826220679@qq.com
2 天以前 64e0880d2d81ce2b3f0e366b1537c5efe2f2c4ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
package lujing;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.stream.Collectors;
 
public class WangfanpathJisuan {
    
    /**
     * 坐标点类,使用记录处理提高精度控制
     */
    private static class Point {
        final double x;
        final double y;
        final int originalIndex; // 记录原始位置,便于调试
        
        Point(double x, double y, int index) {
            this.x = x;
            this.y = y;
            this.originalIndex = index;
        }
        
        Point(double x, double y) {
            this(x, y, -1);
        }
        
        double distanceTo(Point other) {
            if (other == null) return Double.MAX_VALUE;
            double dx = this.x - other.x;
            double dy = this.y - other.y;
            return Math.sqrt(dx * dx + dy * dy);
        }
        
        @Override
        public boolean equals(Object obj) {
            if (this == obj) return true;
            if (obj == null || getClass() != obj.getClass()) return false;
            Point point = (Point) obj;
            // 使用1e-6的精度判断相等,比直接比较double更稳定
            return Math.abs(point.x - x) < 1e-6 && Math.abs(point.y - y) < 1e-6;
        }
        
        @Override
        public int hashCode() {
            // 使用固定精度进行哈希计算,确保精度范围内相等的点有相同哈希值
            long xBits = Double.doubleToLongBits(Math.round(x * 1e6) / 1e6);
            long yBits = Double.doubleToLongBits(Math.round(y * 1e6) / 1e6);
            return (int)(xBits ^ (xBits >>> 32) ^ yBits ^ (yBits >>> 32));
        }
        
        @Override
        public String toString() {
            return String.format("%.3f,%.3f", x, y);
        }
        
        public String toString(int precision) {
            return String.format("%." + precision + "f,%." + precision + "f", x, y);
        }
    }
    
    /**
     * 线段类,用于计算点到线段的距离
     */
    private static class LineSegment {
        final Point start;
        final Point end;
        final double length;
        
        LineSegment(Point start, Point end) {
            this.start = start;
            this.end = end;
            this.length = start.distanceTo(end);
        }
        
        /**
         * 计算点到线段的垂直距离
         */
        double perpendicularDistance(Point point) {
            if (length == 0) {
                return point.distanceTo(start);
            }
            
            // 使用向量方法计算投影距离
            double x1 = start.x, y1 = start.y;
            double x2 = end.x, y2 = end.y;
            double x0 = point.x, y0 = point.y;
            
            // 计算点到直线距离公式
            double numerator = Math.abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1);
            double denominator = Math.sqrt((y2 - y1) * (y2 - y1) + (x2 - x1) * (x2 - x1));
            
            return numerator / denominator;
        }
        
        /**
         * 判断点是否在线段的边界框内(用于判断是否在线段上)
         */
        boolean isPointInBoundingBox(Point point) {
            double minX = Math.min(start.x, end.x);
            double maxX = Math.max(start.x, end.x);
            double minY = Math.min(start.y, end.y);
            double maxY = Math.max(start.y, end.y);
            
            return point.x >= minX && point.x <= maxX && 
                   point.y >= minY && point.y <= maxY;
        }
    }
    
    /**
     * 优化配置类
     */
    public static class OptimizationConfig {
        private double distanceTolerance = 0.1;       // 距离容差(米)
        private double angleTolerance = 1.0;          // 角度容差(度)
        private int outputPrecision = 3;              // 输出精度(小数位数)
        private boolean keepEndpoints = true;         // 是否保留端点
        private boolean useFastSimplify = false;      // 是否使用快速简化算法
        
        public OptimizationConfig() {}
        
        public OptimizationConfig setDistanceTolerance(double tolerance) {
            this.distanceTolerance = Math.max(0.01, tolerance); // 最小0.01米
            return this;
        }
        
