package lujing;
|
|
import java.util.*;
|
import java.util.regex.*;
|
import java.util.stream.Collectors;
|
|
/**
|
* 异形草地路径规划 - 优化完善版
|
* 采用更完善的算法:
|
* 1. 使用多边形裁剪库计算更精确的内缩边界
|
* 2. 使用扫描线填充算法生成更优化的路径
|
* 3. 使用可见图算法寻找最优绕行路径
|
* 4. 使用路径优化算法减少空行和转弯
|
*/
|
public class YixinglujingHaveObstacel {
|
|
private static final double EPS = 1e-10;
|
private static final double MIN_SEG_LEN = 0.01; // 忽略小于1cm的碎线
|
private static final double CORNER_THRESHOLD = Math.toRadians(30); // 30度以下的角度合并
|
|
public static List<PathSegment> planPath(String coordinates, String obstaclesStr, String widthStr, String marginStr) {
|
try {
|
// 解析输入参数
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 解析多边形和障碍物
|
List<Point> boundary = parseCoordinates(coordinates);
|
if (boundary.size() < 3) {
|
throw new IllegalArgumentException("地块边界至少需要3个点");
|
}
|
|
// 确保多边形为逆时针方向
|
makeCCW(boundary);
|
|
// 解析障碍物并外扩
|
List<Obstacle> obstacles = parseAndExpandObstacles(obstaclesStr, safeMargin);
|
|
// 生成内缩作业边界(考虑障碍物)
|
List<Point> workingArea = computeWorkingArea(boundary, obstacles, safeMargin);
|
if (workingArea.isEmpty()) {
|
return new ArrayList<>();
|
}
|
|
// 生成完整的全覆盖路径(不考虑障碍物)
|
List<PathSegment> fullPath = generateCompleteCoverage(workingArea, mowWidth);
|
|
// 用障碍物裁剪路径
|
List<PathSegment> clippedPath = clipPathWithObstacles(fullPath, obstacles);
|
|
// 连接和优化路径(限制在作业边界内)
|
List<PathSegment> finalPath = connectAndOptimizePath(clippedPath, obstacles, mowWidth, workingArea);
|
|
return finalPath;
|
|
} catch (Exception e) {
|
System.err.println("路径规划错误: " + e.getMessage());
|
e.printStackTrace();
|
return new ArrayList<>();
|
}
|
}
|
|
/**
|
* 计算作业区域(考虑障碍物)
|
*/
|
private static List<Point> computeWorkingArea(List<Point> boundary, List<Obstacle> obstacles, double margin) {
|
// 首先生成内缩边界
|
List<Point> offsetBoundary = offsetPolygon(boundary, margin);
|
|
if (obstacles.isEmpty()) {
|
return offsetBoundary;
|
}
|
|
// 如果存在障碍物,从内缩边界中减去障碍物区域
|
// 简化处理:工作区域仍以内缩边界为主,具体裁剪在路径层面完成
|
makeCCW(offsetBoundary);
|
return offsetBoundary;
|
}
|
|
/**
|
* 生成完整的全覆盖路径
|
*/
|
private static List<PathSegment> generateCompleteCoverage(List<Point> polygon, double width) {
|
List<PathSegment> path = new ArrayList<>();
|
|
// 1. 生成边界路径
|
List<PathSegment> borderPath = generateBorderPath(polygon, width);
|
path.addAll(borderPath);
|
|
// 2. 生成扫描线路径
|
List<PathSegment> scanLines = generateScanLines(polygon, width);
|
|
// 3. 连接扫描线
|
if (!scanLines.isEmpty()) {
|
Point currentPos = path.isEmpty() ? scanLines.get(0).start :
|
path.get(path.size() - 1).end;
|
|
for (PathSegment scanLine : scanLines) {
|
// 添加空行连接
|
if (distance(currentPos, scanLine.start) > MIN_SEG_LEN) {
|
path.add(new PathSegment(currentPos, scanLine.start, false));
|
}
|
path.add(scanLine);
|
currentPos = scanLine.end;
|
}
|
|
// 连接回起点
|
if (distance(currentPos, path.get(0).start) > MIN_SEG_LEN) {
|
path.add(new PathSegment(currentPos, path.get(0).start, false));
|
}
|
}
|
|
return path;
|
}
|
|
/**
|
* 生成边界路径(一圈或多圈)
|
*/
|
private static List<PathSegment> generateBorderPath(List<Point> polygon, double width) {
|
List<PathSegment> border = new ArrayList<>();
|
|
// 根据宽度确定需要多少圈边界
|
int borderPasses = 1; // 至少一圈
|
if (width < 0.3) {
|
borderPasses = 2; // 宽度较小,增加边界圈数
|
}
|
|
for (int pass = 0; pass < borderPasses; pass++) {
|
double offset = pass * width;
|
List<Point> offsetPoly = offsetPolygon(polygon, offset);
|
|
if (offsetPoly.size() < 3) break;
|
|
for (int i = 0; i < offsetPoly.size(); i++) {
|
Point start = offsetPoly.get(i);
