/*
|
* Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and
|
* its subsidiaries and affiliates (collectly called MKSEMI).
|
*
|
* All rights reserved.
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions are met:
|
*
|
* 1. Redistributions of source code must retain the above copyright notice,
|
* this list of conditions and the following disclaimer.
|
*
|
* 2. Redistributions in binary form, except as embedded into an MKSEMI
|
* integrated circuit in a product or a software update for such product,
|
* must reproduce the above copyright notice, this list of conditions and
|
* the following disclaimer in the documentation and/or other materials
|
* provided with the distribution.
|
*
|
* 3. Neither the name of MKSEMI nor the names of its contributors may be used
|
* to endorse or promote products derived from this software without
|
* specific prior written permission.
|
*
|
* 4. This software, with or without modification, must only be used with a
|
* MKSEMI integrated circuit.
|
*
|
* 5. Any software provided in binary form under this license must not be
|
* reverse engineered, decompiled, modified and/or disassembled.
|
*
|
* THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
* DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
*/
|
|
#include "mk_adc.h"
|
#include "mk_clock.h"
|
#include "mk_reset.h"
|
#include "mk_trace.h"
|
#include "mk_misc.h"
|
|
#if ADC_DMA_MODE_EN
|
static void adc_dma_callback(void *ch, uint32_t err_code);
|
#endif
|
|
static struct ADC_HANDLE_T adc_handle = {
|
.base = ADC,
|
.irq = ADC_IRQn,
|
.dma_ch = DMA_CH1,
|
.callback = NULL,
|
};
|
|
int adc_open(struct ADC_CFG_T *config)
|
{
|
if (config == NULL)
|
{
|
return DRV_ERROR;
|
}
|
|
// check if ADC is using by HW or not
|
if (adc_handle.base->STATUS & ADC_STATUS_BUSY_MSK)
|
{
|
return DRV_BUSY;
|
}
|
else
|
{
|
// enable ADC clock
|
clock_enable(CLOCK_ADC);
|
reset_module(RESET_MODULE_ADC);
|
}
|
|
adc_handle.mode = config->mode;
|
adc_handle.int_en = config->int_en;
|
adc_handle.dma_en = config->dma_en;
|
adc_handle.base->CTRL0 = ADC_CTRL0_CONV_MODE(adc_handle.mode) | ADC_CTRL0_CLK_SEL(config->clk_sel) | ADC_CTRL0_CHNL_P(config->channel_p) |
|
ADC_CTRL0_CHNL_N(config->channel_n) | ADC_CTRL0_ACC_NUM(config->acc_num) | ADC_CTRL0_HIGH_PULSE_WIDTH(config->high_pulse_time) |
|
ADC_CTRL0_SETTLE_TIME(config->settle_time);
|
|
uint32_t adc_clk = config->clk_sel ? ADC_CLK_LOW_FREQ : ADC_CLK_HIGH_FREQ;
|
|
/* If the sampling rate setting exceeds the conversion rate threshold, the maximum sampling rate is used by default */
|
uint32_t rate = (adc_clk == ADC_CLK_LOW_FREQ) ? ((config->rate < ADC_CLK_L_MAX_SAMPLE_RATE) ? config->rate : ADC_CLK_L_MAX_SAMPLE_RATE)
|
: (config->rate < ADC_CLK_H_MAX_SAMPLE_RATE ? config->rate : ADC_CLK_H_MAX_SAMPLE_RATE);
|
|
/* If the sample rate is set to 0, no frequency division */
|
uint16_t div = (uint16_t)((adc_clk / ((rate == 0) ? 1 : rate)) - 1);
|
adc_handle.base->CTRL1 = ADC_CTRL1_CONV_RATE(div);
|
|
// TS_VS
|
uint32_t val = REG_READ(0x4000062C);
|
if (config->vref_sel == ADC_SEL_VREF_INT)
|
{
|
val &= ~(1U << 8);
|
val |= (1 << 9) | (7 << 5) | (1 << 4);
|
}
|
else
|
{
