package lujing;
|
|
import java.util.ArrayList;
|
import java.util.Collections;
|
import java.util.List;
|
|
/**
|
* 异形草地路径规划 - 障碍物裁剪优化版 V9.0
|
* 核心逻辑:先生成全覆盖扫描路径,再利用外扩后的障碍物对路径进行裁剪。
|
*/
|
public class YixinglujingHaveObstacel {
|
|
/**
|
* 规划路径主入口
|
*/
|
public static List<PathSegment> planPath(String coordinates, String obstaclesStr, String widthStr, String marginStr) {
|
// 1. 解析参数
|
List<Point> rawPoints = parseCoordinates(coordinates);
|
if (rawPoints.size() < 3) return new ArrayList<>();
|
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 2. 预处理地块边界 (确保逆时针)
|
ensureCounterClockwise(rawPoints);
|
|
// 3. 生成地块内缩的安全作业边界 (Inset)
|
List<Point> mowingBoundary = getOffsetPolygon(rawPoints, safeMargin); // 正数内缩
|
if (mowingBoundary.size() < 3) return new ArrayList<>();
|
|
// 4. 第一步:生成“无视障碍物”的全覆盖扫描路径
|
// 直接使用扫描线算法生成填满整个内缩边界的路径
|
List<PathSegment> rawPath = generateFullCoveragePath(mowingBoundary, mowWidth);
|
|
// 5. 解析障碍物并进行外扩 (Outset)
|
// 注意:障碍物外扩距离 = 割草机安全边距,确保不发生碰撞
|
List<Obstacle> obstacles = parseObstacles(obstaclesStr, safeMargin);
|
|
// 6. 第二步:使用障碍物裁剪路径 (核心步骤)
|
return clipPathWithObstacles(rawPath, obstacles);
|
}
|
|
/**
|
* 使用障碍物集合裁剪原始路径
|
*/
|
private static List<PathSegment> clipPathWithObstacles(List<PathSegment> rawPath, List<Obstacle> obstacles) {
|
List<PathSegment> finalPath = new ArrayList<>();
|
Point currentPos = (rawPath.isEmpty()) ? new Point(0,0) : rawPath.get(0).start;
|
|
for (PathSegment segment : rawPath) {
|
// 将当前这一段路径,拿去跟所有障碍物进行碰撞检测和裁剪
|
// 初始时,这一段是完整的
|
List<PathSegment> segmentsToProcess = new ArrayList<>();
|
segmentsToProcess.add(segment);
|
|
for (Obstacle obs : obstacles) {
|
List<PathSegment> nextIterSegments = new ArrayList<>();
|
for (PathSegment seg : segmentsToProcess) {
|
// 如果是割草路径,需要裁剪;如果是空走路径,通常也需要避障,
|
// 但这里主要处理扫描线的裁剪。
|
if (seg.isMowing) {
|
nextIterSegments.addAll(obs.clip(seg));
|
} else {
|
// 空走路径暂时保留(高级避障需要A*算法,此处简化为保留)
|
nextIterSegments.add(seg);
|
}
|
}
|
segmentsToProcess = nextIterSegments;
|
}
|
|
// 将裁剪后剩余的线段加入最终路径
|
for (PathSegment s : segmentsToProcess) {
|
// 过滤掉因为裁剪产生的极短线段
|
if (distance(s.start, s.end) < 0.05) continue;
|
|
// 如果当前点和线段起点不连贯,加入连接路径(空走)
|
if (distance(currentPos, s.start) > 0.05) {
|
finalPath.add(new PathSegment(currentPos, s.start, false));
|
}
|
|
finalPath.add(s);
|
currentPos = s.end;
|
}
|
}
|
return finalPath;
|
}
|
|
// --- 路径生成核心算法 (移植自 NoObstacle 类) ---
|
|
private static List<PathSegment> generateFullCoveragePath(List<Point> boundary, double width) {
|
// 1. 寻找最优角度
|
double angle = findOptimalAngle(boundary);
|
|
// 2. 旋转多边形以对齐坐标轴
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : boundary) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
// 3. 生成扫描线
|
List<PathSegment> segments = new ArrayList<>();
|
boolean l2r = true;
|
// 围边路径先生成
|
Point scanStartPoint = null;
|
|
// 这里我们先计算扫描线,最后再决定围边起点以减少空走
|
List<List<PathSegment>> scanRows = new ArrayList<>();
|
|
for (double y = minY + width/2; y <= maxY - width/2; y += width) {
|
List<Double> xInters = getXIntersections(rotatedPoly, y);
|
if (xInters.size() < 2) continue;
|
Collections.sort(xInters);
|
|
List<PathSegment> row = new ArrayList<>();
|
// 两两配对形成线段
|
for (int i = 0; i < xInters.size() - 1; i += 2) {
|
