package lujing;
|
|
import java.util.ArrayList;
|
import java.util.Collections;
|
import java.util.List;
|
|
/**
|
* 凸形草地路径规划 (避障优化版)
|
* 优化:增加了障碍物区间预处理、路径连接就近原则、以及更稳健的多边形外扩
|
*/
|
public class AoxinglujingHaveObstacel {
|
|
private static final double EPSILON = 1e-6;
|
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
@Override
|
public String toString() { return String.format("%.6f,%.6f", x, y); }
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
public PathSegment(Point start, Point end, boolean isMowing) {
|
this.start = start; this.end = end; this.isMowing = isMowing;
|
}
|
}
|
|
public abstract static class Obstacle {
|
public abstract boolean isInside(Point p);
|
public abstract List<Double> getIntersectionsX(double y, double angle);
|
}
|
|
public static class PolygonObstacle extends Obstacle {
|
public List<Point> points;
|
public PolygonObstacle(List<Point> points) { this.points = points; }
|
|
@Override
|
public boolean isInside(Point p) {
|
boolean result = false;
|
for (int i = 0, j = points.size() - 1; i < points.size(); j = i++) {
|
if ((points.get(i).y > p.y) != (points.get(j).y > p.y) &&
|
(p.x < (points.get(j).x - points.get(i).x) * (p.y - points.get(i).y) / (points.get(j).y - points.get(i).y) + points.get(i).x)) {
|
result = !result;
|
}
|
}
|
return result;
|
}
|
|
@Override
|
public List<Double> getIntersectionsX(double y, double angle) {
|
List<Point> rotated = rotatePolygon(this.points, -angle);
|
List<Double> xInts = new ArrayList<>();
|
for (int i = 0; i < rotated.size(); i++) {
|
Point p1 = rotated.get(i), p2 = rotated.get((i + 1) % rotated.size());
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
xInts.add(p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y));
|
}
|
}
|
return xInts;
|
}
|
}
|
|
public static class CircleObstacle extends Obstacle {
|
public Point center;
|
public double radius;
|
public CircleObstacle(Point center, double radius) { this.center = center; this.radius = radius; }
|
|
@Override
|
public boolean isInside(Point p) {
|
return Math.hypot(p.x - center.x, p.y - center.y) <= radius + EPSILON;
|
}
|
|
@Override
|
public List<Double> getIntersectionsX(double y, double angle) {
|
List<Double> xInts = new ArrayList<>();
|
Point rCenter = rotatePoint(center, -angle);
|
double dy = Math.abs(y - rCenter.y);
|
if (dy < radius) {
|
double dx = Math.sqrt(radius * radius - dy * dy);
|
xInts.add(rCenter.x - dx);
|
xInts.add(rCenter.x + dx);
|
}
|
return xInts;
|
}
|
}
|
|
public static List<PathSegment> planPath(String boundaryStr, String obstacleStr, String widthStr, String marginStr) {
|
List<Point> boundary = parseCoords(boundaryStr);
|
double width = Double.parseDouble(widthStr);
|
double margin = Double.parseDouble(marginStr);
|
List<Obstacle> obstacles = parseObstacles(obstacleStr, margin);
|
|
return planPathCore(boundary, obstacles, width, margin);
|
}
|
|
private static List<PathSegment> planPathCore(List<Point> boundary, List<Obstacle> obstacles, double width, double margin) {
|
if (boundary.size() < 3) return new ArrayList<>();
|
|
ensureCCW(boundary);
|
List<Point> workArea = shrinkPolygon(boundary, margin);
|
if (workArea.size() < 3) return new ArrayList<>();
|
|
double bestAngle = findOptimalScanAngle(workArea);
|
Point firstScanStart = getFirstScanStartPoint(workArea, bestAngle, width);
|
List<Point> alignedWorkArea = alignBoundaryToStart(workArea, firstScanStart);
|
|
List<PathSegment> finalPath = new ArrayList<>();
|
|
// 1. 围边路径
|
for (int i = 0; i < alignedWorkArea.size(); i++) {
|
finalPath.add(new PathSegment(alignedWorkArea.get(i), alignedWorkArea.get((i + 1) % alignedWorkArea.size()), true));
|
}
|
|
// 2. 内部填充
|
Point currentPos = alignedWorkArea.get(0);
|
List<PathSegment> zigZagLines = generateOptimizedZigZag(workArea, obstacles, bestAngle, width, currentPos);
|