|
val |= (1 << 8);
|
/* If the external reference voltage driving capability is insufficient */
|
/* It is recommended to enable this configuration */
|
// val |= (9 << 1) | (1 << 4);
|
}
|
REG_WRITE(0x4000062C, val);
|
|
if (adc_handle.dma_en)
|
{
|
// enable DMA
|
adc_handle.base->DMA_EN = ADC_DMA_EN_MSK;
|
}
|
else if (adc_handle.int_en)
|
{
|
NVIC_SetPriority(adc_handle.irq, IRQ_PRIORITY_NORMAL);
|
NVIC_ClearPendingIRQ(adc_handle.irq);
|
NVIC_EnableIRQ(adc_handle.irq);
|
}
|
|
adc_handle.state = ADC_STATE_READY;
|
return DRV_OK;
|
}
|
|
int adc_close(void)
|
{
|
// check if ADC is using by HW or not
|
if ((adc_handle.base->STATUS & ADC_STATUS_BUSY_MSK) && (adc_handle.state != ADC_STATE_BUSY))
|
{
|
return DRV_BUSY;
|
}
|
else
|
{
|
// disable conversion
|
adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK;
|
}
|
|
if (adc_handle.int_en)
|
{
|
NVIC_DisableIRQ(adc_handle.irq);
|
NVIC_ClearPendingIRQ(adc_handle.irq);
|
}
|
|
// disable ADC clock
|
clock_disable(CLOCK_ADC);
|
|
// update status
|
adc_handle.state = ADC_STATE_RESET;
|
return DRV_OK;
|
}
|
|
int adc_switch_channel(enum ADC_P_N_SET P, enum ADC_P_N_SET N)
|
{
|
if (adc_handle.state == ADC_STATE_BUSY)
|
{
|
return DRV_BUSY;
|
}
|
|
adc_handle.base->CTRL0 = (adc_handle.base->CTRL0 & ~(ADC_CTRL0_CHNL_P_MSK | ADC_CTRL0_CHNL_N_MSK)) | ADC_CTRL0_CHNL_P(P) | ADC_CTRL0_CHNL_N(N);
|
return DRV_OK;
|
}
|
|
#if defined(__GNUC__)
|
#pragma GCC diagnostic push
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
#endif
|
|
int adc_get(uint32_t *data, uint16_t number, drv_callback_t callback)
|
{
|
uint32_t lock = int_lock();
|
|
// update state
|
switch (adc_handle.state)
|
{
|
case ADC_STATE_READY:
|
adc_handle.state = ADC_STATE_BUSY;
|
break;
|
case ADC_STATE_BUSY:
|
int_unlock(lock);
|
return DRV_BUSY;
|
case ADC_STATE_RESET:
|
case ADC_STATE_TIMEOUT:
|
case ADC_STATE_ERROR:
|
int_unlock(lock);
|
return DRV_ERROR;
|
}
|
|
adc_handle.data = data;
|
adc_handle.number = number;
|
adc_handle.count = number;
|
adc_handle.callback = callback;
|
|
int_unlock(lock);
|
|
if (adc_handle.dma_en)
|
{
|
#if ADC_DMA_MODE_EN
|
struct DMA_CH_CFG_T adc_dma_cfg = {
|
.fifo_th = DMA_FIFO_TH_4,
|
.src_burst_size = DMA_SRC_BURST_SIZE_4,
|
.src_width = DMA_WIDTH_4B,
|
.dst_width = DMA_WIDTH_4B,
|
.src_addr_ctrl = DMA_ADDR_FIXED,
|
.dst_addr_ctrl = DMA_ADDR_INC,
|
.src_req_sel = DMA_REQ_ADC,
|
.dst_req_sel = DMA_REQ_MEM,
|
};
|
|
dma_open(adc_handle.dma_ch, &adc_dma_cfg);
|
dma_transfer(adc_handle.dma_ch, (uint32_t *)&adc_handle.base->DATA, data, number, adc_dma_callback);
|
// start conversion
|
adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK;
|
#endif
|
}
|
else if (adc_handle.int_en)
|
{
|
#if ADC_INT_MODE_EN
|
// enable interrupt
|
adc_handle.base->INTR_EN = ADC_INTR_DONE_EN_MSK | ADC_INTR_CONFLICT_EN_MSK | ADC_INTR_OVERWRITE_EN_MSK;
|
// start conversion
|
adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK;
|
#endif
|
}
|
else
|
{
|
#if ADC_POLL_MODE_EN
|
// polling
|
while (adc_handle.count > 0)
|
{
|
if (adc_handle.mode == ADC_MODE_SINGLE)
|
{
|
// start conversion
|
adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK;
|
}
|