Point s = rotatePoint(new Point(xInters.get(i), y), angle);
|
Point e = rotatePoint(new Point(xInters.get(i + 1), y), angle);
|
row.add(new PathSegment(s, e, true));
|
}
|
|
// 蛇形排序
|
if (!l2r) {
|
Collections.reverse(row);
|
for (PathSegment s : row) {
|
Point tmp = s.start; s.start = s.end; s.end = tmp;
|
}
|
}
|
scanRows.add(row);
|
if (scanStartPoint == null && !row.isEmpty()) scanStartPoint = row.get(0).start;
|
l2r = !l2r;
|
}
|
|
// 4. 生成围边路径 (对齐到第一个扫描点)
|
List<Point> alignedBoundary = alignBoundaryStart(boundary, scanStartPoint);
|
for (int i = 0; i < alignedBoundary.size(); i++) {
|
segments.add(new PathSegment(alignedBoundary.get(i), alignedBoundary.get((i+1)%alignedBoundary.size()), true));
|
}
|
|
// 5. 加入扫描路径
|
for (List<PathSegment> row : scanRows) {
|
segments.addAll(row);
|
}
|
|
return segments;
|
}
|
|
// --- 障碍物处理类 ---
|
|
private static List<Obstacle> parseObstacles(String obsStr, double margin) {
|
List<Obstacle> list = new ArrayList<>();
|
if (obsStr == null || obsStr.trim().isEmpty()) return list;
|
|
// 处理格式 (x,y;...)(x,y;...) 或 $ 分隔
|
String cleanStr = obsStr.replaceAll("\\s+", "");
|
String[] parts;
|
if (cleanStr.contains("(") && cleanStr.contains(")")) {
|
List<String> matches = new ArrayList<>();
|
java.util.regex.Matcher m = java.util.regex.Pattern.compile("\\(([^)]+)\\)").matcher(cleanStr);
|
while (m.find()) matches.add(m.group(1));
|
parts = matches.toArray(new String[0]);
|
} else {
|
parts = cleanStr.split("\\$");
|
}
|
|
for (String pStr : parts) {
|
List<Point> pts = parseCoordinates(pStr);
|
if (pts.isEmpty()) continue;
|
|
if (pts.size() == 2) {
|
// 圆形障碍物
|
double r = distance(pts.get(0), pts.get(1));
|
list.add(new CircleObstacle(pts.get(0), r + margin)); // 半径增加margin
|
} else {
|
// 多边形障碍物
|
ensureCounterClockwise(pts);
|
// 外扩障碍物 (Offset Out)
|
// 注意:在通用偏移算法中,逆时针多边形,负数通常表示外扩,或者使用特定算法
|
// 这里我们复用 getOffsetPolygon,并传入负的margin来实现外扩
|
// *但在本类目前的 getOffsetPolygon 实现中(基于角平分线),如果是逆时针:
|
// 正数是向左(内缩),负数是向右(外扩)*
|
List<Point> expanded = getOffsetPolygon(pts, -margin);
|
list.add(new PolyObstacle(expanded));
|
}
|
}
|
return list;
|
}
|
|
abstract static class Obstacle {
|
// 返回裁剪后的线段列表(即保留在障碍物外部的线段)
|
abstract List<PathSegment> clip(PathSegment seg);
|
}
|
|
static class CircleObstacle extends Obstacle {
|
Point c; double r;
|
CircleObstacle(Point c, double r) { this.c = c; this.r = r; }
|
|
@Override
|
List<PathSegment> clip(PathSegment seg) {
|
// 计算直线与圆的交点 t值 (0..1)
|
double dx = seg.end.x - seg.start.x;
|
double dy = seg.end.y - seg.start.y;
|
double fx = seg.start.x - c.x;
|
double fy = seg.start.y - c.y;
|
|
double A = dx*dx + dy*dy;
|
double B = 2*(fx*dx + fy*dy);
|
double C = (fx*fx + fy*fy) - r*r;
|
double delta = B*B - 4*A*C;
|
|
List<PathSegment> result = new ArrayList<>();
|
if (delta < 0) {
|
// 无交点,全保留或全剔除
|
if (!isInside(seg.start)) result.add(seg);
|
return result;
|
}
|
|
double t1 = (-B - Math.sqrt(delta)) / (2*A);
|
double t2 = (-B + Math.sqrt(delta)) / (2*A);
|
|
List<Double> ts = new ArrayList<>();
|
ts.add(0.0);
|
if (t1 > 0 && t1 < 1) ts.add(t1);
|
if (t2 > 0 && t2 < 1) ts.add(t2);
|
ts.add(1.0);
|
Collections.sort(ts);
|
|
for (int i = 0; i < ts.size()-1; i++) {
|
double midT = (ts.get(i) + ts.get(i+1)) / 2;
|
Point mid = interpolate(seg.start, seg.end, midT);