        public OptimizationConfig setAngleTolerance(double degrees) {
            this.angleTolerance = Math.max(0.1, Math.min(degrees, 45)); // 限制在0.1-45度
            return this;
        }
        
        public OptimizationConfig setOutputPrecision(int precision) {
            this.outputPrecision = Math.max(0, Math.min(precision, 8)); // 限制在0-8位
            return this;
        }
        
        public OptimizationConfig setKeepEndpoints(boolean keep) {
            this.keepEndpoints = keep;
            return this;
        }
        
        public OptimizationConfig setUseFastSimplify(boolean useFast) {
            this.useFastSimplify = useFast;
            return this;
        }
    }
    
    private OptimizationConfig config;
    
    public WangfanpathJisuan() {
        this.config = new OptimizationConfig();
    }
    
    public WangfanpathJisuan(OptimizationConfig config) {
        this.config = config;
    }
    
    /**
     * 主优化方法
     */
    public String optimizePath(String pathStr) {
        return optimizePath(pathStr, this.config);
    }
    
    /**
     * 带配置的优化方法
     */
    public String optimizePath(String pathStr, OptimizationConfig config) {
        if (pathStr == null || pathStr.trim().isEmpty()) {
            return "";
        }
        
        List<Point> points = parsePoints(pathStr);
        if (points.size() <= 2) {
            return pointsToString(points, config.outputPrecision);
        }
        
        // 执行优化流水线
        List<Point> result = optimizationPipeline(points, config);
        
        return pointsToString(result, config.outputPrecision);
    }
    
    /**
     * 优化流水线:按顺序执行多个优化步骤
     */
    private List<Point> optimizationPipeline(List<Point> points, OptimizationConfig config) {
        List<Point> result = new ArrayList<>(points);
        
        // 步骤1: 去除连续重复点
        result = removeConsecutiveDuplicates(result);
        
        // 步骤2: 根据配置选择简化算法
        if (config.useFastSimplify) {
            result = fastSimplify(result, config.distanceTolerance, config.angleTolerance);
        } else {
            result = douglasPeuckerSimplify(result, config.distanceTolerance);
        }
        
        // 步骤3: 确保端点(可选)
        if (config.keepEndpoints && result.size() > 1) {
            ensureEndpoints(points, result);
        }
        
        return result;
    }
    
    /**
     * 解析坐标点,带位置索引
     */
    private List<Point> parsePoints(String pathStr) {
        List<Point> points = new ArrayList<>();
        String[] pointStrs = pathStr.split(";");
        
        for (int i = 0; i < pointStrs.length; i++) {
            String pointStr = pointStrs[i].trim();
            if (pointStr.isEmpty()) continue;
            
            String[] xy = pointStr.split(",");
            if (xy.length != 2) continue;
            
            try {
                double x = Double.parseDouble(xy[0].trim());
                double y = Double.parseDouble(xy[1].trim());
                points.add(new Point(x, y, i));
            } catch (NumberFormatException e) {
                // 跳过格式错误的点,记录日志(实际使用时可添加日志)
                continue;
            }
        }
        
        return points;
    }
    
    /**
     * 去除连续重复点(优化版)
     */
    private List<Point> removeConsecutiveDuplicates(List<Point> points) {
        if (points.size() <= 1) {
            return new ArrayList<>(points);
        }
        
        List<Point> result = new ArrayList<>(points.size());
        result.add(points.get(0));
        
        for (int i = 1; i < points.size(); i++) {
            Point current = points.get(i);
            Point last = result.get(result.size() - 1);
            
            // 使用距离判断是否重复,考虑浮点精度
            if (current.distanceTo(last) > config.distanceTolerance * 0.1) {
                result.add(current);
            }
            // 如果距离很小但实际是不同的点(浮点误差),仍保留
            else if (!current.equals(last)) {
                result.add(current);
            }
        }
        
        return result;
    }
    
    /**
     * 快速简化算法(结合距离和角度判断)
     */
    private List<Point> fastSimplify(List<Point> points, double distanceTolerance, double angleToleranceDeg) {
        if (points.size() < 3) {
            return new ArrayList<>(points);
        }
        
