chen
2025-05-16 2671208ff2eb0ecd022919a2a38d4540b0e90961
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
 * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and
 * its subsidiaries and affiliates (collectly called MKSEMI).
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into an MKSEMI
 *    integrated circuit in a product or a software update for such product,
 *    must reproduce the above copyright notice, this list of conditions and
 *    the following disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * 3. Neither the name of MKSEMI nor the names of its contributors may be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    MKSEMI integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be
 *    reverse engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
 
#include "mk_trace.h"
#include "mk_clock.h"
#include "mk_uwb.h"
#include "mk_calib.h"
#include "mk_misc.h"
#include "ranging_simple.h"
#include "lib_aoa.h"
#include "lib_ranging.h"
#if KF_EN
#include "lib_kf.h"
#endif
#include "board.h"
 
#define PRINT_PAYLOAD_EN 0
#define PDOA_PRINT_EN 0
 
#if FILTER_EN
static void ranging_result_filter(uint16_t *distance, int16_t *azimuth, int16_t *elevation)
{
    if ((distance == NULL) || (azimuth == NULL) || (elevation == NULL))
    {
        return;
    }
 
#if KF_EN
    float post_range, post_azimuth, post_elevation;
    float azimuth_meas = mk_q7_to_f32(*azimuth);
    float elevation_meas = mk_q7_to_f32(*elevation);
    float range_meas = (float)*distance / 100;
    // call filter
    uint16_t target_addr = uwbs_peer_short_addr_get();
    uint8_t mac_addr[8];
    memset(mac_addr, 0, 8);
    mac_addr[0] = target_addr & 0xff;
    mac_addr[1] = (target_addr >> 8) & 0xff;
    loc_kf_filter(range_meas, KF_DATA_TYPE_RANGING, mac_addr, &post_range);
    if (uwb_app_config.session_param.aoa_result_req)
    {
        loc_kf_filter(azimuth_meas, KF_DATA_TYPE_AZIMUTH, mac_addr, &post_azimuth);
        loc_kf_filter(elevation_meas, KF_DATA_TYPE_ELEVATION, mac_addr, &post_elevation);
    }
    else
    {
        post_azimuth = azimuth_meas;
        post_elevation = elevation_meas;
    }
    // update distance
    *distance = (uint16_t)(post_range * 100);
    // update angle
    *azimuth = mk_f32_to_q7(post_azimuth);
    *elevation = mk_f32_to_q7(post_elevation);
 
    // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d %d %d;\r\n", (uint16_t)(range_meas*100),(uint16_t)(post_range*100),(int16_t)azimuth_meas,(int16_t)post_azimuth,
    // (int16_t)elevation_meas, (int16_t)post_elevation);
#else
    float post_range, post_azimuth;
    int azimuth_meas = mk_q7_to_s16(*azimuth);
    float range_meas = (float)*distance;
    // call filter
    loc_post_filter(0, range_meas, azimuth_meas, &post_range, &post_azimuth);
    // update distance
    *distance = (uint16_t)(post_range);
    // update angle
    *azimuth = mk_f32_to_q7(post_azimuth);
 
    // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d;\r\n", (uint16_t)(range_meas*100), (uint16_t)(post_range*100),(int16_t)azimuth_meas, (int16_t)post_azimuth);
#endif
}
#endif
 
/*************************************************************************************************/
/*!
 *  \brief  WSF event handler for ranging task.
 *
 *  \param  event   WSF event mask.
 *  \param  msg    WSF message.
 *
 *  \return None.
 */
/*************************************************************************************************/
void ranging_handler(wsfEventMask_t event, const void *param)
{
    const wsfMsgHdr_t *msg = (const wsfMsgHdr_t *)param;
 
    if (msg != NULL)
    {
        switch (msg->event)
        {
            case RANGING_DAEMON_TIMER_MSG:
            {
                uint8_t count = ranging_count_get();
                if (count == ranging_env.count_last)
                {
                    LOG_INFO(TRACE_MODULE_APP, "Ranging was suspended %u\r\n", count);
                    ranging_restart();
                }
                else
                {
                    // LOG_INFO(TRACE_MODULE_APP, "Ranging count %u %u\r\n", ranging_env.count_last, count);
                    ranging_env.count_last = count;
                }
            }
            break;
 
            case UWB_PKT_TX_DONE_MSG:
            {
                const struct UWB_PKT_TX_DONE_IND_T *ind = (const struct UWB_PKT_TX_DONE_IND_T *)param;
                uint8_t flag_print = 1;
 
                switch (ind->ranging_stage)
                {
                    case RANGING_SYNC:
                    {
                        LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n");
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Sync ", ind->tx_len);
                    }
                    break;
 
                    case RANGING_CFG:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Config ", ind->tx_len);
                    }
                    break;
 
