package lujing;
|
import java.util.*;
|
|
|
/**
|
* 异形草地路径规划 - 含障碍物版
|
* 功能:在地块内部避开障碍物,生成连续弓字形割草路径
|
*/
|
public class YixinglujingHaveObstacel {
|
|
public static List<PathSegment> planPath(String coordinates, String obstaclesStr,
|
String widthStr, String marginStr) {
|
// 1. 解析参数
|
List<Point> rawPoints = parseCoordinates(coordinates);
|
if (rawPoints.size() < 3) return new ArrayList<>();
|
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 解析障碍物
|
List<Obstacle> obstacles = parseObstacles(obstaclesStr);
|
|
// 2. 预处理:确保边界逆时针
|
ensureCounterClockwise(rawPoints);
|
|
// 3. 生成内缩多边形(安全边界)
|
List<Point> boundary = getInsetPolygon(rawPoints, safeMargin);
|
if (boundary.size() < 3) return new ArrayList<>();
|
|
// 4. 外扩障碍物(安全边距)
|
List<Obstacle> expandedObstacles = expandObstacles(obstacles, safeMargin);
|
|
// 5. 确定最优作业角度
|
double bestAngle = findOptimalAngle(boundary);
|
|
// 6. 获取首个作业点,用于对齐围边起点
|
Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle);
|
|
// 7. 对齐围边
|
List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart);
|
|
// 8. 第一阶段:围边路径
|
List<PathSegment> finalPath = new ArrayList<>();
|
for (int i = 0; i < alignedBoundary.size(); i++) {
|
Point pStart = alignedBoundary.get(i);
|
Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size());
|
finalPath.add(new PathSegment(pStart, pEnd, true));
|
}
|
|
// 9. 第二阶段:生成内部扫描路径(考虑障碍物)
|
Point lastEdgePos = alignedBoundary.get(0);
|
List<PathSegment> scanPath = generateGlobalScanPathWithObstacles(
|
boundary, expandedObstacles, mowWidth, bestAngle, lastEdgePos);
|
|
finalPath.addAll(scanPath);
|
|
// 10. 格式化坐标:保留两位小数
|
for (PathSegment segment : finalPath) {
|
segment.start.x = Math.round(segment.start.x * 100.0) / 100.0;
|
segment.start.y = Math.round(segment.start.y * 100.0) / 100.0;
|
segment.end.x = Math.round(segment.end.x * 100.0) / 100.0;
|
segment.end.y = Math.round(segment.end.y * 100.0) / 100.0;
|
}
|
|
// 11. 打印输出路径坐标
|
printPathCoordinates(finalPath);
|
|
return finalPath;
|
}
|
|
/**
|
* 生成带障碍物的扫描路径
|
*/
|
private static List<PathSegment> generateGlobalScanPathWithObstacles(
|
List<Point> polygon, List<Obstacle> obstacles,
|
double width, double angle, Point startPos) {
|
|
// 1. 生成原始扫描线(无障碍物)
|
List<PathSegment> originalSegments = generateGlobalScanPath(polygon, width, angle, startPos);
|
|
// 2. 移除在障碍物内部的线段
|
List<PathSegment> remainingSegments = new ArrayList<>();
|
for (PathSegment seg : originalSegments) {
|
if (!seg.isMowing) {
|
// 空走段直接保留
|
remainingSegments.add(seg);
|
continue;
|
}
|
|
// 将割草段与所有障碍物进行裁剪
|
List<PathSegment> clippedSegments = new ArrayList<>();
|
clippedSegments.add(seg);
|
|
for (Obstacle obs : obstacles) {
|
List<PathSegment> newSegments = new ArrayList<>();
|
for (PathSegment s : clippedSegments) {
|
newSegments.addAll(clipSegmentWithObstacle(s, obs));
|
}
|
clippedSegments = newSegments;
|
}
|
|
remainingSegments.addAll(clippedSegments);
|
}
|
|
// 3. 重新连接路径段(弓字形连接,智能处理边界穿越)
|
return reconnectSegments(remainingSegments, polygon);
|
}
|
|
/**
|
* 将线段与障碍物进行裁剪
|
* 返回不在障碍物内部的子线段
|
*/
|
private static List<PathSegment> clipSegmentWithObstacle(PathSegment segment, Obstacle obstacle) {
|
List<PathSegment> result = new ArrayList<>();
|
|
// 检查线段是否完全在障碍物外部
|
boolean startInside = obstacle.contains(segment.start);
|
boolean endInside = obstacle.contains(segment.end);
|
|
if (!startInside && !endInside) {
|
// 线段两端都在外部,检查是否穿过障碍物
|
List<Point> intersections = obstacle.getIntersections(segment);
|
if (intersections.isEmpty()) {
|
// 完全在外部
|
result.add(segment);
|
} else {
|
// 穿过障碍物,分割线段
|
intersections.sort(Comparator.comparingDouble(p ->
|
distance(segment.start, p)));
|
|
Point prevPoint = segment.start;