else if ((adc_handle.mode == ADC_MODE_CONTINUE) && (adc_handle.count == adc_handle.number))
|
{
|
// start conversion
|
adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK;
|
}
|
|
while ((adc_handle.base->STATUS & ADC_STATUS_DONE_MSK) == 0)
|
{
|
}
|
|
*adc_handle.data++ = adc_handle.base->DATA;
|
adc_handle.count--;
|
}
|
|
if (adc_handle.mode == ADC_MODE_CONTINUE)
|
{
|
adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK;
|
}
|
|
// update state
|
adc_handle.state = ADC_STATE_READY;
|
|
if (adc_handle.callback)
|
{
|
adc_handle.callback(adc_handle.data - adc_handle.number, adc_handle.number);
|
}
|
#endif
|
}
|
|
return DRV_OK;
|
}
|
|
#if defined(__GNUC__)
|
#pragma GCC diagnostic pop
|
#endif
|
|
#if ADC_DMA_MODE_EN
|
static void adc_dma_callback(void *ch, uint32_t err_code)
|
{
|
uint8_t ch_num = *(uint8_t *)ch;
|
|
if (ch_num == adc_handle.dma_ch)
|
{
|
if (adc_handle.mode == ADC_MODE_CONTINUE)
|
{
|
// stop conversion
|
adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK;
|
}
|
if (err_code == DMA_INT_TYPE_DONE)
|
{
|
// finished - update statue
|
adc_handle.state = ADC_STATE_READY;
|
}
|
else
|
{
|
adc_handle.state = ADC_STATE_ERROR;
|
}
|
|
if (adc_handle.callback)
|
{
|
adc_handle.callback(adc_handle.data, adc_handle.number);
|
}
|
}
|
else
|
{
|
ASSERT(0, "Unexpected dma channel\r\n");
|
}
|
}
|
#endif
|
|
void ADC_IRQHandler(void)
|
{
|
#if ADC_INT_MODE_EN
|
uint32_t int_stat = adc_handle.base->INTR_STATUS;
|
|
if (int_stat & ADC_INTR_STATUS_CONFLICT_MSK)
|
{
|
adc_handle.state = ADC_STATE_ERROR;
|
adc_handle.base->INTR_CLR = ADC_INTR_CONFLICT_CLR_MSK;
|
}
|
else if (int_stat & ADC_INTR_STATUS_OVERWRITE_MSK)
|
{
|
adc_handle.state = ADC_STATE_ERROR;
|
adc_handle.base->INTR_CLR = ADC_INTR_OVERWRITE_CLR_MSK;
|
}
|
else if (int_stat & ADC_INTR_STATUS_DONE_MSK)
|
{
|
if (adc_handle.count)
|
{
|
*adc_handle.data++ = adc_handle.base->DATA;
|
adc_handle.count--;
|
}
|
|
if (adc_handle.count)
|
{
|
// continue
|
if (adc_handle.mode == ADC_MODE_SINGLE)
|
{
|
adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK;
|
}
|
}
|
else
|
{
|
// done
|
if (adc_handle.mode == ADC_MODE_CONTINUE)
|
{
|
// stop conversion
|
adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK;
|
adc_handle.base->INTR_CLR = ADC_INTR_DONE_CLR_MSK;
|
// clear pending interrupt
|
NVIC_ClearPendingIRQ(adc_handle.irq);
|
}
|
|
// finished - update status
|
adc_handle.state = ADC_STATE_READY;
|
if (adc_handle.callback)
|
{
|
adc_handle.callback(adc_handle.data - adc_handle.number, adc_handle.number);
|
}
|
}
|
}
|
else
|
{
|
ASSERT(0, "Unexpected ADC interrupt\r\n");
|
}
|
#endif
|
}
|
|
int16_t adc_code_to_mv(int16_t adc_val, int16_t vref_mv)
|
{
|
int16_t val = adc_val;
|
if (adc_val >= 0x800)
|
{
|
val = adc_val - 0x1000;
|
}
|
|
float vol = val * vref_mv / (2048);
|
|
return (int16_t)vol;
|
}
|
|
/* BATTM (battery monitor == voltage sensor) */
|
|
void battery_monitor_open(void)
|
{
|
// enable ADC
|
struct ADC_CFG_T vs_adc_cfg;
|
vs_adc_cfg.mode = ADC_MODE_CONTINUE; /* Selected single conversion mode */
|
vs_adc_cfg.clk_sel = ADC_CLK_HIGH; /* Selected 62.4M high speed clock */
|