|
if (!isInside(mid)) {
|
result.add(new PathSegment(interpolate(seg.start, seg.end, ts.get(i)),
|
interpolate(seg.start, seg.end, ts.get(i+1)),
|
seg.isMowing));
|
}
|
}
|
return result;
|
}
|
|
boolean isInside(Point p) {
|
return (p.x-c.x)*(p.x-c.x) + (p.y-c.y)*(p.y-c.y) < r*r;
|
}
|
}
|
|
static class PolyObstacle extends Obstacle {
|
List<Point> points;
|
double minX, maxX, minY, maxY;
|
|
PolyObstacle(List<Point> pts) {
|
this.points = pts;
|
updateBounds();
|
}
|
|
void updateBounds() {
|
minX = minY = Double.MAX_VALUE;
|
maxX = maxY = -Double.MAX_VALUE;
|
for (Point p : points) {
|
minX = Math.min(minX, p.x); maxX = Math.max(maxX, p.x);
|
minY = Math.min(minY, p.y); maxY = Math.max(maxY, p.y);
|
}
|
}
|
|
boolean isInside(Point p) {
|
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) return false;
|
boolean result = false;
|
for (int i = 0, j = points.size() - 1; i < points.size(); j = i++) {
|
if ((points.get(i).y > p.y) != (points.get(j).y > p.y) &&
|
(p.x < (points.get(j).x - points.get(i).x) * (p.y - points.get(i).y) / (points.get(j).y - points.get(i).y) + points.get(i).x)) {
|
result = !result;
|
}
|
}
|
return result;
|
}
|
|
@Override
|
List<PathSegment> clip(PathSegment seg) {
|
List<Double> ts = new ArrayList<>();
|
ts.add(0.0);
|
ts.add(1.0);
|
|
// 计算线段与障碍物每一条边的交点
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i);
|
Point p2 = points.get((i+1)%points.size());
|
double t = getIntersectionT(seg.start, seg.end, p1, p2);
|
if (t > 1e-6 && t < 1 - 1e-6) {
|
ts.add(t);
|
}
|
}
|
Collections.sort(ts);
|
|
List<PathSegment> result = new ArrayList<>();
|
// 检查每一小段的中点是否在障碍物内
|
for (int i = 0; i < ts.size() - 1; i++) {
|
double tMid = (ts.get(i) + ts.get(i+1)) / 2.0;
|
// 如果两点极其接近,跳过
|
if (ts.get(i+1) - ts.get(i) < 1e-6) continue;
|
|
Point mid = interpolate(seg.start, seg.end, tMid);
|
if (!isInside(mid)) {
|
// 在外部,保留
|
Point s = interpolate(seg.start, seg.end, ts.get(i));
|
Point e = interpolate(seg.start, seg.end, ts.get(i+1));
|
result.add(new PathSegment(s, e, seg.isMowing));
|
}
|
}
|
return result;
|
}
|
}
|
|
// --- 通用几何算法 ---
|
|
private static List<Point> getOffsetPolygon(List<Point> points, double offset) {
|
List<Point> result = new ArrayList<>();
|
int n = points.size();
|
for (int i = 0; i < n; i++) {
|
Point p1 = points.get((i - 1 + n) % n);
|
Point p2 = points.get(i);
|
Point p3 = points.get((i + 1) % n);
|
|
// 向量 p1->p2 和 p2->p3
|
double v1x = p2.x - p1.x, v1y = p2.y - p1.y;
|
double v2x = p3.x - p2.x, v2y = p3.y - p2.y;
|
double l1 = Math.hypot(v1x, v1y), l2 = Math.hypot(v2x, v2y);
|
|
if (l1 < 1e-5 || l2 < 1e-5) continue;
|
|
// 法向量 (向左转90度: -y, x)
|
double n1x = -v1y / l1, n1y = v1x / l1;
|
double n2x = -v2y / l2, n2y = v2x / l2;
|
|
// 角平分线
|
double bx = n1x + n2x, by = n1y + n2y;
|
double bl = Math.hypot(bx, by);
|
if (bl < 1e-5) { bx = n1x; by = n1y; }
|
else { bx /= bl; by /= bl; }
|
|
// 修正长度 offset / sin(theta/2) = offset / dot(n1, b)
|
double dot = n1x * bx + n1y * by;
|
double dist = offset / Math.max(Math.abs(dot), 0.1); // 防止尖角过长
|
|
// 阈值限制,防止自交或畸变过大
|
dist = Math.signum(offset) * Math.min(Math.abs(dist), Math.abs(offset) * 3);
|
|
result.add(new Point(p2.x + bx * dist, p2.y + by * dist));
|
}
|
return result;
|
}
|
|