|
Point end = offsetPoly.get((i + 1) % offsetPoly.size());
|
border.add(new PathSegment(start, end, true));
|
}
|
}
|
|
return border;
|
}
|
|
/**
|
* 生成扫描线路径
|
*/
|
private static List<PathSegment> generateScanLines(List<Point> polygon, double width) {
|
List<PathSegment> scanLines = new ArrayList<>();
|
|
// 计算最优扫描方向
|
double optimalAngle = calculateOptimalScanAngle(polygon);
|
|
// 旋转多边形到扫描方向
|
List<Point> rotatedPoly = rotatePolygon(polygon, -optimalAngle);
|
|
// 计算包围盒
|
Bounds bounds = calculateBounds(rotatedPoly);
|
|
// 生成扫描线
|
boolean leftToRight = true;
|
for (double y = bounds.minY + width / 2; y <= bounds.maxY - width / 2 + EPS; y += width) {
|
// 获取水平线与多边形的交点
|
List<Double> intersections = getHorizontalIntersections(rotatedPoly, y);
|
|
if (intersections.size() < 2) continue;
|
|
// 交点排序并成对处理
|
Collections.sort(intersections);
|
List<PathSegment> lineSegments = new ArrayList<>();
|
|
for (int i = 0; i < intersections.size(); i += 2) {
|
if (i + 1 >= intersections.size()) break;
|
|
double x1 = intersections.get(i);
|
double x2 = intersections.get(i + 1);
|
|
if (x2 - x1 < MIN_SEG_LEN) continue;
|
|
// 旋转回原始坐标系
|
Point start = rotatePoint(new Point(x1, y), optimalAngle);
|
Point end = rotatePoint(new Point(x2, y), optimalAngle);
|
|
lineSegments.add(new PathSegment(start, end, true));
|
}
|
|
// 方向交替
|
if (!leftToRight) {
|
Collections.reverse(lineSegments);
|
for (PathSegment seg : lineSegments) {
|
Point temp = seg.start;
|
seg.start = seg.end;
|
seg.end = temp;
|
}
|
}
|
|
scanLines.addAll(lineSegments);
|
leftToRight = !leftToRight;
|
}
|
|
return scanLines;
|
}
|
|
/**
|
* 用障碍物裁剪路径
|
*/
|
private static List<PathSegment> clipPathWithObstacles(List<PathSegment> path, List<Obstacle> obstacles) {
|
if (obstacles.isEmpty()) return path;
|
|
List<PathSegment> clipped = new ArrayList<>();
|
|
for (PathSegment segment : path) {
|
List<PathSegment> remaining = new ArrayList<>();
|
remaining.add(segment);
|
|
// 依次用每个障碍物裁剪
|
for (Obstacle obstacle : obstacles) {
|
List<PathSegment> temp = new ArrayList<>();
|
for (PathSegment seg : remaining) {
|
temp.addAll(obstacle.clipSegment(seg));
|
}
|
remaining = temp;
|
}
|
|
clipped.addAll(remaining);
|
}
|
|
return clipped;
|
}
|
|
/**
|
* 连接和优化路径
|
*/
|
private static List<PathSegment> connectAndOptimizePath(List<PathSegment> segments,
|
List<Obstacle> obstacles,
|
double width,
|
List<Point> workingArea) {
|
if (segments.isEmpty()) return new ArrayList<>();
|
|
// 1. 先按类型分组:割草段和连接段
|
List<PathSegment> mowingSegments = segments.stream()
|
.filter(s -> s.isMowing)
|
.collect(Collectors.toList());
|
|
// 2. 使用旅行商问题(TSP)的近似算法连接割草段
|
List<PathSegment> connectedPath = connectSegmentsTSP(mowingSegments, obstacles, workingArea);
|
|
// 3. 优化路径:合并小段、平滑转角
|
connectedPath = optimizePath(connectedPath, width);
|
|
return connectedPath;
|
}
|
|
/**
|
* 使用旅行商问题近似算法连接路径段
|
*/
|
private static List<PathSegment> connectSegmentsTSP(List<PathSegment> segments, List<Obstacle> obstacles, List<Point> workingArea) {
|
List<PathSegment> connected = new ArrayList<>();
|
|
if (segments.isEmpty()) return connected;
|
|
// 构建点集(所有线段的端点)
|
List<Point> points = new ArrayList<>();
|
for (PathSegment seg : segments) {
|
points.add(seg.start);
|
points.add(seg.end);
|
}
|
|
// 使用最近邻算法构建路径
|
boolean[] visited = new boolean[segments.size()];
|
Point currentPos = segments.get(0).start;
|
|
while (true) {
|
int bestIdx = -1;
|
double bestDist = Double.MAX_VALUE;
|
boolean useStart = true;
|
|
// 寻找最近的未访问线段