                    case RANGING_POLL:
                    {
                        LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                        struct RANGING_COMMON_MSG_T *p_msg = (struct RANGING_COMMON_MSG_T *)ind->tx_data;
                        LOG_INFO(TRACE_MODULE_APP, "DS-TWR Initiator SEQ NUM %u\r\n", p_msg->seqNum);
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Poll ", ind->tx_len);
                    }
                    break;
 
                    case RANGING_RESPONSE:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Response ", ind->tx_len);
                    }
                    break;
 
                    case RANGING_FINAL:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Final", ind->tx_len);
                    }
                    break;
 
                    default:
                        flag_print = 2;
                        break;
                }
 
                if (flag_print == 1)
                {
#if PRINT_PAYLOAD_EN
                    if (ind->tx_len)
                    {
                        LOG_INFO(TRACE_MODULE_APP, " ");
                        for (uint8_t i = 0; i < ind->tx_len; i++)
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->tx_data[i]);
                        }
                    }
#endif
                    LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                }
            }
            break;
 
            case UWB_PKT_RX_DONE_MSG:
            {
                const struct UWB_PKT_RX_DONE_IND_T *ind = (const struct UWB_PKT_RX_DONE_IND_T *)param;
                if (ind->status == UWB_RX_OK)
                {
                    uint8_t flag_print = 1;
 
                    switch (ind->ranging_stage)
                    {
                        case RANGING_SYNC:
                        {
                            LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n");
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Sync ", ind->rx_len);
                        }
                        break;
 
                        case RANGING_CFG:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Config ", ind->rx_len);
                        }
                        break;
 
                        case RANGING_POLL:
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Poll ", ind->rx_len);
                        }
                        break;
 
                        case RANGING_RESPONSE:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Response ", ind->rx_len);
                        }
                        break;
 
                        case RANGING_FINAL:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Final ", ind->rx_len);
                        }
                        break;
 
                        default:
                            flag_print = 2;
                            break;
                    }
 
                    if (flag_print == 1)
                    {
#if PRINT_PAYLOAD_EN
                        for (uint8_t ii = 0; ii < ind->rx_len; ii++)
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->rx_data[ii]);
                        }
#endif
                        LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
 
#if RSSI_EN
                        LOG_INFO(TRACE_MODULE_APP, "RSSI: %ddBm, SNR: %ddB \r\n", ind->rssi, ind->snr);
#endif
                    }
 
                    if (ind->ranging_stage == RANGING_POLL)
                    {
                        int32_t freq_offset = phy_freq_offset_get();
                        int32_t freq_offset_filter = average_filter(freq_offset);
                        LOG_INFO(TRACE_MODULE_APP, "CH Freq Offset %d\r\n", freq_offset_filter);
#if XTAL_AUTO_TUNE_EN
                        int32_t ppm = freq_offset_filter / (int32_t)(ch_center_freq_map[uwb_app_config.ppdu_params.ch_num] * 1e-6);
                        calib_xtal38m4_load_cap_auto_tune(ppm);
#endif
 
                        struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0];
                        uint8_t NLoS, FoM;
                        ranging_fom_get(&NLoS, &FoM);
                        range_result->NLoS = NLoS;
                        // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
                    }
                    else if (ind->ranging_stage == RANGING_RESPONSE)
                    {
                        uint8_t NLoS, FoM;
                        ranging_fom_get(&NLoS, &FoM);
                        // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
                    }
                    else if (ind->ranging_stage == RANGING_FINAL)
                    {
                        struct RANGING_COMMON_MSG_T *p_final_msg = (struct RANGING_COMMON_MSG_T *)ind->rx_data;
 
                        int64_t Tround1 = 0;
                        int64_t Tround2 = 0;
                        int64_t Treply1 = 0;
                        int64_t Treply2 = 0;
 
                        if (ranging_env.responder_final_flag)
                        {
                            Tround2 = ranging_tround(DEV_ROLE_RESPONDER, 0);
                            Treply1 = ranging_treply(DEV_ROLE_RESPONDER, 0);
 
                            // recv   tx_poll_timestamp,  rx_response_timestamp, tx_final_timestamp
                            int64_t buff_timestamp[3] = {0};
                            for (int j = 0; j < 3; j++)
                            {
                                for (int i = 4; i >= 0; i--)
                                {
                                    buff_timestamp[j] = (buff_timestamp[j] << 8) | p_final_msg->user_data[j * 5 + i];
                                }
                            }
 
                            Tround1 = buff_timestamp[1] - buff_timestamp[0];
                            Treply2 = buff_timestamp[2] - buff_timestamp[1];
                        }
 
