rxXferSize = size;
    pUart->rxXferCount = 0;
 
    while (pUart->rxXferCount < pUart->rxXferSize)
    {
        // Check if there is at least one byte in Rx Data Register or Rx FIFO
        if (UART_GetLineStatus(pUart->pUartx) & UART_LSR_DR_Msk)
        {
            // Get a byte from Rx FIFO
            pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
        }
        if (timeout_tick != HAL_TIME_FOREVER)
        {
            if (HAL_TimeGetCurrTick() - uptime_ref >= timeout_tick)
            {
                pUart->isRxBusy = false;
                return HAL_TIMEOUT;
            }
        }
    }
 
    pUart->isRxBusy = false;
 
    return HAL_OK;
}
 
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
#include "pan_ble_stack.h"
void ble_irq_split_callback(void)
{
    HAL_UART_HandleTypeDef *pUart;
 
    for (size_t i = 0; i < PAN_HAL_UART_INST_COUNT; i++)
    {
        pUart = &UART_Handle_Array[i];
        if (pUart->isRxBusy)
        {
            __disable_irq(); // To avoid swiching to the possible higher priority UART ISR
            if (pUart->interruptObj.continuousRxMode)
            {
                while (UART_GetRxFifoLevel(pUart->pUartx) > 1)
                {
                    if (pUart->rxXferCount < pUart->rxXferSize)
                    {
                        pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
                    }
                    else
                    {
                        // Set UART pending irq manually to trigger uart rx continuous buff full error callback
                        NVIC_SetPendingIRQ(pUart->interruptObj.IRQn);
                        break;
                    }
                }
            }
            else
            {
                while (!UART_IsRxFifoEmpty(pUart->pUartx))
                {
                    if (pUart->rxXferCount < pUart->rxXferSize)
                    {
                        pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
                    }
                    else
                    {
                        break;
                    }
                }
 
                if (pUart->rxXferCount == pUart->rxXferSize)
                {
                    // Set UART pending irq manually to trigger uart rx finish callback
                    NVIC_SetPendingIRQ(pUart->interruptObj.IRQn);
                }
            }
            __enable_irq();
        }
    }
}
#endif // PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
 
HAL_Status HAL_UART_Init_INT(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
    pan_misc_register_app_irq_handler_cb(ble_irq_split_callback);
#endif // PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
 
    // Flush UART FIFOs
    UART_ResetTxFifo(pUart->pUartx);
    UART_ResetRxFifo(pUart->pUartx);
 
    // Set UART IRQ trigger level
    UART_SetTxTrigger(pUart->pUartx, (UART_TxTriggerDef)pUart->interruptObj.txTrigLevel);
    UART_SetRxTrigger(pUart->pUartx, (UART_RxTriggerDef)pUart->interruptObj.rxTrigLevel);
 
    // Enable THRE Interrupt Mode
    UART_EnablePtime(pUart->pUartx);
 
    // Set UART IRQ Priority and enable UART IRQ
    NVIC_SetPriority(pUart->interruptObj.IRQn, pUart->interruptObj.IrqPriority);
    NVIC_EnableIRQ(pUart->interruptObj.IRQn);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_SendData_INT(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size)
{
    if (pUart->isTxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    pUart->isTxBusy = true;
    pUart->pTxBuffPtr = pBuf;
    pUart->txXferSize = size;
    pUart->txXferCount = 0;
 
    // Enable Transmit Trigger interupt to start sending
    UART_EnableIrq(pUart->pUartx, UART_IRQ_THR_EMPTY);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveData_INT(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size)
{
    if (pUart->isRxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    pUart->isRxBusy = true;
    pUart->pRxBuffPtr = pBuf;
    pUart->rxXferSize = size;
    pUart->rxXferCount = 0;
 
    // Enable Data Available and Rx Line Status interrupt to start receiving
    UART_EnableIrq(pUart->pUartx, UART_IRQ_RECV_DATA_AVL);
    UART_EnableIrq(pUart->pUartx, UART_IRQ_LINE_STATUS);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveDataContinuously_INT(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t bufSize)
{
    if (pUart->isRxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (bufSize == 0U))
    {
        return HAL_ERROR;
    }
 
    // The continuous Rx mode does not support Rx FIFO trigger level set to 1 char
    if ((UART_RxTriggerDef)pUart->interruptObj.rxTrigLevel == UART_RX_FIFO_ONE_CHAR)
    {
        return HAL_ERROR;
    }
 
    pUart->interruptObj.continuousRxMode = true;
    pUart->isRxBusy = true;
    pUart->pRxBuffPtr = pBuf;
    pUart->rxXferSize = bufSize;
    pUart->rxXferCount = 0;
 
