package lujing;
|
|
import java.util.*;
|
|
/**
|
* 异形草地路径规划 - 凹多边形兼容优化版 V5.0
|
* 修复:解决凹多边形扫描线跨越边界的问题,优化路径对齐
|
*/
|
public class YixinglujingNoObstacle {
|
// 用法说明(无障碍物路径规划):
|
// - 方法用途:根据地块边界、割草宽度与安全边距,生成覆盖全区域的割草路径。
|
// - 参数:
|
// coordinates:地块边界坐标字符串,格式 "x1,y1;x2,y2;...",至少3个点,单位为米。
|
// widthStr:割草宽度(字符串,单位米),用于确定扫描线间距。
|
// marginStr:安全边距(字符串,单位米),用于将地块边界向内收缩,避免贴边作业。
|
// - 返回值:List<PathSegment>,其中 PathSegment.start/end 为坐标点,isMowing 为 true 表示割草段,false 表示空走段。
|
// - 失败情况:当边界点不足或内缩后区域过小,返回空列表。
|
// - 使用示例:
|
// String boundary = "0,0;20,0;20,15;0,15";
|
// String width = "0.3";
|
// String margin = "0.5";
|
// List<YixinglujingNoObstacle.PathSegment> path =
|
// YixinglujingNoObstacle.planPath(boundary, width, margin);
|
public static List<PathSegment> planPath(String coordinates, String widthStr, String marginStr) {
|
List<Point> rawPoints = parseCoordinates(coordinates);
|
if (rawPoints.size() < 3) return new ArrayList<>();
|
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 1. 预处理:确保逆时针顺序
|
ensureCounterClockwise(rawPoints);
|
|
// 2. 生成内缩多边形(安全边界)
|
List<Point> boundary = getInsetPolygon(rawPoints, safeMargin);
|
if (boundary.size() < 3) return new ArrayList<>();
|
|
// 3. 确定最优作业角度
|
double bestAngle = findOptimalAngle(boundary);
|
|
// 4. 获取首个作业点,用于对齐围边起点
|
Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle);
|
|
// 5. 对齐围边:使围边最后结束于靠近扫描起点的位置
|
List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart);
|
|
List<PathSegment> finalPath = new ArrayList<>();
|
|
// 6. 第一阶段:围边路径
|
for (int i = 0; i < alignedBoundary.size(); i++) {
|
Point pStart = alignedBoundary.get(i);
|
Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size());
|
finalPath.add(new PathSegment(pStart, pEnd, true));
|
}
|
|
// 7. 第二阶段:生成内部扫描路径(修复凹部空越问题)
|
Point lastEdgePos = alignedBoundary.get(0);
|
List<PathSegment> scanPath = generateGlobalScanPath(boundary, mowWidth, bestAngle, lastEdgePos);
|
|
finalPath.addAll(scanPath);
|
|
// 8. 格式化坐标:保留两位小数
|
for (PathSegment segment : finalPath) {
|
segment.start.x = Math.round(segment.start.x * 100.0) / 100.0;
|
segment.start.y = Math.round(segment.start.y * 100.0) / 100.0;
|
segment.end.x = Math.round(segment.end.x * 100.0) / 100.0;
|
segment.end.y = Math.round(segment.end.y * 100.0) / 100.0;
|
}
|
|
return finalPath;
|
}
|
|
private static List<PathSegment> generateGlobalScanPath(List<Point> polygon, double width, double angle, Point currentPos) {
|
List<PathSegment> segments = new ArrayList<>();
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
boolean leftToRight = true;
|
// 步长 y 从最小到最大扫描
|
for (double y = minY + width/2; y <= maxY - width/2; y += width) {
|
List<Double> xIntersections = getXIntersections(rotatedPoly, y);
|
if (xIntersections.size() < 2) continue;
|
Collections.sort(xIntersections);
|
|
// 处理凹多边形:每两个点组成一个有效作业段
|
List<PathSegment> lineSegmentsInRow = new ArrayList<>();
|
for (int i = 0; i < xIntersections.size() - 1; i += 2) {
|
Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle);
|
Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle);
|
lineSegmentsInRow.add(new PathSegment(pS, pE, true));
|
}
|
|
// 根据当前S型方向排序作业段
|
if (!leftToRight) {
|
Collections.reverse(lineSegmentsInRow);
|
for (PathSegment s : lineSegmentsInRow) {
|
Point temp = s.start; s.start = s.end; s.end = temp;
|
}
|
}
|
|
// 将作业段连接到总路径
|
for (PathSegment s : lineSegmentsInRow) {
|
if (Math.hypot(currentPos.x - s.start.x, currentPos.y - s.start.y) > 0.01) {
|
// 如果间距大于1cm,添加空走路径
|
addSafeConnection(segments, currentPos, s.start, polygon);
|
}
|
segments.add(s);
|
currentPos = s.end;
|
}
|
leftToRight = !leftToRight;
|
}
|
return segments;
|
}
|
|
private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) {
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
double minY = Double.MAX_VALUE;
|
for (Point p : rotatedPoly) minY = Math.min(minY, p.y);
|
|
double firstY = minY + width/2;