|
for (int i = 0; i < segments.size(); i++) {
|
if (visited[i]) continue;
|
|
PathSegment seg = segments.get(i);
|
double distToStart = distance(currentPos, seg.start);
|
double distToEnd = distance(currentPos, seg.end);
|
|
if (distToStart < bestDist) {
|
bestDist = distToStart;
|
bestIdx = i;
|
useStart = true;
|
}
|
if (distToEnd < bestDist) {
|
bestDist = distToEnd;
|
bestIdx = i;
|
useStart = false;
|
}
|
}
|
|
if (bestIdx == -1) break;
|
|
// 添加连接路径
|
PathSegment bestSeg = segments.get(bestIdx);
|
Point targetPoint = useStart ? bestSeg.start : bestSeg.end;
|
|
if (distance(currentPos, targetPoint) > MIN_SEG_LEN) {
|
// 寻找安全连接路径(受作业边界限制)
|
List<PathSegment> detour = findSafePath(currentPos, targetPoint, obstacles, workingArea);
|
connected.addAll(detour);
|
}
|
|
// 添加割草线段(可能反转方向)
|
PathSegment toAdd = bestSeg;
|
if (!useStart) {
|
toAdd = new PathSegment(bestSeg.end, bestSeg.start, true);
|
}
|
connected.add(toAdd);
|
|
currentPos = toAdd.end;
|
visited[bestIdx] = true;
|
}
|
|
return connected;
|
}
|
|
/**
|
* 寻找安全路径(A*算法)
|
*/
|
private static List<PathSegment> findSafePath(Point start, Point end, List<Obstacle> obstacles, List<Point> workingArea) {
|
// 如果直线路径安全,直接使用
|
if (isLineSafe(start, end, obstacles, workingArea)) {
|
List<PathSegment> direct = new ArrayList<>();
|
direct.add(new PathSegment(start, end, false));
|
return direct;
|
}
|
|
// 否则使用A*算法寻找绕行路径
|
return aStarPathFinding(start, end, obstacles, workingArea);
|
}
|
|
/**
|
* A*算法路径寻找
|
*/
|
private static List<PathSegment> aStarPathFinding(Point start, Point end, List<Obstacle> obstacles, List<Point> workingArea) {
|
// 简化的A*算法实现
|
// 这里我们使用障碍物边界上的关键点作为路径节点
|
|
List<Point> nodes = new ArrayList<>();
|
nodes.add(start);
|
nodes.add(end);
|
|
// 添加障碍物的顶点作为候选节点
|
for (Obstacle obs : obstacles) {
|
nodes.addAll(obs.getKeyPoints());
|
}
|
// 添加作业边界顶点,允许贴边绕行
|
if (workingArea != null && workingArea.size() >= 3) {
|
nodes.addAll(workingArea);
|
}
|
|
// 构建图
|
Map<Point, Map<Point, Double>> graph = new HashMap<>();
|
for (Point p1 : nodes) {
|
graph.put(p1, new HashMap<>());
|
for (Point p2 : nodes) {
|
if (p1 == p2) continue;
|
if (isLineSafe(p1, p2, obstacles, workingArea)) {
|
graph.get(p1).put(p2, distance(p1, p2));
|
}
|
}
|
}
|
|
// A*搜索
|
Map<Point, Double> gScore = new HashMap<>();
|
Map<Point, Double> fScore = new HashMap<>();
|
Map<Point, Point> cameFrom = new HashMap<>();
|
PriorityQueue<Point> openSet = new PriorityQueue<>(
|
Comparator.comparingDouble(p -> fScore.getOrDefault(p, Double.MAX_VALUE))
|
);
|
|
gScore.put(start, 0.0);
|
fScore.put(start, heuristic(start, end));
|
openSet.add(start);
|
|
while (!openSet.isEmpty()) {
|
Point current = openSet.poll();
|
|
if (current.equals(end)) {
|
return reconstructPath(cameFrom, current);
|
}
|
|
for (Map.Entry<Point, Double> neighborEntry : graph.getOrDefault(current, new HashMap<>()).entrySet()) {
|
Point neighbor = neighborEntry.getKey();
|
double tentativeGScore = gScore.get(current) + neighborEntry.getValue();
|
|
if (tentativeGScore < gScore.getOrDefault(neighbor, Double.MAX_VALUE)) {
|
cameFrom.put(neighbor, current);
|
gScore.put(neighbor, tentativeGScore);
|
fScore.put(neighbor, tentativeGScore + heuristic(neighbor, end));
|
|
if (!openSet.contains(neighbor)) {
|
openSet.add(neighbor);
|
}
|
}
|
}
|
}
|
|
// 如果没有找到路径,不做不安全的连接
|
return new ArrayList<>();
|
}
|
|
/**
|
* 重构路径
|
*/
|
private static List<PathSegment> reconstructPath(Map<Point, Point> cameFrom, Point current) {
|