finalPath.addAll(zigZagLines);
|
|
return finalPath;
|
}
|
|
private static List<PathSegment> generateOptimizedZigZag(List<Point> polygon, List<Obstacle> obstacles, double angle, double width, Point startPoint) {
|
List<PathSegment> result = new ArrayList<>();
|
List<Point> rotatedPoly = rotatePolygon(polygon, -angle);
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y); maxY = Math.max(maxY, p.y);
|
}
|
|
Point currentPos = startPoint;
|
boolean leftToRight = true;
|
|
for (double y = minY + width; y < maxY - width / 2; y += width) {
|
List<Double> intersections = getXIntersections(rotatedPoly, y);
|
if (intersections.size() < 2) continue;
|
Collections.sort(intersections);
|
|
double xBoundaryMin = intersections.get(0);
|
double xBoundaryMax = intersections.get(intersections.size() - 1);
|
|
// 收集当前行所有障碍物交点并进行裁剪
|
List<Double> splitPoints = new ArrayList<>();
|
splitPoints.add(xBoundaryMin);
|
for (Obstacle obs : obstacles) {
|
List<Double> obsX = obs.getIntersectionsX(y, angle);
|
for (double ox : obsX) {
|
if (ox > xBoundaryMin && ox < xBoundaryMax) splitPoints.add(ox);
|
}
|
}
|
Collections.sort(splitPoints);
|
|
// 构建有效段
|
List<LineRange> validRanges = new ArrayList<>();
|
for (int i = 0; i < splitPoints.size() - 1; i++) {
|
double midX = (splitPoints.get(i) + splitPoints.get(i + 1)) / 2.0;
|
Point midPoint = rotatePoint(new Point(midX, y), angle);
|
|
boolean insideAnyObstacle = false;
|
for (Obstacle obs : obstacles) {
|
if (obs.isInside(midPoint)) {
|
insideAnyObstacle = true;
|
break;
|
}
|
}
|
if (!insideAnyObstacle) {
|
validRanges.add(new LineRange(splitPoints.get(i), splitPoints.get(i+1)));
|
}
|
}
|
|
// 根据当前朝向排序有效段
|
if (!leftToRight) {
|
Collections.reverse(validRanges);
|
for (LineRange range : validRanges) {
|
double temp = range.start;
|
range.start = range.end;
|
range.end = temp;
|
}
|
}
|
|
// 连接路径
|
for (LineRange range : validRanges) {
|
Point pStart = rotatePoint(new Point(range.start, y), angle);
|
Point pEnd = rotatePoint(new Point(range.end, y), angle);
|
|
if (Math.hypot(currentPos.x - pStart.x, currentPos.y - pStart.y) > 0.01) {
|
result.add(new PathSegment(currentPos, pStart, false));
|
}
|
result.add(new PathSegment(pStart, pEnd, true));
|
currentPos = pEnd;
|
}
|
leftToRight = !leftToRight;
|
}
|
return result;
|
}
|
|
private static class LineRange {
|
double start, end;
|
LineRange(double s, double e) { this.start = s; this.end = e; }
|
}
|
|
// --- 障碍物解析与多边形外扩 ---
|
private static List<Obstacle> parseObstacles(String obsStr, double margin) {
|
List<Obstacle> list = new ArrayList<>();
|
if (obsStr == null || obsStr.trim().isEmpty()) return list;
|
|
for (String part : obsStr.split("\\$")) {
|
List<Point> pts = parseCoords(part);
|
if (pts.size() == 2) {
|
double r = Math.hypot(pts.get(0).x - pts.get(1).x, pts.get(0).y - pts.get(1).y);
|
list.add(new CircleObstacle(pts.get(0), r + margin));
|
} else if (pts.size() > 2) {
|
ensureCCW(pts);
|
list.add(new PolygonObstacle(expandPolygon(pts, margin)));
|
}
|
}
|
return list;
|
}
|
|
private static List<Point> expandPolygon(List<Point> poly, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = poly.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = poly.get((i - 1 + n) % n);
|
Point pCurr = poly.get(i);
|
Point pNext = poly.get((i + 1) % n);
|
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
|
// 计算外法线
|
double n1x = d1y / l1, n1y = -d1x / l1;
|
double n2x = d2y / l2, n2y = -d2x / l2;
|
|
double bx = n1x + n2x, by = n1y + n2y;
|
double bLen = Math.hypot(bx, by);
|
if (bLen < EPSILON) { bx = n1x; by = n1y; } else { bx /= bLen; by /= bLen; }
|
|
double cosHalf = n1x * bx + n1y * by;
|
double d = margin / Math.max(cosHalf, 0.1);
|
// 限制最大外扩,防止尖角畸变
|
d = Math.min(d, margin * 3);
|
result.add(new Point(pCurr.x + bx * d, pCurr.y + by * d));
|
}
|
return result;
|