|
List<Double> xInter = getXIntersections(rotatedPoly, firstY);
|
if (xInter.isEmpty()) return polygon.get(0);
|
Collections.sort(xInter);
|
return rotatePoint(new Point(xInter.get(0), firstY), angle);
|
}
|
|
private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) {
|
int bestIdx = 0;
|
double minDist = Double.MAX_VALUE;
|
for (int i = 0; i < boundary.size(); i++) {
|
double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y);
|
if (d < minDist) { minDist = d; bestIdx = i; }
|
}
|
List<Point> aligned = new ArrayList<>();
|
for (int i = 0; i < boundary.size(); i++) {
|
aligned.add(boundary.get((bestIdx + i) % boundary.size()));
|
}
|
return aligned;
|
}
|
|
private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) {
|
List<Double> xIntersections = new ArrayList<>();
|
double tolerance = 1e-6;
|
|
for (int i = 0; i < rotatedPoly.size(); i++) {
|
Point p1 = rotatedPoly.get(i);
|
Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size());
|
|
// 跳过水平边(避免与扫描线重合时的特殊情况)
|
if (Math.abs(p1.y - p2.y) < tolerance) {
|
continue;
|
}
|
|
// 检查是否相交(使用严格不等式避免顶点重复)
|
if ((p1.y < y && p2.y >= y) || (p2.y < y && p1.y >= y)) {
|
double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y);
|
// 简单去重:检查是否已存在相近的点
|
boolean isDuplicate = false;
|
for (double existingX : xIntersections) {
|
if (Math.abs(x - existingX) < tolerance) {
|
isDuplicate = true;
|
break;
|
}
|
}
|
if (!isDuplicate) {
|
xIntersections.add(x);
|
}
|
}
|
}
|
return xIntersections;
|
}
|
|
private static double findOptimalAngle(List<Point> polygon) {
|
double bestAngle = 0;
|
double minHeight = Double.MAX_VALUE;
|
for (int i = 0; i < polygon.size(); i++) {
|
Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size());
|
double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calculateHeightAtAngle(polygon, angle);
|
if (h < minHeight) { minHeight = h; bestAngle = angle; }
|
}
|
return bestAngle;
|
}
|
|
private static double calculateHeightAtAngle(List<Point> poly, double angle) {
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : poly) {
|
Point rp = rotatePoint(p, -angle);
|
minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y);
|
}
|
return maxY - minY;
|
}
|
|
public static List<Point> getInsetPolygon(List<Point> points, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = points.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
|
if (l1 < 1e-6 || l2 < 1e-6) continue;
|
|
// 单位法向量
|
double n1x = -d1y / l1, n1y = d1x / l1;
|
double n2x = -d2y / l2, n2y = d2x / l2;
|
|
// 角平分线方向
|
double bisectorX = n1x + n2x, bisectorY = n1y + n2y;
|
double bLen = Math.hypot(bisectorX, bisectorY);
|
if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; }
|
else { bisectorX /= bLen; bisectorY /= bLen; }
|
|
double cosHalfAngle = n1x * bisectorX + n1y * bisectorY;
|
double dist = margin / Math.max(cosHalfAngle, 0.1);
|
|
// 限制最大位移量,防止极尖角畸变
|
dist = Math.min(dist, margin * 5);
|
|
result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist));
|
}
|
return result;
|
}
|
|
private static void addSafeConnection(List<PathSegment> segments, Point start, Point end, List<Point> polygon) {
|
if (isSegmentSafe(start, end, polygon)) {
|
segments.add(new PathSegment(start, end, false));
|
} else {
|
List<Point> path = getBoundaryPath(start, end, polygon);
|
for (int i = 0; i < path.size() - 1; i++) {
|
segments.add(new PathSegment(path.get(i), path.get(i+1), false));
|
}
|
}
|
}
|
|
private static boolean isSegmentSafe(Point p1, Point p2, List<Point> polygon) {
|
Point mid = new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2);
|
if (!isPointInPolygon(mid, polygon)) return false;
|
|
for (int i = 0; i < polygon.size(); i++) {
|
Point a = polygon.get(i);
|
Point b = polygon.get((i + 1) % polygon.size());
|
if (isSamePoint(p1, a) || isSamePoint(p1, b) || isSamePoint(p2, a) || isSamePoint(p2, b)) continue;
|
if (segmentsIntersect(p1, p2, a, b)) return false;