    // Enable Data Available and Rx Line Status interrupt to start receiving
    UART_EnableIrq(pUart->pUartx, UART_IRQ_RECV_DATA_AVL);
    UART_EnableIrq(pUart->pUartx, UART_IRQ_LINE_STATUS);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_SendDataAbort_INT(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
    // Disable Transmit Trigger interupt to abort sending
    UART_DisableIrq(pUart->pUartx, UART_IRQ_THR_EMPTY);
 
    // Flush Tx FIFO
    UART_ResetTxFifo(pUart->pUartx);
 
    pUart->isTxBusy = false;
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveDataAbort_INT(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
    // Disable Data Available and Rx Line Status interrupt to abort receiving
    UART_DisableIrq(pUart->pUartx, UART_IRQ_RECV_DATA_AVL);
    UART_DisableIrq(pUart->pUartx, UART_IRQ_LINE_STATUS);
 
    // Flush Rx FIFO
    UART_ResetRxFifo(pUart->pUartx);
 
    pUart->isRxBusy = false;
    pUart->interruptObj.continuousRxMode = false;
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_Init_DMA(HAL_UART_HandleTypeDef *pUart, HAL_UART_DmaDirOpt dmaDir, UART_CallbackFunc callback)
{
    uint32_t dmaCh;
 
    if ((pUart == NULL) || (callback == NULL))
    {
        return HAL_ERROR;
    }
 
    if (dmaDir == HAL_UART_DMA_TX)
    {
        // Configure UART Tx FIFO
        UART_ResetTxFifo(pUart->pUartx);
        UART_SetTxTrigger(pUart->pUartx, UART_TX_FIFO_HALF_FULL);
        UART_EnablePtime(pUart->pUartx); //Enable Programmable THRE Interrupt Mode
 
        /* Get free DMA channel */
        dmaCh = DMAC_AcquireChannel(DMA);
        if (dmaCh == DMA_INVLID_CHANNEL)
        {
            return HAL_ERROR;
        }
 
        pUart->txDmaCh = dmaCh;
        DMAC_Channel_Array[dmaCh].ConfigTmp = dma_mem2uart_config;
        DMAC_Channel_Array[dmaCh].ConfigTmp.PeripheralDst = pUart->dmaDst;
    }
    else if (dmaDir == HAL_UART_DMA_RX)
    {
        // Configure UART Rx FIFO
        UART_ResetRxFifo(pUart->pUartx);
        UART_SetRxTrigger(pUart->pUartx, UART_RX_FIFO_HALF_FULL);
 
        /* Get free DMA channel */
        dmaCh = DMAC_AcquireChannel(DMA);
        if (dmaCh == DMA_INVLID_CHANNEL)
        {
            return HAL_ERROR;
        }
 
        pUart->rxDmaCh = dmaCh;
        DMAC_Channel_Array[dmaCh].ConfigTmp = dma_uart2mem_config;
        DMAC_Channel_Array[dmaCh].ConfigTmp.PeripheralSrc = pUart->dmaSrc;
    }
 
    /* Enable DMA transfer interrupt */
    DMAC_ClrIntFlagMsk(DMA, dmaCh, DMAC_FLAG_INDEX_TFR);
//    DMAC_ClrIntFlagMsk(DMA, dmaCh, DMAC_FLAG_INDEX_ERR);
 
    DMAC_Channel_Array[dmaCh].periph = pUart;
    DMAC_Channel_Array[dmaCh].CallbackUart = callback;
    DMAC_Channel_Array[dmaCh].PeriMode = DMAC_Peri_UART;
    DMAC_SetChannelConfig(DMA, dmaCh, &DMAC_Channel_Array[dmaCh].ConfigTmp);
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_SendData_DMA(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size)
{
    if (pUart->isTxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    pUart->isTxBusy = true;
    DMAC_Channel_Array[pUart->txDmaCh].pBuffPtr = (uint32_t*)pBuf;
    DMAC_Channel_Array[pUart->txDmaCh].XferSize = size;
    DMAC_Channel_Array[pUart->txDmaCh].XferCount = 0;
 
    if (size < 1024)
    {
        DMAC_StartChannel(DMA, pUart->txDmaCh, pBuf, (void *)&(pUart->pUartx->RBR_THR_DLL), size);
    }
    else
    {
        DMAC_StartChannel(DMA, pUart->txDmaCh, pBuf, (void *)&(pUart->pUartx->RBR_THR_DLL), 1023);
    }
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveData_DMA(HAL_UART_HandleTypeDef *pUart, uint8_t *pBuf, uint16_t size)
{
    if (pUart->isRxBusy)
    {
        return HAL_BUSY;
    }
 