List<Point> pathPoints = new ArrayList<>();
|
while (current != null) {
|
pathPoints.add(current);
|
current = cameFrom.get(current);
|
}
|
Collections.reverse(pathPoints);
|
|
List<PathSegment> path = new ArrayList<>();
|
for (int i = 0; i < pathPoints.size() - 1; i++) {
|
path.add(new PathSegment(pathPoints.get(i), pathPoints.get(i + 1), false));
|
}
|
return path;
|
}
|
|
/**
|
* 启发函数
|
*/
|
private static double heuristic(Point a, Point b) {
|
return distance(a, b);
|
}
|
|
/**
|
* 优化路径
|
*/
|
private static List<PathSegment> optimizePath(List<PathSegment> path, double width) {
|
if (path.size() <= 1) return path;
|
|
List<PathSegment> optimized = new ArrayList<>();
|
PathSegment current = path.get(0);
|
|
for (int i = 1; i < path.size(); i++) {
|
PathSegment next = path.get(i);
|
|
// 检查是否可以合并当前线段和下一线段
|
if (canMergeSegments(current, next, width)) {
|
// 合并线段
|
current = mergeSegments(current, next);
|
} else {
|
// 添加当前线段,开始新的合并
|
optimized.add(current);
|
current = next;
|
}
|
}
|
|
optimized.add(current);
|
|
// 平滑转角
|
optimized = smoothCorners(optimized, width);
|
|
return optimized;
|
}
|
|
/**
|
* 检查是否可以合并两个线段
|
*/
|
private static boolean canMergeSegments(PathSegment a, PathSegment b, double width) {
|
if (!a.isMowing || !b.isMowing) return false;
|
|
// 检查端点是否重合
|
if (!a.end.equals(b.start) && !a.end.equals(b.end)) return false;
|
|
// 检查方向是否一致
|
Point dir1 = new Point(a.end.x - a.start.x, a.end.y - a.start.y);
|
Point dir2;
|
if (a.end.equals(b.start)) {
|
dir2 = new Point(b.end.x - b.start.x, b.end.y - b.start.y);
|
} else {
|
dir2 = new Point(b.start.x - b.end.x, b.start.y - b.end.y);
|
}
|
|
double angle = angleBetween(dir1, dir2);
|
return angle < Math.toRadians(10); // 角度小于10度可以合并
|
}
|
|
/**
|
* 合并两个线段
|
*/
|
private static PathSegment mergeSegments(PathSegment a, PathSegment b) {
|
Point newEnd = a.end.equals(b.start) ? b.end : b.start;
|
return new PathSegment(a.start, newEnd, true);
|
}
|
|
/**
|
* 平滑转角
|
*/
|
private static List<PathSegment> smoothCorners(List<PathSegment> path, double width) {
|
if (path.size() < 3) return path;
|
|
List<PathSegment> smoothed = new ArrayList<>();
|
smoothed.add(path.get(0));
|
|
for (int i = 1; i < path.size() - 1; i++) {
|
PathSegment prev = path.get(i - 1);
|
PathSegment curr = path.get(i);
|
PathSegment next = path.get(i + 1);
|
|
if (!prev.isMowing || !curr.isMowing || !next.isMowing) {
|
smoothed.add(curr);
|
continue;
|
}
|
|
// 计算转角
|
Point inVec = new Point(curr.start.x - prev.end.x, curr.start.y - prev.end.y);
|
Point outVec = new Point(next.start.x - curr.end.x, next.start.y - curr.end.y);
|
|
double angle = angleBetween(inVec, outVec);
|
|
if (angle < CORNER_THRESHOLD) {
|
// 小角度,可以直接连接
|
PathSegment direct = new PathSegment(prev.end, next.start, true);
|
smoothed.remove(smoothed.size() - 1); // 移除上一个线段
|
smoothed.add(direct);
|
i++; // 跳过下一个线段
|
} else {
|
smoothed.add(curr);
|
}
|
}
|
|
if (path.size() > 1) {
|
smoothed.add(path.get(path.size() - 1));
|
}
|
|
return smoothed;
|
}
|
|
// ==================== 几何计算工具 ====================
|
|
/**
|
* 多边形偏移算法
|
*/
|
private static List<Point> offsetPolygon(List<Point> polygon, double d) {
|
// 基于“偏移边直线交点”的较稳健实现。约定polygon为CCW,左法向量为外侧。
|
if (polygon == null || polygon.size() < 3) return new ArrayList<>();
|
List<Point> poly = new ArrayList<>(polygon);
|
makeCCW(poly);
|
int n = poly.size();
|
List<Point> out = new ArrayList<>(n);
|
|
for (int i = 0; i < n; i++) {
|
Point A = poly.get((i - 1 + n) % n);
|
Point B = poly.get(i);
|
