/*
|
* Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and
|
* its subsidiaries and affiliates (collectly called MKSEMI).
|
*
|
* All rights reserved.
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions are met:
|
*
|
* 1. Redistributions of source code must retain the above copyright notice,
|
* this list of conditions and the following disclaimer.
|
*
|
* 2. Redistributions in binary form, except as embedded into an MKSEMI
|
* integrated circuit in a product or a software update for such product,
|
* must reproduce the above copyright notice, this list of conditions and
|
* the following disclaimer in the documentation and/or other materials
|
* provided with the distribution.
|
*
|
* 3. Neither the name of MKSEMI nor the names of its contributors may be used
|
* to endorse or promote products derived from this software without
|
* specific prior written permission.
|
*
|
* 4. This software, with or without modification, must only be used with a
|
* MKSEMI integrated circuit.
|
*
|
* 5. Any software provided in binary form under this license must not be
|
* reverse engineered, decompiled, modified and/or disassembled.
|
*
|
* THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
* DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
*/
|
|
#include "mk_dma.h"
|
#include "mk_clock.h"
|
#include "mk_reset.h"
|
#include "mk_trace.h"
|
|
static struct DMA_HANDLE_T dma_handle[DMA_MAX_NUM] = {
|
{
|
.base = DMA,
|
.irq = DMA_IRQn,
|
},
|
};
|
|
int dma_open(enum DMA_CH_T ch, struct DMA_CH_CFG_T *config)
|
{
|
if ((ch >= DMA_CH_NUM) || (config == NULL))
|
{
|
return DRV_ERROR;
|
}
|
|
if ((dma_handle[DMA_ID0].base->CTRL0 & DMA_CTRL0_ENABLE_MSK) == 0)
|
{
|
// enable DMA clock
|
clock_enable(CLOCK_DMA);
|
reset_module(RESET_MODULE_DMA);
|
|
// enable DMA
|
dma_handle[DMA_ID0].base->CTRL0 |= DMA_CTRL0_ENABLE_MSK;
|
|
NVIC_SetPriority(dma_handle[DMA_ID0].irq, IRQ_PRIORITY_HIGH);
|
NVIC_ClearPendingIRQ(dma_handle[DMA_ID0].irq);
|
NVIC_EnableIRQ(dma_handle[DMA_ID0].irq);
|
}
|
|
dma_handle[DMA_ID0].base->CH[ch].CFG = DMA_CH_CFG_DST_REQ_SEL(config->dst_req_sel) | DMA_CH_CFG_SRC_REQ_SEL(config->src_req_sel);
|
|
dma_handle[DMA_ID0].base->CH[ch].CTRL = DMA_CH_CTRL_FIFO_TH(config->fifo_th) | DMA_CH_CTRL_SRC_BURST_SIZE(config->src_burst_size) |
|
DMA_CH_CTRL_SRC_DATA_WIDTH(config->src_width) | DMA_CH_CTRL_DST_DATA_WIDTH(config->dst_width) |
|
DMA_CH_CTRL_MODE_MSK | DMA_CH_CTRL_SRC_ADDR_CTRL(config->src_addr_ctrl) |
|
DMA_CH_CTRL_DST_ADDR_CTRL(config->dst_addr_ctrl);
|
|
return DRV_OK;
|
}
|
|
int dma_close(enum DMA_CH_T ch)
|
{
|
if (ch >= DMA_CH_NUM)
|
{
|
return DRV_ERROR;
|
}
|
|
dma_handle[DMA_ID0].base->CH[ch].CTRL &= ~DMA_CH_CTRL_EN_MSK;
|
|
if ((dma_handle[DMA_ID0].base->STATUS1 & DMA_STATUS1_ENABLE_MSK) == 0)
|
{
|
// disable DMA
|
dma_handle[DMA_ID0].base->CTRL0 &= ~DMA_CTRL0_ENABLE_MSK;
|
// disable DMA clock
|
clock_disable(CLOCK_DMA);
|
|
NVIC_DisableIRQ(dma_handle[DMA_ID0].irq);
|
NVIC_ClearPendingIRQ(dma_handle[DMA_ID0].irq);
|
}
|
return DRV_OK;
|
}
|
uint32_t get_uart1_dma_cndtr(void)
|
{
|
return dma_handle[DMA_ID0].base->CH[6].DATA_SIZE;
|
}
|
uint32_t get_uart0_dma_cndtr(void)
|
{
|
return dma_handle[DMA_ID0].base->CH[4].DATA_SIZE;
|
}
|
|
int dma_transfer(enum DMA_CH_T ch, void *src_addr, void *dst_addr, uint32_t size, drv_callback_t callback)
|
{
|
ASSERT(dst_addr, "Invalid transfer dst addr");
|
|
if (dma_handle[DMA_ID0].base->STATUS1 & (1U << (ch + DMA_STATUS1_ENABLE_POS)))
|
{
|
