package lujing;
|
|
import java.util.*;
|
|
/**
|
* 异形草地路径规划 - 围边+全局扫描版 V4.1
|
* 优化:围边终点与弓字形起点自动对齐,实现无缝切换,确保路径不越界
|
*/
|
public class YixinglujingNoObstacle {
|
|
public static List<PathSegment> planPath(String coordinates, String widthStr, String marginStr) {
|
List<Point> rawPoints = parseCoordinates(coordinates);
|
if (rawPoints.size() < 3) return new ArrayList<>();
|
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 1. 预处理:逆时针化
|
ensureCounterClockwise(rawPoints);
|
|
// 2. 生成内缩多边形
|
List<Point> boundary = getInsetPolygon(rawPoints, safeMargin);
|
if (boundary.size() < 3) return new ArrayList<>();
|
|
// 3. 确定最优扫描角度并找到弓字形路径的第一个作业起点
|
double bestAngle = findOptimalAngle(boundary);
|
Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle);
|
|
// 4. 对齐围边起点:重新排列围边坐标,使最后一个点靠近(或等于)扫描起点
|
List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart);
|
|
List<PathSegment> finalPath = new ArrayList<>();
|
|
// 5. 【第一步】生成围边路径
|
for (int i = 0; i < alignedBoundary.size(); i++) {
|
Point pStart = alignedBoundary.get(i);
|
Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size());
|
finalPath.add(new PathSegment(pStart, pEnd, true));
|
}
|
|
// 6. 【第二步】从对齐后的终点开始生成内部扫描路径
|
Point lastEdgePos = alignedBoundary.get(0); // 围边闭合回到起点
|
List<PathSegment> scanPath = generateGlobalScanPath(boundary, mowWidth, bestAngle, lastEdgePos);
|
|
finalPath.addAll(scanPath);
|
|
return finalPath;
|
}
|
|
/**
|
* 计算并获取扫描路径的第一行起点
|
*/
|
private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) {
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE;
|
for (Point p : rotatedPoly) minY = Math.min(minY, p.y);
|
|
double firstY = minY + width;
|
List<Double> xIntersections = getXIntersections(rotatedPoly, firstY);
|
|
if (xIntersections.isEmpty()) return polygon.get(0);
|
return rotatePoint(new Point(Collections.min(xIntersections), firstY), angle);
|
}
|
|
/**
|
* 重新排列多边形顶点,使起始点与扫描起点对接
|
*/
|
private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) {
|
int bestIdx = 0;
|
double minDist = Double.MAX_VALUE;
|
for (int i = 0; i < boundary.size(); i++) {
|
double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y);
|
if (d < minDist) {
|
minDist = d;
|
bestIdx = i;
|
}
|
}
|
List<Point> aligned = new ArrayList<>();
|
for (int i = 0; i < boundary.size(); i++) {
|
aligned.add(boundary.get((bestIdx + i) % boundary.size()));
|
}
|
return aligned;
|
}
|
|
private static List<PathSegment> generateGlobalScanPath(List<Point> polygon, double width, double angle, Point currentPos) {
|
List<PathSegment> segments = new ArrayList<>();
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
boolean leftToRight = true;
|
// 从 minY + width 开始,避开围边已割区域
|
for (double y = minY + width; y <= maxY - width/2; y += width) {
|
List<Double> xIntersections = getXIntersections(rotatedPoly, y);
|
if (xIntersections.size() < 2) continue;
|
Collections.sort(xIntersections);
|
|
List<PathSegment> lineRows = new ArrayList<>();
|
for (int i = 0; i < xIntersections.size() - 1; i += 2) {
|
Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle);
|
Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle);
|
lineRows.add(new PathSegment(pS, pE, true));
|
}
|
|
if (!leftToRight) {
|
Collections.reverse(lineRows);
|
for (PathSegment s : lineRows) {
|
Point t = s.start; s.start = s.end; s.end = t;
|
}
|
}
|
|
for (PathSegment s : lineRows) {
|
// 如果间距极小,视为无缝衔接
|
if (Math.hypot(currentPos.x - s.start.x, currentPos.y - s.start.y) > 0.05) {
|
segments.add(new PathSegment(currentPos, s.start, false));
|
}
|
segments.add(s);
|
currentPos = s.end;
|
}
|
leftToRight = !leftToRight;
|
}
|
return segments;
|
}
|
|
private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) {
|
List<Double> xIntersections = new ArrayList<>();
|
for (int i = 0; i < rotatedPoly.size(); i++) {
|
Point p1 = rotatedPoly.get(i);
|
Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size());
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y);
|
xIntersections.add(x);
|
}
|
}
|
return xIntersections;
|
}
|
|
private static double findOptimalAngle(List<Point> polygon) {
|
double bestAngle = 0;
|
double minHeight = Double.MAX_VALUE;
|
for (int i = 0; i < polygon.size(); i++) {
|
Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size());
|
double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calculateHeightAtAngle(polygon, angle);
|
if (h < minHeight) { minHeight = h; bestAngle = angle; }
|
}
|
return bestAngle;
|
}
|
|
private static double calculateHeightAtAngle(List<Point> poly, double angle) {
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : poly) {
|
Point rp = rotatePoint(p, -angle);
|
minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y);
|
}
|
return maxY - minY;
|
}
|
|
private static List<Point> getInsetPolygon(List<Point> points, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = points.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
if (l1 < 1e-6 || l2 < 1e-6) continue;
|
double n1x = -d1y / l1, n1y = d1x / l1;
|
double n2x = -d2y / l2, n2y = d2x / l2;
|
double bisectorX = n1x + n2x, bisectorY = n1y + n2y;
|
double bLen = Math.hypot(bisectorX, bisectorY);
|
if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; }
|
else { bisectorX /= bLen; bisectorY /= bLen; }
|
double cosHalfAngle = n1x * bisectorX + n1y * bisectorY;
|
double dist = margin / Math.max(cosHalfAngle, 0.1);
|
result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist));
|
}
|
return result;
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double cos = Math.cos(angle), sin = Math.sin(angle);
|
return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos);
|
}
|
|
private static void ensureCounterClockwise(List<Point> points) {
|
double sum = 0;
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i), p2 = points.get((i + 1) % points.size());
|
sum += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (sum > 0) Collections.reverse(points);
|
}
|
|
private static List<Point> parseCoordinates(String coordinates) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = coordinates.split(";");
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1);
|
return points;
|
}
|
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
@Override
|
public boolean equals(Object o) {
|
if (!(o instanceof Point)) return false;
|
Point p = (Point) o;
|
return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4;
|
}
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; }
|
}
|
}
|