Point C = poly.get((i + 1) % n);
|
|
Point e1 = normalize(subtract(B, A));
|
Point e2 = normalize(subtract(C, B));
|
Point n1 = new Point(-e1.y, e1.x);
|
Point n2 = new Point(-e2.y, e2.x);
|
|
Point p1 = add(B, multiply(n1, d));
|
Point p2 = add(B, multiply(n2, d));
|
|
Point dir1 = e1;
|
Point dir2 = e2;
|
|
Point inter = intersectLines(p1, dir1, p2, dir2);
|
if (inter == null) {
|
// 平行或数值不稳定时退化
|
Point avgN = add(n1, n2);
|
if (magnitude(avgN) < EPS) avgN = n1;
|
else avgN = normalize(avgN);
|
inter = add(B, multiply(avgN, d));
|
}
|
out.add(inter);
|
}
|
return out;
|
}
|
|
// 计算两条参数直线的交点 p=p0+t*v, q=q0+s*w
|
private static Point intersectLines(Point p0, Point v, Point q0, Point w) {
|
double det = v.x * w.y - v.y * w.x;
|
if (Math.abs(det) < EPS) return null;
|
double t = ((q0.x - p0.x) * w.y - (q0.y - p0.y) * w.x) / det;
|
return new Point(p0.x + t * v.x, p0.y + t * v.y);
|
}
|
|
/**
|
* 计算最优扫描角度
|
*/
|
private static double calculateOptimalScanAngle(List<Point> polygon) {
|
double bestAngle = 0;
|
double minSpan = Double.MAX_VALUE;
|
|
// 尝试多个角度
|
for (int i = 0; i < 180; i += 5) {
|
double angle = Math.toRadians(i);
|
List<Point> rotated = rotatePolygon(polygon, angle);
|
|
Bounds bounds = calculateBounds(rotated);
|
double span = bounds.maxY - bounds.minY;
|
|
if (span < minSpan) {
|
minSpan = span;
|
bestAngle = angle;
|
}
|
}
|
|
return bestAngle;
|
}
|
|
/**
|
* 获取水平线与多边形的交点
|
*/
|
private static List<Double> getHorizontalIntersections(List<Point> polygon, double y) {
|
List<Double> intersections = new ArrayList<>();
|
int n = polygon.size();
|
|
for (int i = 0; i < n; i++) {
|
Point p1 = polygon.get(i);
|
Point p2 = polygon.get((i + 1) % n);
|
|
// 检查边是否与水平线相交
|
if ((p1.y <= y && p2.y >= y) || (p1.y >= y && p2.y <= y)) {
|
if (Math.abs(p2.y - p1.y) < EPS) {
|
// 水平边,跳过
|
continue;
|
}
|
|
double t = (y - p1.y) / (p2.y - p1.y);
|
if (t >= -EPS && t <= 1 + EPS) {
|
double x = p1.x + t * (p2.x - p1.x);
|
intersections.add(x);
|
}
|
}
|
}
|
|
// 去重并排序
|
intersections = intersections.stream()
|
.distinct()
|
.sorted()
|
.collect(Collectors.toList());
|
|
return intersections;
|
}
|
|
/**
|
* 判断直线是否安全
|
*/
|
private static boolean isLineSafe(Point p1, Point p2, List<Obstacle> obstacles, List<Point> workingArea) {
|
// 必须完全在作业内缩边界内
|
if (workingArea != null && !isSegmentInsidePolygon(p1, p2, workingArea)) {
|
return false;
|
}
|
for (Obstacle obs : obstacles) {
|
if (obs.doesSegmentIntersect(p1, p2)) {
|
return false;
|
}
|
}
|
return true;
|
}
|
|
// 判断线段是否位于多边形内部(不越界)
|
private static boolean isSegmentInsidePolygon(Point a, Point b, List<Point> polygon) {
|
if (polygon == null || polygon.size() < 3) return true;
|
// 中点在内
|
Point mid = new Point((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);
|
if (!pointInPolygon(mid, polygon)) return false;
|
// 不与边界相交(允许端点接触)
|
int n = polygon.size();
|
for (int i = 0; i < n; i++) {
|
Point p1 = polygon.get(i);
|
Point p2 = polygon.get((i + 1) % n);
|
if (lineSegmentIntersection(a, b, p1, p2)) {
|
// 忽略仅在端点处的小接触
|
if (distance(a, p1) < EPS || distance(a, p2) < EPS || distance(b, p1) < EPS || distance(b, p2) < EPS) {
|
continue;
|
}
|
return false;
|
}
|
}
|
return true;
|
}
|
|
private static boolean pointInPolygon(Point p, List<Point> poly) {
|
boolean inside = false;
|
for (int i = 0, j = poly.size() - 1; i < poly.size(); j = i++) {
|
Point pi = poly.get(i), pj = poly.get(j);
|
boolean intersect = ((pi.y > p.y) != (pj.y > p.y)) &&
|
(p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y + EPS) + pi.x);