private static double findOptimalAngle(List<Point> poly) {
|
double bestA = 0, minH = Double.MAX_VALUE;
|
for (int i = 0; i < poly.size(); i++) {
|
Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size());
|
double a = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calcHeight(poly, a);
|
if (h < minH) { minH = h; bestA = a; }
|
}
|
return bestA;
|
}
|
|
private static double calcHeight(List<Point> poly, double ang) {
|
double min = Double.MAX_VALUE, max = -Double.MAX_VALUE;
|
for (Point p : poly) {
|
Point r = rotatePoint(p, -ang);
|
min = Math.min(min, r.y); max = Math.max(max, r.y);
|
}
|
return max - min;
|
}
|
|
private static double getIntersectionT(Point a, Point b, Point c, Point d) {
|
double ux = b.x - a.x, uy = b.y - a.y;
|
double vx = d.x - c.x, vy = d.y - c.y;
|
double det = vx * uy - vy * ux;
|
if (Math.abs(det) < 1e-8) return -1;
|
|
double wx = c.x - a.x, wy = c.y - a.y;
|
double t = (vx * wy - vy * wx) / det;
|
double u = (ux * wy - uy * wx) / det;
|
|
if (u >= 0 && u <= 1) return t; // 只保证交点在线段CD上,t是AB上的比例
|
return -1;
|
}
|
|
private static List<Double> getXIntersections(List<Point> poly, double y) {
|
List<Double> res = new ArrayList<>();
|
for (int i = 0; i < poly.size(); i++) {
|
Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size());
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
res.add(p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y));
|
}
|
}
|
return res;
|
}
|
|
private static List<Point> alignBoundaryStart(List<Point> poly, Point target) {
|
if (target == null) return poly;
|
int idx = 0; double minD = Double.MAX_VALUE;
|
for (int i = 0; i < poly.size(); i++) {
|
double d = distance(poly.get(i), target);
|
if (d < minD) { minD = d; idx = i; }
|
}
|
List<Point> res = new ArrayList<>();
|
for (int i = 0; i < poly.size(); i++) res.add(poly.get((idx + i) % poly.size()));
|
return res;
|
}
|
|
private static void ensureCounterClockwise(List<Point> pts) {
|
double s = 0;
|
for (int i = 0; i < pts.size(); i++) {
|
Point p1 = pts.get(i), p2 = pts.get((i + 1) % pts.size());
|
s += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (s > 0) Collections.reverse(pts); // 假设屏幕坐标系Y向下?通常多边形面积公式s>0是顺时针(Y向下)或逆时针(Y向上)
|
// 此处沿用您代码的逻辑:如果Sum>0 则反转。
|
}
|
|
private static Point rotatePoint(Point p, double a) {
|
double c = Math.cos(a), s = Math.sin(a);
|
return new Point(p.x * c - p.y * s, p.x * s + p.y * c);
|
}
|
|
private static Point interpolate(Point a, Point b, double t) {
|
return new Point(a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t);
|
}
|
|
private static double distance(Point a, Point b) {
|
return Math.hypot(a.x - b.x, a.y - b.y);
|
}
|
|
private static List<Point> parseCoordinates(String s) {
|
List<Point> pts = new ArrayList<>();
|
if (s == null || s.isEmpty()) return pts;
|
for (String p : s.split(";")) {
|
String[] xy = p.split(",");
|
if (xy.length >= 2) pts.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
if (pts.size() > 1 && distance(pts.get(0), pts.get(pts.size() - 1)) < 1e-4) pts.remove(pts.size() - 1);
|
return pts;
|
}
|
|
// --- 数据结构 ---
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; }
|
@Override
|
public String toString() { return String.format("%.6f,%.6f;%.6f,%.6f", start.x, start.y, end.x, end.y); }
|
}
|
}
|