        List<Point> result = new ArrayList<>();
        result.add(points.get(0));
        
        int i = 1;
        while (i < points.size() - 1) {
            Point prev = result.get(result.size() - 1);
            Point current = points.get(i);
            Point next = points.get(i + 1);
            
            // 检查距离条件
            double distToPrev = current.distanceTo(prev);
            double distToNext = current.distanceTo(next);
            
            // 检查角度条件(将角度容差转换为弧度)
            double angleToleranceRad = Math.toRadians(angleToleranceDeg);
            double angle = calculateAngle(prev, current, next);
            
            // 如果点距离前一点或后一点很近,或者三点形成的角度接近180度(共线),则剔除当前点
            if (distToPrev < distanceTolerance || 
                distToNext < distanceTolerance ||
                Math.abs(Math.PI - angle) < angleToleranceRad) {
                i++; // 跳过当前点
            } else {
                result.add(current);
                i++;
            }
        }
        
        // 添加最后一个点
        if (points.size() > 1) {
            result.add(points.get(points.size() - 1));
        }
        
        return result;
    }
    
    /**
     * 计算三点形成的角度(以中间点为顶点)
     */
    private double calculateAngle(Point a, Point b, Point c) {
        double baX = a.x - b.x;
        double baY = a.y - b.y;
        double bcX = c.x - b.x;
        double bcY = c.y - b.y;
        
        double dotProduct = baX * bcX + baY * bcY;
        double magnitudeBA = Math.sqrt(baX * baX + baY * baY);
        double magnitudeBC = Math.sqrt(bcX * bcX + bcY * bcY);
        
        if (magnitudeBA == 0 || magnitudeBC == 0) {
            return 0;
        }
        
        double cosAngle = dotProduct / (magnitudeBA * magnitudeBC);
        // 处理浮点误差
        cosAngle = Math.max(-1.0, Math.min(1.0, cosAngle));
        
        return Math.acos(cosAngle);
    }
    
    /**
     * 道格拉斯-普克算法(迭代实现,避免递归栈溢出)
     */
    private List<Point> douglasPeuckerSimplify(List<Point> points, double epsilon) {
        if (points.size() <= 2) {
            return new ArrayList<>(points);
        }
        
        // 使用位标记数组,比递归更节省内存
        boolean[] keep = new boolean[points.size()];
        keep[0] = keep[points.size() - 1] = true;
        
        // 使用栈来模拟递归
        LinkedList<int[]> stack = new LinkedList<>();
        stack.push(new int[]{0, points.size() - 1});
        
        while (!stack.isEmpty()) {
            int[] range = stack.pop();
            int start = range[0];
            int end = range[1];
            
            if (end - start < 2) {
                continue;
            }
            
            double maxDistance = 0;
            int maxIndex = start;
            
            Point startPoint = points.get(start);
            Point endPoint = points.get(end);
            LineSegment segment = new LineSegment(startPoint, endPoint);
            
            // 寻找离线段最远的点
            for (int i = start + 1; i < end; i++) {
                double distance = segment.perpendicularDistance(points.get(i));
                if (distance > maxDistance) {
                    maxDistance = distance;
                    maxIndex = i;
                }
            }
            
            // 如果最远点距离大于容差,则处理两侧
            if (maxDistance > epsilon) {
                keep[maxIndex] = true;
                if (maxIndex - start > 1) {
                    stack.push(new int[]{start, maxIndex});
                }
                if (end - maxIndex > 1) {
                    stack.push(new int[]{maxIndex, end});
                }
            }
        }
        