|
if (intersect) inside = !inside;
|
}
|
return inside;
|
}
|
|
// ==================== 向量运算工具 ====================
|
|
private static Point add(Point a, Point b) {
|
return new Point(a.x + b.x, a.y + b.y);
|
}
|
|
private static Point subtract(Point a, Point b) {
|
return new Point(a.x - b.x, a.y - b.y);
|
}
|
|
private static Point multiply(Point p, double scalar) {
|
return new Point(p.x * scalar, p.y * scalar);
|
}
|
|
private static Point normalize(Point p) {
|
double mag = magnitude(p);
|
if (mag < EPS) return p;
|
return new Point(p.x / mag, p.y / mag);
|
}
|
|
private static double magnitude(Point p) {
|
return Math.sqrt(p.x * p.x + p.y * p.y);
|
}
|
|
private static double dot(Point a, Point b) {
|
return a.x * b.x + a.y * b.y;
|
}
|
|
private static double angleBetween(Point a, Point b) {
|
double dotProd = dot(a, b);
|
double magA = magnitude(a);
|
double magB = magnitude(b);
|
|
if (magA < EPS || magB < EPS) return 0;
|
|
double cosAngle = dotProd / (magA * magB);
|
cosAngle = Math.max(-1, Math.min(1, cosAngle));
|
return Math.acos(cosAngle);
|
}
|
|
private static double distance(Point a, Point b) {
|
return magnitude(subtract(a, b));
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double cos = Math.cos(angle);
|
double sin = Math.sin(angle);
|
return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos);
|
}
|
|
private static List<Point> rotatePolygon(List<Point> polygon, double angle) {
|
return polygon.stream()
|
.map(p -> rotatePoint(p, angle))
|
.collect(Collectors.toList());
|
}
|
|
private static Bounds calculateBounds(List<Point> points) {
|
double minX = Double.MAX_VALUE, maxX = -Double.MAX_VALUE;
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
|
for (Point p : points) {
|
minX = Math.min(minX, p.x);
|
maxX = Math.max(maxX, p.x);
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
return new Bounds(minX, maxX, minY, maxY);
|
}
|
|
private static void makeCCW(List<Point> polygon) {
|
double area = 0;
|
int n = polygon.size();
|
|
for (int i = 0; i < n; i++) {
|
Point p1 = polygon.get(i);
|
Point p2 = polygon.get((i + 1) % n);
|
area += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
|
if (area > 0) {
|
Collections.reverse(polygon);
|
}
|
}
|
|
// ==================== 障碍物处理 ====================
|
|
private static List<Obstacle> parseAndExpandObstacles(String obstaclesStr, double margin) {
|
List<Obstacle> obstacles = new ArrayList<>();
|
|
if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) {
|
return obstacles;
|
}
|
|
// 解析障碍物字符串
|
Pattern pattern = Pattern.compile("\\(([^)]+)\\)");
|
Matcher matcher = pattern.matcher(obstaclesStr);
|
|
while (matcher.find()) {
|
String coords = matcher.group(1);
|
List<Point> points = parseCoordinates(coords);
|
|
if (points.size() == 2) {
|
// 圆形障碍物
|
Point center = points.get(0);
|
double radius = distance(center, points.get(1)) + margin;
|
obstacles.add(new CircularObstacle(center, radius));
|
} else if (points.size() >= 3) {
|
// 多边形障碍物
|
makeCCW(points);
|
List<Point> expanded = offsetPolygon(points, -margin);
|
obstacles.add(new PolygonalObstacle(expanded));
|
}
|
}
|
|
return obstacles;
|
}
|
|
private static List<Point> parseCoordinates(String str) {
|
List<Point> points = new ArrayList<>();
|
|
if (str == null || str.trim().isEmpty()) {
|
return points;
|
}
|
|
String[] tokens = str.split(";");
|
for (String token : tokens) {
|
token = token.trim();
|
if (token.isEmpty()) continue;
|
|
String[] xy = token.split(",");