|
for (Point inter : intersections) {
|
result.add(new PathSegment(prevPoint, inter, true));
|
prevPoint = inter;
|
}
|
result.add(new PathSegment(prevPoint, segment.end, true));
|
|
// 移除在障碍物内部的段(奇数索引的段)
|
List<PathSegment> filtered = new ArrayList<>();
|
for (int i = 0; i < result.size(); i++) {
|
PathSegment s = result.get(i);
|
Point midPoint = new Point(
|
(s.start.x + s.end.x) / 2,
|
(s.start.y + s.end.y) / 2
|
);
|
if (!obstacle.contains(midPoint)) {
|
filtered.add(s);
|
}
|
}
|
return filtered;
|
}
|
} else if (startInside && endInside) {
|
// 完全在内部,丢弃
|
return result;
|
} else {
|
// 一端在内部,一端在外部
|
Point outsidePoint = startInside ? segment.end : segment.start;
|
|
List<Point> intersections = obstacle.getIntersections(segment);
|
if (!intersections.isEmpty()) {
|
// 取离外部点最近的交点
|
intersections.sort(Comparator.comparingDouble(p ->
|
distance(outsidePoint, p)));
|
Point inter = intersections.get(0);
|
|
// 只保留外部部分
|
if (startInside) {
|
result.add(new PathSegment(inter, outsidePoint, true));
|
} else {
|
result.add(new PathSegment(outsidePoint, inter, true));
|
}
|
}
|
}
|
|
return result;
|
}
|
|
/**
|
* 重新连接路径段,形成连续弓字形路径
|
* 优化:智能处理边界穿越,当换行路径穿越边界时,沿边界行走
|
*/
|
private static List<PathSegment> reconnectSegments(List<PathSegment> segments, List<Point> boundary) {
|
if (segments.isEmpty()) return new ArrayList<>();
|
|
List<PathSegment> reconnected = new ArrayList<>();
|
Point currentPos = segments.get(0).start;
|
|
for (PathSegment seg : segments) {
|
if (seg.isMowing) {
|
// 割草段:检查是否需要添加空走段
|
if (distance(currentPos, seg.start) > 0.01) {
|
// 使用智能连接方法生成换行路径
|
List<PathSegment> connectionPath = buildSmartConnection(currentPos, seg.start, boundary);
|
reconnected.addAll(connectionPath);
|
}
|
reconnected.add(seg);
|
currentPos = seg.end;
|
} else {
|
// 空走段直接添加
|
reconnected.add(seg);
|
currentPos = seg.end;
|
}
|
}
|
|
return reconnected;
|
}
|
|
/**
|
* 智能连接两点:如果直线不穿越边界则直接连接,否则使用直线+边界混合路径
|
* 优化逻辑:
|
* 1. 如果AB线不穿越边界C,直接使用AB作为换行路线
|
* 2. 如果AB线穿越了边界C,找到所有交点,将AB分成多个段
|
* - 对于在边界内部的段(如DF段、GH段),沿边界行走
|
* - 对于在边界外部的段,沿AB直线行走
|
* 路径示例:A → D(直线) → F(沿边界) → G(直线) → H(沿边界) → B(直线)
|
*
|
* @param pointA 起点(上一段结束的终点)
|
* @param pointB 终点(下一段需要割草路径的起始点)
|
* @param boundary 安全内缩边界C
|
* @return 连接路径段列表(全部为isMowing=false的空走段)
|
*/
|
private static List<PathSegment> buildSmartConnection(Point pointA, Point pointB, List<Point> boundary) {
|
List<PathSegment> result = new ArrayList<>();
|
|
// 1. 检查AB直线是否穿越边界C
|
if (!segmentIntersectsBoundary(pointA, pointB, boundary)) {
|
// 不穿越边界,直接使用AB作为换行路线
|
result.add(new PathSegment(pointA, pointB, false));
|
return result;
|
}
|
|
// 2. AB线穿越了边界C,需要找到所有交点
|
List<IntersectionInfo> intersections = getAllBoundaryIntersections(pointA, pointB, boundary);
|
|
if (intersections.isEmpty()) {
|
// 没有交点(不应该发生,但安全处理),使用直线
|
result.add(new PathSegment(pointA, pointB, false));
|
return result;
|
}
|
|
// 3. 按距离起点A的距离排序交点
|
intersections.sort(Comparator.comparingDouble(inter -> distance(pointA, inter.point)));
|
|
// 4. 构建完整的点序列:A, I1, I2, ..., In, B(I为交点)
|
List<Point> pointSequence = new ArrayList<>();
|
pointSequence.add(pointA);
|
for (IntersectionInfo inter : intersections) {
|
pointSequence.add(inter.point);
|
}
|
pointSequence.add(pointB);
|
|
// 5. 处理每两个相邻点之间的段
|
Point currentPos = pointA;
|
|
for (int i = 0; i < pointSequence.size() - 1; i++) {
|
Point p1 = pointSequence.get(i);
|
Point p2 = pointSequence.get(i + 1);
|
|
// 判断p1到p2的段(AB线段的一部分)是否在边界C内部(检查中点)
|
Point midPoint = new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2);
|
boolean segmentInsideBoundary = isPointInPolygon(midPoint, boundary);
|
|
if (segmentInsideBoundary) {
|