return DRV_BUSY;
|
}
|
|
dma_handle[DMA_ID0].callback[ch] = callback;
|
|
// enable dma channel int
|
dma_handle[DMA_ID0].base->CH[ch].CFG &= ~(DMA_CH_CFG_INT_DONE_MSK | DMA_CH_CFG_INT_ERR_MSK | DMA_CH_CFG_INT_ABORT_MSK);
|
|
// source address
|
dma_handle[DMA_ID0].base->CH[ch].ADDR_SRC = (uint32_t)src_addr;
|
|
// destination address
|
dma_handle[DMA_ID0].base->CH[ch].ADDR_DST = (uint32_t)dst_addr;
|
|
// transfer size
|
dma_handle[DMA_ID0].base->CH[ch].DATA_SIZE = size;
|
|
// enable dma channel
|
dma_handle[DMA_ID0].base->CH[ch].CTRL |= DMA_CH_CTRL_EN_MSK;
|
|
return DRV_OK;
|
}
|
|
int dma_abort(enum DMA_CH_T ch, drv_callback_t callback)
|
{
|
int ret = DRV_ERROR;
|
uint32_t lock = int_lock();
|
// Detect whether dma is in a busy state. If it is not in a busy state,
|
// abort will not be executed and callback will not be called
|
if (REG_IS_BIT_SET(dma_handle[DMA_ID0].base->STATUS1, (1U << (ch + DMA_STATUS1_ENABLE_POS))))
|
{
|
// disable dma channel done and err int
|
dma_handle[DMA_ID0].base->CH[ch].CFG |= (DMA_CH_CFG_INT_DONE_MSK | DMA_CH_CFG_INT_ERR_MSK);
|
// Transaction abort
|
dma_handle[DMA_ID0].base->CH[ch].CTRL |= DMA_CH_CTRL_ABORT_MSK;
|
|
// Clear Status0 Register
|
dma_handle[DMA_ID0].base->INTR_CLR = ((1U << (ch + DMA_INTR_STATUS_DONE_POS)) | (1U << (ch + DMA_INTR_STATUS_ERR_POS)));
|
dma_handle[DMA_ID0].abort_callback[ch] = callback;
|
ret = DRV_OK;
|
}
|
|
int_unlock(lock);
|
// LOG_INFO(TRACE_MODULE_DRIVER, "dma_abort %d\r\n", ch);
|
return ret;
|
}
|
|
void dma_force_abort(enum DMA_CH_T ch, drv_callback_t callback)
|
{
|
uint32_t lock = int_lock();
|
// disable dma channel done/abort/err int
|
dma_handle[DMA_ID0].base->CH[ch].CFG |= (DMA_CH_CFG_INT_ABORT_MSK | DMA_CH_CFG_INT_DONE_MSK | DMA_CH_CFG_INT_ERR_MSK);
|
|
if (REG_IS_BIT_SET(dma_handle[DMA_ID0].base->STATUS1, (1U << (ch + DMA_STATUS1_ENABLE_POS))))
|
{
|
// Transaction abort
|
dma_handle[DMA_ID0].base->CH[ch].CTRL |= DMA_CH_CTRL_ABORT_MSK;
|
}
|
|
// Clear interrupt penging source
|
dma_handle[DMA_ID0].base->INTR_CLR =
|
(1U << (ch + DMA_INTR_STATUS_DONE_POS)) | (1U << (ch + DMA_INTR_STATUS_ERR_POS)) | (1U << (ch + DMA_INTR_STATUS_ABORT_POS));
|
// Clear interrupt pending
|
NVIC_ClearPendingIRQ(dma_handle[DMA_ID0].irq);
|
|
if (callback)
|
{
|
callback(&ch, DMA_INT_TYPE_FORCE_ABORT);
|
}
|
|
int_unlock(lock);
|
}
|
|
void DMA_IRQHandler(void)
|
{
|
uint32_t err_code = 0;
|
uint32_t int_status = dma_handle[DMA_ID0].base->INTR_STATUS;
|
|
for (uint8_t i = 0; i < DMA_CH_NUM; i++)
|
{
|
// abort/error/done interrupt process
|
if (int_status & (1U << (i + DMA_INTR_STATUS_ABORT_POS)))
|
{
|
dma_handle[DMA_ID0].base->INTR_CLR = (1U << (i + DMA_INTR_STATUS_ABORT_POS));
|
err_code = DMA_INT_TYPE_ABORT;
|
}
|
else if (int_status & (1U << (i + DMA_INTR_STATUS_ERR_POS)))
|
{
|
dma_handle[DMA_ID0].base->INTR_CLR = (1U << (i + DMA_INTR_STATUS_ERR_POS));
|
err_code = DMA_INT_TYPE_ERROR;
|
}
|
else if (int_status & (1U << (i + DMA_INTR_STATUS_DONE_POS)))
|
{
|
dma_handle[DMA_ID0].base->INTR_CLR = (1U << (i + DMA_INTR_STATUS_DONE_POS));
|
err_code = DMA_INT_TYPE_DONE;
|
}
|
|
if (err_code == DMA_INT_TYPE_DONE || err_code == DMA_INT_TYPE_ERROR)
|
{
|
if (dma_handle[DMA_ID0].callback[i])
|
{
|
dma_handle[DMA_ID0].callback[i](&i, err_code);
|
}
|
err_code = 0;
|
}
|
else if (err_code == DMA_INT_TYPE_ABORT)
|
{
|
if (dma_handle[DMA_ID0].abort_callback[i])
|
{
|
dma_handle[DMA_ID0].abort_callback[i](&i, err_code);
|
}
|
err_code = 0;
|
}
|
}
|
}
|