|
}
|
return true;
|
}
|
|
private static boolean isSamePoint(Point a, Point b) {
|
return Math.abs(a.x - b.x) < 1e-4 && Math.abs(a.y - b.y) < 1e-4;
|
}
|
|
private static boolean segmentsIntersect(Point a, Point b, Point c, Point d) {
|
return ccw(a, c, d) != ccw(b, c, d) && ccw(a, b, c) != ccw(a, b, d);
|
}
|
|
private static boolean ccw(Point a, Point b, Point c) {
|
return (c.y - a.y) * (b.x - a.x) > (b.y - a.y) * (c.x - a.x);
|
}
|
|
private static boolean isPointInPolygon(Point p, List<Point> polygon) {
|
boolean result = false;
|
for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) {
|
if ((polygon.get(i).y > p.y) != (polygon.get(j).y > p.y) &&
|
(p.x < (polygon.get(j).x - polygon.get(i).x) * (p.y - polygon.get(i).y) / (polygon.get(j).y - polygon.get(i).y) + polygon.get(i).x)) {
|
result = !result;
|
}
|
}
|
return result;
|
}
|
|
private static List<Point> getBoundaryPath(Point start, Point end, List<Point> polygon) {
|
int idx1 = getEdgeIndex(start, polygon);
|
int idx2 = getEdgeIndex(end, polygon);
|
|
if (idx1 == -1 || idx2 == -1 || idx1 == idx2) {
|
return Arrays.asList(start, end);
|
}
|
|
List<Point> path1 = new ArrayList<>();
|
path1.add(start);
|
int curr = idx1;
|
while (curr != idx2) {
|
path1.add(polygon.get((curr + 1) % polygon.size()));
|
curr = (curr + 1) % polygon.size();
|
}
|
path1.add(end);
|
|
List<Point> pathRev = new ArrayList<>();
|
pathRev.add(start);
|
curr = idx1;
|
while (curr != idx2) {
|
pathRev.add(polygon.get(curr));
|
curr = (curr - 1 + polygon.size()) % polygon.size();
|
}
|
pathRev.add(polygon.get((idx2 + 1) % polygon.size()));
|
pathRev.add(end);
|
|
return getPathLength(path1) < getPathLength(pathRev) ? path1 : pathRev;
|
}
|
|
private static double getPathLength(List<Point> path) {
|
double len = 0;
|
for (int i = 0; i < path.size() - 1; i++) {
|
len += Math.hypot(path.get(i).x - path.get(i+1).x, path.get(i).y - path.get(i+1).y);
|
}
|
return len;
|
}
|
|
private static int getEdgeIndex(Point p, List<Point> poly) {
|
int bestIdx = -1;
|
double minD = Double.MAX_VALUE;
|
for (int i = 0; i < poly.size(); i++) {
|
Point p1 = poly.get(i);
|
Point p2 = poly.get((i + 1) % poly.size());
|
double d = distToSegment(p, p1, p2);
|
if (d < minD) {
|
minD = d;
|
bestIdx = i;
|
}
|
}
|
// 只要找到最近的边即可,放宽阈值以应对浮点误差和旋转变形
|
// 如果距离过大(例如超过1米),可能确实不在边界上,但在路径规划上下文中,
|
// 这些点是由扫描线生成的,理论上一定在边界上,所以强制吸附是安全的。
|
return minD < 1.0 ? bestIdx : -1;
|
}
|
|
private static double distToSegment(Point p, Point s, Point e) {
|
double l2 = (s.x - e.x)*(s.x - e.x) + (s.y - e.y)*(s.y - e.y);
|
if (l2 == 0) return Math.hypot(p.x - s.x, p.y - s.y);
|
double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2;
|
t = Math.max(0, Math.min(1, t));
|
return Math.hypot(p.x - (s.x + t * (e.x - s.x)), p.y - (s.y + t * (e.y - s.y)));
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double cos = Math.cos(angle), sin = Math.sin(angle);
|
return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos);
|
}
|
|
public static void ensureCounterClockwise(List<Point> points) {
|
double sum = 0;
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i), p2 = points.get((i + 1) % points.size());
|
sum += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (sum > 0) Collections.reverse(points);
|
}
|
|
private static List<Point> parseCoordinates(String coordinates) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = coordinates.split(";");
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1);
|
return points;
|
}
|
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
@Override
|
public boolean equals(Object o) {
|
if (!(o instanceof Point)) return false;
|
Point p = (Point) o;
|
return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4;
|
}
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing; // true: 割草中, false: 空载移动
|
public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; }
|
}
|
}
|