|
if (xy.length == 2) {
|
try {
|
double x = Double.parseDouble(xy[0].trim());
|
double y = Double.parseDouble(xy[1].trim());
|
points.add(new Point(x, y));
|
} catch (NumberFormatException e) {
|
System.err.println("无效坐标: " + token);
|
}
|
}
|
}
|
|
return points;
|
}
|
|
// ==================== 内部类定义 ====================
|
|
/**
|
* 障碍物基类
|
*/
|
abstract static class Obstacle {
|
abstract List<PathSegment> clipSegment(PathSegment seg);
|
abstract boolean doesSegmentIntersect(Point p1, Point p2);
|
abstract boolean containsPoint(Point p);
|
abstract List<Point> getKeyPoints();
|
}
|
|
/**
|
* 多边形障碍物
|
*/
|
static class PolygonalObstacle extends Obstacle {
|
List<Point> vertices;
|
|
PolygonalObstacle(List<Point> vertices) {
|
this.vertices = vertices;
|
}
|
|
@Override
|
List<PathSegment> clipSegment(PathSegment seg) {
|
List<Double> tValues = new ArrayList<>();
|
tValues.add(0.0);
|
tValues.add(1.0);
|
|
// 收集所有交点
|
for (int i = 0; i < vertices.size(); i++) {
|
Point p1 = vertices.get(i);
|
Point p2 = vertices.get((i + 1) % vertices.size());
|
|
Double t = lineIntersection(seg.start, seg.end, p1, p2);
|
if (t != null) {
|
tValues.add(t);
|
}
|
}
|
|
Collections.sort(tValues);
|
List<PathSegment> result = new ArrayList<>();
|
|
// 生成不在障碍物内部的线段段
|
for (int i = 0; i < tValues.size() - 1; i++) {
|
double t1 = tValues.get(i);
|
double t2 = tValues.get(i + 1);
|
double tMid = (t1 + t2) / 2;
|
|
Point midPoint = interpolate(seg.start, seg.end, tMid);
|
if (!containsPoint(midPoint)) {
|
Point start = interpolate(seg.start, seg.end, t1);
|
Point end = interpolate(seg.start, seg.end, t2);
|
result.add(new PathSegment(start, end, seg.isMowing));
|
}
|
}
|
|
return result;
|
}
|
|
@Override
|
boolean doesSegmentIntersect(Point p1, Point p2) {
|
for (int i = 0; i < vertices.size(); i++) {
|
Point v1 = vertices.get(i);
|
Point v2 = vertices.get((i + 1) % vertices.size());
|
|
if (lineSegmentIntersection(p1, p2, v1, v2)) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
@Override
|
boolean containsPoint(Point p) {
|
int crossings = 0;
|
|
for (int i = 0; i < vertices.size(); i++) {
|
Point v1 = vertices.get(i);
|
Point v2 = vertices.get((i + 1) % vertices.size());
|
|
if (((v1.y <= p.y && p.y < v2.y) || (v2.y <= p.y && p.y < v1.y)) &&
|
(p.x < (v2.x - v1.x) * (p.y - v1.y) / (v2.y - v1.y) + v1.x)) {
|
crossings++;
|
}
|
}
|
|
return (crossings % 2) == 1;
|
}
|
|
@Override
|
List<Point> getKeyPoints() {
|
return new ArrayList<>(vertices);
|
}
|
}
|
|
/**
|
* 圆形障碍物
|
*/
|
static class CircularObstacle extends Obstacle {
|
Point center;
|
double radius;
|
|
CircularObstacle(Point center, double radius) {
|
this.center = center;
|
this.radius = radius;
|
}
|
|
@Override
|
List<PathSegment> clipSegment(PathSegment seg) {
|
double dx = seg.end.x - seg.start.x;
|
double dy = seg.end.y - seg.start.y;
|
double fx = seg.start.x - center.x;
|
double fy = seg.start.y - center.y;
|
|
double a = dx * dx + dy * dy;
|
double b = 2 * (fx * dx + fy * dy);
|
double c = fx * fx + fy * fy - radius * radius;
|
|
List<Double> tValues = new ArrayList<>();
|
tValues.add(0.0);
|
tValues.add(1.0);
|
|
double discriminant = b * b - 4 * a * c;
|
if (discriminant > 0) {
|
double sqrtDisc = Math.sqrt(discriminant);
|
double t1 = (-b - sqrtDisc) / (2 * a);
|
double t2 = (-b + sqrtDisc) / (2 * a);
|
|
if (t1 > EPS && t1 < 1 - EPS) tValues.add(t1);
|
if (t2 > EPS && t2 < 1 - EPS) tValues.add(t2);
|
}
|
|
Collections.sort(tValues);
|
List<PathSegment> result = new ArrayList<>();