    if ((pUart == NULL) || (pBuf == NULL) || (size == 0U))
    {
        return HAL_ERROR;
    }
 
    pUart->isRxBusy = true;
    DMAC_Channel_Array[pUart->rxDmaCh].pBuffPtr = (uint32_t*)pBuf;
    DMAC_Channel_Array[pUart->rxDmaCh].XferSize = size;
    DMAC_Channel_Array[pUart->rxDmaCh].XferCount = 0;
 
    if (size < 1024)
    {
        DMAC_StartChannel(DMA, pUart->rxDmaCh, (void*)&(pUart->pUartx->RBR_THR_DLL), pBuf, size);
    }
    else
    {
        DMAC_StartChannel(DMA, pUart->rxDmaCh, (void*)&(pUart->pUartx->RBR_THR_DLL), pBuf, 1023);
    }
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_SendDataAbort_DMA(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
    // Stop current DMA channel
    DMAC_StopChannel(DMA, pUart->txDmaCh);
 
    // Flush Tx FIFO
    UART_ResetTxFifo(pUart->pUartx);
 
    pUart->isTxBusy = false;
 
    return HAL_OK;
}
 
HAL_Status HAL_UART_ReceiveDataAbort_DMA(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart == NULL)
    {
        return HAL_ERROR;
    }
 
    // Stop current DMA channel
    DMAC_StopChannel(DMA, pUart->rxDmaCh);
 
    // Flush Rx FIFO
    UART_ResetRxFifo(pUart->pUartx);
 
    pUart->isRxBusy = false;
 
    return HAL_OK;
}
 
static void UART_HandleLineStatus(HAL_UART_HandleTypeDef *pUart)
{
    uint32_t lineStatus = UART_GetLineStatus(pUart->pUartx);
 
    if (pUart->isRxBusy)
    {
        // Report Rx error event
        if (pUart->interruptObj.callbackFunc != NULL)
        {
            if (lineStatus & UART_LINE_PARITY_ERR)
            {
                pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_RX_ERR_PARITY, pUart->pRxBuffPtr, pUart->rxXferCount);
            }
            if (lineStatus & UART_LINE_FRAME_ERR)
            {
                pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_RX_ERR_FRAME, pUart->pRxBuffPtr, pUart->rxXferCount);
            }
            if (lineStatus & UART_LINE_OVERRUN_ERR)
            {
                pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_RX_ERR_OVERRUN, pUart->pRxBuffPtr, pUart->rxXferCount);
            }
        }
    }
}
 
static void UART_HandleReceivedData(HAL_UART_HandleTypeDef *pUart, UART_EventDef flag)
{
    if (pUart->isRxBusy)
    {
        if (pUart->interruptObj.continuousRxMode)
        {
            if (flag != UART_EVENT_TIMEOUT)
            {
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __disable_irq(); // To avoid swiching to higher priority LL IRQ
#endif
                // Read data from UART Rx FIFO and remains 1 byte in it
                while (UART_GetRxFifoLevel(pUart->pUartx) > 1)
                {
                    if (pUart->rxXferCount < pUart->rxXferSize)
                    {
                        pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
                    }
                    else
                    {
                        break;
                    }
                }
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __enable_irq();
#endif
            }
            else
            {
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __disable_irq(); // To avoid swiching to higher priority LL IRQ
#endif
                // Read all data from UART Rx FIFO due to timeout occurred
                while (!UART_IsRxFifoEmpty(pUart->pUartx))
                {
                    if (pUart->rxXferCount < pUart->rxXferSize)
                    {
                        pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
                    }
                    else
                    {
                        break;
                    }
                }
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __enable_irq();
#endif
                // End current rx flow and trigger Continuous Rx Timeout callback if Rx FIFO is already empty
                if (UART_IsRxFifoEmpty(pUart->pUartx))
                {
                    // Disable Data Available and Rx Line Status interrupt to abort receiving
                    UART_DisableIrq(pUart->pUartx, UART_IRQ_RECV_DATA_AVL);
                    UART_DisableIrq(pUart->pUartx, UART_IRQ_LINE_STATUS);
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                    __disable_irq(); // To avoid swiching to higher priority LL IRQ
#endif
                    pUart->isRxBusy = false;
                    pUart->interruptObj.continuousRxMode = false;
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                    __enable_irq();
#endif
                    // Trigger Continuous Rx Timeout callback
                    if (pUart->interruptObj.callbackFunc != NULL)
                    {
                        pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_CONTI_RX_TIMEOUT, pUart->pRxBuffPtr, pUart->rxXferCount);
                    }
                }
            }
            if (pUart->rxXferCount >= pUart->rxXferSize)
            {
                // Trigger Rx Buffer Full callback
                if (pUart->interruptObj.callbackFunc != NULL)
                {
                    pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_CONTI_RX_BUFF_FULL, pUart->pRxBuffPtr, pUart->rxXferCount);
                }
            }
        }
        else // Normal Rx Mode (Not Continuous Rx Mode)
        {
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
            __disable_irq(); // To avoid swiching to higher priority LL IRQ
#endif
            while (!UART_IsRxFifoEmpty(pUart->pUartx))
            {
                if (pUart->rxXferCount < pUart->rxXferSize)
                {
                    pUart->pRxBuffPtr[pUart->rxXferCount++] = UART_ReceiveData(pUart->pUartx);
                }
                else
                {
                    break;
                }
            }
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
            __enable_irq();
#endif
            if (pUart->rxXferCount == pUart->rxXferSize)
            {
                // Disable Data Available and Rx Line Status interrupt to abort receiving
                UART_DisableIrq(pUart->pUartx, UART_IRQ_RECV_DATA_AVL);
                UART_DisableIrq(pUart->pUartx, UART_IRQ_LINE_STATUS);
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __disable_irq(); // To avoid swiching to higher priority LL IRQ
#endif
                pUart->isRxBusy = false;
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
                __enable_irq();
#endif
                // Report Rx finish event
                if (pUart->interruptObj.callbackFunc != NULL)
                {
                    pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_RX_FINISH, pUart->pRxBuffPtr, pUart->rxXferCount);
                }
            }
        }
    }
}
 