vs_adc_cfg.vref_sel = ADC_SEL_VREF_INT; /* Using internal reference voltage (1.2V)*/
|
vs_adc_cfg.rate = 1000; /* ADC works at high frequency system clock, the maximum sampling rate is 2M */
|
vs_adc_cfg.channel_p = 7; /* ADC positive channel --> VDD/4 */
|
vs_adc_cfg.channel_n = 2; /* ADC negative channel --> GND */
|
vs_adc_cfg.int_en = false;
|
vs_adc_cfg.dma_en = false; /* DMA support only in continue mode */
|
vs_adc_cfg.acc_num = 0;
|
vs_adc_cfg.high_pulse_time = 4;
|
vs_adc_cfg.settle_time = 1;
|
|
adc_open(&vs_adc_cfg);
|
|
// enable BATTM
|
adc_handle.base->CTRL1 |= ADC_CTRL1_VS_EN_MSK;
|
}
|
|
void battery_monitor_close(void)
|
{
|
// disable BATTM
|
adc_handle.base->CTRL1 &= ~ADC_CTRL1_VS_EN_MSK;
|
adc_close();
|
}
|
|
static void adc_continue_callback(void *data, uint32_t number)
|
{
|
|
// LOG_INFO(TRACE_MODULE_APP, "Chip adc callback %d degree\r\n", data);
|
}
|
int16_t battery_monitor_get(void)
|
{
|
#define NUM_SAMPLES (3)
|
|
uint32_t sample[NUM_SAMPLES];
|
adc_get(&sample[0], NUM_SAMPLES, adc_continue_callback);
|
|
int32_t sum = 0;
|
for (int i = 0; i < NUM_SAMPLES; i++)
|
{
|
sum += adc_code_to_mv((int16_t)sample[i], ADC_INTERNAL_VREF_MV);
|
}
|
|
return (int16_t)(4 * sum / NUM_SAMPLES);
|
}
|
|
/* TEMP (temperature sensor)*/
|
|
void temp_sensor_open(void)
|
{
|
// enable ADC
|
struct ADC_CFG_T ts_adc_cfg;
|
ts_adc_cfg.mode = ADC_MODE_SINGLE; /* Selected single conversion mode */
|
ts_adc_cfg.clk_sel = ADC_CLK_HIGH; /* Selected 62.4M high speed clock */
|
ts_adc_cfg.vref_sel = ADC_SEL_VREF_INT; /* Using internal reference voltage (1.2V)*/
|
ts_adc_cfg.rate = 1000; /* ADC works at high frequency system clock, the maximum sampling rate is 2M */
|
ts_adc_cfg.channel_p = 3; /* ADC positive channel --> Vref */
|
ts_adc_cfg.channel_n = 4; /* ADC negative channel --> Temp sensor */
|
ts_adc_cfg.int_en = false;
|
ts_adc_cfg.dma_en = false; /* DMA support only in continue mode */
|
ts_adc_cfg.acc_num = 0;
|
ts_adc_cfg.high_pulse_time = 4;
|
ts_adc_cfg.settle_time = 1;
|
|
adc_open(&ts_adc_cfg);
|
|
// enable TEMP
|
adc_handle.base->CTRL1 |= ADC_CTRL1_TS_EN_MSK;
|
|
delay_us(100);
|
}
|
|
void temp_sensor_close(void)
|
{
|
// disable TEMP
|
adc_handle.base->CTRL1 &= ~ADC_CTRL1_TS_EN_MSK;
|
adc_close();
|
}
|
|
int8_t temp_sensor_get(int16_t *p_adc_value)
|
{
|
#define NUM_SAMPLES (3)
|
|
uint32_t sample[NUM_SAMPLES];
|
adc_get(&sample[0], NUM_SAMPLES, NULL);
|
|
uint32_t reg_value = REG_READ(0x40000300);
|
int16_t temp_ref_code = reg_value & 0xfff;
|
int8_t temp_ref_val = (int8_t)((reg_value >> 12) & 0xFF);
|
float temp_ref_val_f = temp_ref_val == 0 ? 25 : (float)(temp_ref_val >> 2) + (float)(temp_ref_val & 0x03) * 0.25f;
|
|
int32_t sum = 0;
|
for (int i = 0; i < NUM_SAMPLES; i++)
|
{
|
sum += sample[i];
|
}
|
|
int16_t temp_code = (int16_t)(sum / NUM_SAMPLES);
|
int8_t temp_val = 0;
|
|
if ((temp_ref_code > 600) && (temp_ref_code < 1400))
|
{
|
temp_val = (int8_t)(ADC_TEMP_K_FACTOR * (temp_code - temp_ref_code) + 0.5 + temp_ref_val_f);
|
}
|
else
|
{
|
// y = 0.3449x - 299.92
|
temp_val = (int8_t)(ADC_TEMP_K_FACTOR * temp_code - 299.42);
|
}
|
|
if (p_adc_value)
|
*p_adc_value = temp_code;
|
|
return temp_val;
|
}
|