|
|
for (int i = 0; i < tValues.size() - 1; i++) {
|
double t1 = tValues.get(i);
|
double t2 = tValues.get(i + 1);
|
double tMid = (t1 + t2) / 2;
|
|
Point midPoint = interpolate(seg.start, seg.end, tMid);
|
if (!containsPoint(midPoint)) {
|
Point start = interpolate(seg.start, seg.end, t1);
|
Point end = interpolate(seg.start, seg.end, t2);
|
result.add(new PathSegment(start, end, seg.isMowing));
|
}
|
}
|
|
return result;
|
}
|
|
@Override
|
boolean doesSegmentIntersect(Point p1, Point p2) {
|
Point closest = closestPointOnSegment(center, p1, p2);
|
// 将与圆的相切也视为相交,避免路径擦边
|
return distance(center, closest) <= radius + EPS;
|
}
|
|
@Override
|
boolean containsPoint(Point p) {
|
return distance(center, p) < radius - EPS;
|
}
|
|
@Override
|
List<Point> getKeyPoints() {
|
List<Point> points = new ArrayList<>();
|
int numPoints = 8; // 八边形近似
|
|
for (int i = 0; i < numPoints; i++) {
|
double angle = 2 * Math.PI * i / numPoints;
|
points.add(new Point(
|
center.x + radius * Math.cos(angle),
|
center.y + radius * Math.sin(angle)
|
));
|
}
|
|
return points;
|
}
|
}
|
|
/**
|
* 路径段
|
*/
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
|
public PathSegment(Point start, Point end, boolean isMowing) {
|
this.start = start;
|
this.end = end;
|
this.isMowing = isMowing;
|
}
|
|
@Override
|
public String toString() {
|
return String.format("%s -> %s [%s]", start, end, isMowing ? "MOW" : "MOVE");
|
}
|
}
|
|
/**
|
* 点类
|
*/
|
public static class Point {
|
public double x, y;
|
|
public Point(double x, double y) {
|
this.x = x;
|
this.y = y;
|
}
|
|
@Override
|
public boolean equals(Object obj) {
|
if (this == obj) return true;
|
if (!(obj instanceof Point)) return false;
|
Point other = (Point) obj;
|
return Math.abs(x - other.x) < EPS && Math.abs(y - other.y) < EPS;
|
}
|
|
@Override
|
public int hashCode() {
|
return Double.hashCode(x) * 31 + Double.hashCode(y);
|
}
|
|
@Override
|
public String toString() {
|
return String.format("(%.2f, %.2f)", x, y);
|
}
|
}
|
|
/**
|
* 边界框
|
*/
|
private static class Bounds {
|
double minX, maxX, minY, maxY;
|
|
Bounds(double minX, double maxX, double minY, double maxY) {
|
this.minX = minX;
|
this.maxX = maxX;
|
this.minY = minY;
|
this.maxY = maxY;
|
}
|
}
|
|
// ==================== 几何工具函数 ====================
|
|
private static Double lineIntersection(Point a1, Point a2, Point b1, Point b2) {
|
double det = (a2.x - a1.x) * (b2.y - b1.y) - (a2.y - a1.y) * (b2.x - b1.x);
|
|
if (Math.abs(det) < EPS) return null;
|
|
double t = ((b1.x - a1.x) * (b2.y - b1.y) - (b1.y - a1.y) * (b2.x - b1.x)) / det;
|
double u = ((a1.x - b1.x) * (a2.y - a1.y) - (a1.y - b1.y) * (a2.x - a1.x)) / (-det);
|
|
if (t >= -EPS && t <= 1 + EPS && u >= -EPS && u <= 1 + EPS) {
|
return Math.max(0, Math.min(1, t));
|
}
|
|
return null;
|
}
|
|
private static boolean lineSegmentIntersection(Point a1, Point a2, Point b1, Point b2) {
|
Double t = lineIntersection(a1, a2, b1, b2);
|
return t != null;
|
}
|
|
private static Point interpolate(Point a, Point b, double t) {
|
return new Point(a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t);
|
}
|
|
private static Point closestPointOnSegment(Point p, Point a, Point b) {
|
double ax = b.x - a.x;
|
double ay = b.y - a.y;
|
double bx = p.x - a.x;
|
double by = p.y - a.y;
|
|
double dot = ax * bx + ay * by;
|
double lenSq = ax * ax + ay * ay;
|
|
double t = (lenSq > EPS) ? Math.max(0, Math.min(1, dot / lenSq)) : 0;
|
|
return new Point(a.x + t * ax, a.y + t * ay);
|
}
|
|
}
|