static void UART_HandleTransmittingData(HAL_UART_HandleTypeDef *pUart)
{
    if (pUart->isTxBusy)
    {
        while (!UART_IsTxFifoFull(pUart->pUartx))
        {
            if (pUart->txXferCount < pUart->txXferSize)
            {
                UART_SendData(pUart->pUartx, pUart->pTxBuffPtr[pUart->txXferCount++]);
            }
            else
            {
                break;
            }
        }
 
        if (pUart->txXferCount == pUart->txXferSize)
        {
            // Disable Transmit Trigger interupt after transmitting done
            UART_DisableIrq(pUart->pUartx, UART_IRQ_THR_EMPTY);
            pUart->isTxBusy = false;
            // Report Tx finish event
            if (pUart->interruptObj.callbackFunc != NULL)
            {
                pUart->interruptObj.callbackFunc(pUart, HAL_UART_EVT_TX_FINISH, pUart->pTxBuffPtr, pUart->txXferCount);
            }
        }
    }
}
 
static void UART_HandleProc(HAL_UART_HandleTypeDef *pUart)
{
    UART_EventDef event = UART_GetActiveEvent(pUart->pUartx);
 
    switch (event)
    {
    case UART_EVENT_LINE:
        UART_HandleLineStatus(pUart);
        break;
    case UART_EVENT_DATA:
        UART_HandleReceivedData(pUart, UART_EVENT_DATA);
        break;
    case UART_EVENT_TIMEOUT:
        UART_HandleReceivedData(pUart, UART_EVENT_TIMEOUT);
        break;
    case UART_EVENT_THR_EMPTY:
        UART_HandleTransmittingData(pUart);
        break;
    case UART_EVENT_NONE:
#if PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
        UART_HandleReceivedData(pUart, UART_EVENT_NONE);
#endif // PAN_HAL_BLE_IRQ_SPLIT_CALLBACK
        break;
    default:
        break;
    }
}
 
__WEAK void UART0_IRQHandlerOverlay(void)
{
    UART_HandleProc(&UART_Handle_Array[0]);
}
 
__WEAK void UART1_IRQHandlerOverlay(void)
{
    UART_HandleProc(&UART_Handle_Array[1]);
}
 
void UART0_IRQHandler(void)
{
    PAN_IO_TIMING_TRACK_LEVEL(CONFIG_TRACK_PIN_UART0_IRQ, 1);
 
    UART0_IRQHandlerOverlay();
 
    PAN_IO_TIMING_TRACK_LEVEL(CONFIG_TRACK_PIN_UART0_IRQ, 0);
}
 
void UART1_IRQHandler(void)
{
    PAN_IO_TIMING_TRACK_LEVEL(CONFIG_TRACK_PIN_UART1_IRQ, 1);
 
    UART1_IRQHandlerOverlay();
 
    PAN_IO_TIMING_TRACK_LEVEL(CONFIG_TRACK_PIN_UART1_IRQ, 0);
}