        // 收集保留的点
        List<Point> result = new ArrayList<>();
        for (int i = 0; i < points.size(); i++) {
            if (keep[i]) {
                result.add(points.get(i));
            }
        }
        
        return result;
    }
    
    /**
     * 确保端点被保留
     */
    private void ensureEndpoints(List<Point> original, List<Point> simplified) {
        if (original.isEmpty() || simplified.isEmpty()) return;
        
        Point firstOriginal = original.get(0);
        Point lastOriginal = original.get(original.size() - 1);
        
        // 检查首点
        if (!simplified.get(0).equals(firstOriginal)) {
            simplified.add(0, firstOriginal);
        }
        
        // 检查尾点
        Point lastSimplified = simplified.get(simplified.size() - 1);
        if (!lastSimplified.equals(lastOriginal)) {
            simplified.add(lastOriginal);
        }
    }
    
    /**
     * 将点列表转换为字符串
     */
    private String pointsToString(List<Point> points, int precision) {
        if (points.isEmpty()) {
            return "";
        }
        
        return points.stream()
            .map(p -> p.toString(precision))
            .collect(Collectors.joining(";"));
    }
    
    /**
     * 批处理优化方法
     */
    public List<String> optimizePaths(List<String> pathStrings, OptimizationConfig config) {
        return pathStrings.stream()
            .map(path -> optimizePath(path, config))
            .collect(Collectors.toList());
    }
    
    /**
     * 性能统计信息
     */
    public static class OptimizationStats {
        public final int originalPoints;
        public final int optimizedPoints;
        public final double reductionPercentage;
        public final long processingTimeMs;
        
        public OptimizationStats(int original, int optimized, long timeMs) {
            this.originalPoints = original;
            this.optimizedPoints = optimized;
            this.reductionPercentage = original > 0 ? 
                (1.0 - (double)optimized / original) * 100 : 0;
            this.processingTimeMs = timeMs;
        }
        
        @Override
        public String toString() {
            return String.format("优化统计: %d -> %d 点 (减少 %.1f%%),耗时 %dms",
                originalPoints, optimizedPoints, reductionPercentage, processingTimeMs);
        }
    }
    
    /**
     * 带统计信息的优化方法
     */
    public OptimizationResult optimizePathWithStats(String pathStr, OptimizationConfig config) {
        long startTime = System.currentTimeMillis();
        
        if (pathStr == null || pathStr.trim().isEmpty()) {
            return new OptimizationResult("", new OptimizationStats(0, 0, 0));
        }
        
        List<Point> originalPoints = parsePoints(pathStr);
        String optimizedPath = optimizePath(pathStr, config);
        List<Point> optimizedPoints = parsePoints(optimizedPath);
        
        long endTime = System.currentTimeMillis();
        
        OptimizationStats stats = new OptimizationStats(
            originalPoints.size(), 
            optimizedPoints.size(), 
            endTime - startTime
        );
        
        return new OptimizationResult(optimizedPath, stats);
    }
    
    /**
     * 优化结果封装类
     */
    public static class OptimizationResult {
        public final String optimizedPath;
        public final OptimizationStats stats;
        
        public OptimizationResult(String path, OptimizationStats stats) {
            this.optimizedPath = path;
            this.stats = stats;
        }
    }
    
   
    
    /**
     * 生成测试路径
     */
    private static String generateTestPath(int pointCount) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < pointCount; i++) {
            sb.append(i).append(",").append(i % 10);
            if (i < pointCount - 1) {
                sb.append(";");
            }
        }
        return sb.toString();
    }
    
    /**
     * 性能测试
     */
    private static void testPerformance(WangfanpathJisuan calculator, int iterations) {
        String testPath = generateTestPath(1000);
        
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < iterations; i++) {
            calculator.optimizePath(testPath);
        }
        long endTime = System.currentTimeMillis();
        
        System.out.printf("处理 %d 次,每次1000点,总耗时: %dms,平均每次: %.2fms\n",
            iterations, endTime - startTime, 
            (double)(endTime - startTime) / iterations);
    }
}