}
|
|
// --- 基础工具类方法 ---
|
private static List<Point> parseCoords(String s) {
|
List<Point> list = new ArrayList<>();
|
if(s == null || s.isEmpty()) return list;
|
for (String p : s.split(";")) {
|
String[] xy = p.split(",");
|
if (xy.length >= 2) list.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
return list;
|
}
|
|
private static void ensureCCW(List<Point> poly) {
|
double s = 0;
|
for (int i = 0; i < poly.size(); i++) {
|
Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size());
|
s += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (s > 0) Collections.reverse(poly);
|
}
|
|
private static List<Point> shrinkPolygon(List<Point> polygon, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = polygon.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = polygon.get((i - 1 + n) % n);
|
Point pCurr = polygon.get(i);
|
Point pNext = polygon.get((i + 1) % n);
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
double n1x = -d1y / l1, n1y = d1x / l1;
|
double n2x = -d2y / l2, n2y = d2x / l2;
|
double bx = n1x + n2x, by = n1y + n2y;
|
double bLen = Math.hypot(bx, by);
|
if (bLen < EPSILON) { bx = n1x; by = n1y; } else { bx /= bLen; by /= bLen; }
|
double cosHalf = n1x * bx + n1y * by;
|
double d = margin / Math.max(cosHalf, 0.1);
|
result.add(new Point(pCurr.x + bx * d, pCurr.y + by * d));
|
}
|
return result;
|
}
|
|
private static double findOptimalScanAngle(List<Point> polygon) {
|
double minH = Double.MAX_VALUE, bestA = 0;
|
for (int i = 0; i < polygon.size(); i++) {
|
Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size());
|
double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calculatePolygonHeightAtAngle(polygon, angle);
|
if (h < minH) { minH = h; bestA = angle; }
|
}
|
return bestA;
|
}
|
|
private static double calculatePolygonHeightAtAngle(List<Point> poly, double angle) {
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
double sin = Math.sin(-angle), cos = Math.cos(-angle);
|
for (Point p : poly) {
|
double ry = p.x * sin + p.y * cos;
|
minY = Math.min(minY, ry); maxY = Math.max(maxY, ry);
|
}
|
return maxY - minY;
|
}
|
|
private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) {
|
List<Double> xInts = new ArrayList<>();
|
int n = rotatedPoly.size();
|
for (int i = 0; i < n; i++) {
|
Point p1 = rotatedPoly.get(i), p2 = rotatedPoly.get((i + 1) % n);
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
xInts.add(p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y));
|
}
|
}
|
return xInts;
|
}
|
|
private static Point getFirstScanStartPoint(List<Point> polygon, double angle, double width) {
|
List<Point> rotated = rotatePolygon(polygon, -angle);
|
double minY = Double.MAX_VALUE;
|
for (Point p : rotated) minY = Math.min(minY, p.y);
|
double startY = minY + width + EPSILON;
|
List<Double> xInts = getXIntersections(rotated, startY);
|
if (xInts.isEmpty()) return polygon.get(0);
|
Collections.sort(xInts);
|
return rotatePoint(new Point(xInts.get(0), startY), angle);
|
}
|
|
private static List<Point> alignBoundaryToStart(List<Point> polygon, Point target) {
|
int bestIdx = 0; double minDist = Double.MAX_VALUE;
|
for (int i = 0; i < polygon.size(); i++) {
|
double d = Math.hypot(polygon.get(i).x - target.x, polygon.get(i).y - target.y);
|
if (d < minDist) { minDist = d; bestIdx = i; }
|
}
|
List<Point> aligned = new ArrayList<>();
|
for (int i = 0; i < polygon.size(); i++) aligned.add(polygon.get((bestIdx + i) % polygon.size()));
|
return aligned;
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double c = Math.cos(angle), s = Math.sin(angle);
|
return new Point(p.x * c - p.y * s, p.x * s + p.y * c);
|
}
|
|
private static List<Point> rotatePolygon(List<Point> poly, double angle) {
|
List<Point> res = new ArrayList<>();
|
for (Point p : poly) res.add(rotatePoint(p, angle));
|
return res;
|
}
|
}
|