                        if ((Tround1) && (Treply1) && (Tround2) && (Treply2))
                        {
                            int64_t tof_i = (Tround1 * Tround2 - Treply1 * Treply2) / (Tround1 + Tround2 + Treply1 + Treply2);
                            // outlier filter
                            if (tof_i < 0)
                            {
                                tof_i = 0;
                            }
                            ranging_env.tof = (uint32_t)tof_i;
 
                            double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof);
 
                            struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0];
 
                            // update distance result
                            range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR);
 
                            range_result->status = STATUS_OK;
                            if (ranging_frame_type_get() == SP1)
                            {
                                range_result->status = sts_valid_check() ? STATUS_OK : STATUS_FAILED;
                            }
                            // STS valid
                            if (range_result->status == STATUS_OK)
                            {
#if AOA_EN || PDOA_PRINT_EN
                                // update PDoA IQ and calculate AoA angles (depends on aoa_aux_cfg)
                                aoa_calculate(NULL, &range_result->aoa_azimuth);
#endif
 
#if PDOA_PRINT_EN
                                float pdoa[3];
                                pdoa[0] = pdoa_select_get(0, 3);
                                pdoa[1] = pdoa_select_get(1, 3);
                                pdoa[2] = pdoa_select_get(2, 3);
                                LOG_INFO(TRACE_MODULE_APP, "PDOA: %f %f %f\r\n", pdoa[0], pdoa[1], pdoa[2]);
 
                                // float *sts_rssi = sts_rssi_output_get();
                                // LOG_INFO(TRACE_MODULE_APP, "STS RSSI: %f %f %f %f\r\n", sts_rssi[0], sts_rssi[1], sts_rssi[2], sts_rssi[3]);
 
                                // float *iq = sts_first_path_iq_get();
                                // LOG_INFO(TRACE_MODULE_APP, "ANT0 IQ: %f %f\r\n", iq[0], iq[1]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT1 IQ: %f %f\r\n", iq[2], iq[3]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT2 IQ: %f %f\r\n", iq[4], iq[5]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT3 IQ: %f %f\r\n", iq[6], iq[7]);
#endif
 
#if FILTER_EN
                                if (uwb_app_config.filter_en)
                                {
                                    // filter process
                                    ranging_result_filter(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation);
                                }
#endif
 
                                uint8_t aoa_en = uwb_app_config.session_param.aoa_result_req;
                                if (aoa_en)
                                {
                                    uint8_t fom;
                                    aoa_fom_get(NULL, &fom);
                                    board_ranging_result_correct(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation);
 
                                    LOG_INFO(TRACE_MODULE_APP, "Distance %ucm, AoA Azimuth %d FoM %u\r\n", range_result->distance,
                                             mk_q7_to_s16(range_result->aoa_azimuth), fom);
                                }
                                else
                                {
                                    range_result->aoa_azimuth = 0;
                                    LOG_INFO(TRACE_MODULE_APP, "Raw Distance %ucm\r\n", range_result->distance);
                                }
 
                                struct RANGE_DATA_T *range_data = &ranging_env.range_data;
 
                                range_data->mac_addr_mode = MAC_ADDR_LONG;
                                range_data->measurements_num = 1;
                                memcpy(range_result->mac_addr, uwbs_peer_long_addr_get(), 8);
                                range_result->slot_idx = ranging_env.responder_slot_idx;
 
                                uint8_t NLoS, FoM;
                                ranging_fom_get(&NLoS, &FoM);
                                if (NLoS > range_result->NLoS)
                                {
                                    range_result->NLoS = NLoS;
                                }
                                // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
#if CSI_EN
                                struct RANGING_TAPS_INF_T taps_inf;
                                ranging_taps_inf_get(&taps_inf);
                                LOG_INFO(TRACE_MODULE_APP, "fap: %d, %f\r\n", taps_inf.fap_loc, taps_inf.fap_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap1: %d, %f\r\n", taps_inf.tap1_loc, taps_inf.tap1_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap2: %d, %f\r\n", taps_inf.tap2_loc, taps_inf.tap2_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap3: %d, %f\r\n", taps_inf.tap3_loc, taps_inf.tap3_pow);
#endif
 
                                // output result
                                uwbapi_report_ranging_data(range_data);
                            }
                            else
                            {
                                LOG_INFO(TRACE_MODULE_APP, "STS Invalid\r\n");
                            }
                        }
                        else
                        {
                            LOG_INFO(TRACE_MODULE_APP, "Timestamp error\r\n");
                        }
                    }
                }
                else
                {
                    LOG_INFO(TRACE_MODULE_APP, "UWB RX fail  0x%04x,  stage %d\r\n", ind->status, ind->ranging_stage);
                }
            }
            break;
 
            default:
                break;
        }
    }
    // Handle events
    else if (event)
    {
    }
}