// 段在边界内部(如DF段、GH段),需要沿边界行走
|
if (i == 0) {
|
// 第一个段:从A到第一个交点D
|
// 如果段在边界内部,说明A在边界内部,需要先从A沿边界走到第一个交点
|
IntersectionInfo firstInter = intersections.get(0);
|
SnapResult snapA = snapToBoundary(currentPos, boundary);
|
List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints(
|
snapA.onEdge, snapA.edgeIndex,
|
firstInter.point, firstInter.edgeIndex,
|
boundary);
|
result.addAll(boundaryPath);
|
currentPos = firstInter.point;
|
} else if (i == pointSequence.size() - 2) {
|
// 最后一个段:从最后一个交点H到B
|
// 需要沿边界从当前点(应该是最后一个交点H)到B在边界上的投影
|
IntersectionInfo lastInter = intersections.get(intersections.size() - 1);
|
SnapResult snapB = snapToBoundary(pointB, boundary);
|
List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints(
|
currentPos, lastInter.edgeIndex,
|
snapB.onEdge, snapB.edgeIndex,
|
boundary);
|
result.addAll(boundaryPath);
|
// 如果B不在边界上,从边界投影直线到B
|
if (distance(snapB.onEdge, pointB) > 1e-6) {
|
result.add(new PathSegment(snapB.onEdge, pointB, false));
|
}
|
currentPos = pointB;
|
} else {
|
// 中间段:两个交点之间的段(都在边界上),沿边界行走
|
IntersectionInfo inter1 = intersections.get(i - 1);
|
IntersectionInfo inter2 = intersections.get(i);
|
List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints(
|
inter1.point, inter1.edgeIndex,
|
inter2.point, inter2.edgeIndex,
|
boundary);
|
result.addAll(boundaryPath);
|
currentPos = inter2.point;
|
}
|
} else {
|
// 段在边界外部,可以直接沿AB直线连接(如A到D,F到G,H到B)
|
if (distance(p1, p2) > 1e-6) {
|
// 如果当前点不在p1,先连接到p1
|
if (distance(currentPos, p1) > 1e-6) {
|
result.add(new PathSegment(currentPos, p1, false));
|
}
|
// 从p1直线到p2
|
result.add(new PathSegment(p1, p2, false));
|
currentPos = p2;
|
}
|
}
|
}
|
|
return result;
|
}
|
|
/**
|
* 检查线段是否穿越边界(与边界边相交,不包括端点)
|
*/
|
private static boolean segmentIntersectsBoundary(Point a, Point b, List<Point> boundary) {
|
for (int i = 0; i < boundary.size(); i++) {
|
Point c = boundary.get(i);
|
Point d = boundary.get((i + 1) % boundary.size());
|
// 忽略共享端点的相交
|
if (isSamePoint(a, c) || isSamePoint(a, d) || isSamePoint(b, c) || isSamePoint(b, d)) {
|
continue;
|
}
|
if (segmentsIntersect(a, b, c, d)) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
/**
|
* 获取线段与边界的所有交点信息(包括点和对应边索引)
|
*/
|
private static List<IntersectionInfo> getAllBoundaryIntersections(Point a, Point b, List<Point> boundary) {
|
List<IntersectionInfo> intersections = new ArrayList<>();
|
|
for (int i = 0; i < boundary.size(); i++) {
|
Point c = boundary.get(i);
|
Point d = boundary.get((i + 1) % boundary.size());
|
|
// 忽略共享端点
|
if (isSamePoint(a, c) || isSamePoint(a, d) || isSamePoint(b, c) || isSamePoint(b, d)) {
|
continue;
|
}
|
|
Point intersection = getLineIntersection(a, b, c, d);
|
if (intersection != null) {
|
intersections.add(new IntersectionInfo(intersection, i));
|
}
|
}
|
|
return intersections;
|
}
|
|
/**
|
* 获取边界上两点之间的路径(沿边界行走)
|
* @param start 起点(必须在边界上)
|
* @param startEdgeIndex 起点所在的边索引
|
* @param end 终点(必须在边界上)
|
* @param endEdgeIndex 终点所在的边索引
|
* @param boundary 边界点列表
|
* @return 沿边界的路径段列表
|
*/
|
private static List<PathSegment> getBoundaryPathBetweenPoints(
|
Point start, int startEdgeIndex,
|
Point end, int endEdgeIndex,
|
List<Point> boundary) {
|
|
List<PathSegment> result = new ArrayList<>();
|
|
if (startEdgeIndex == endEdgeIndex) {
|
// 在同一条边上,直接连接
|
if (distance(start, end) > 1e-6) {
|
result.add(new PathSegment(start, end, false));
|
}
|
return result;
|
}
|
|
int n = boundary.size();
|
|
// 计算顺时针路径
|
List<Point> pathClockwise = new ArrayList<>();
|
pathClockwise.add(start);
|
|
int curr = startEdgeIndex;
|
while (curr != endEdgeIndex) {
|
pathClockwise.add(boundary.get((curr + 1) % n));
|
curr = (curr + 1) % n;
|
}
|
pathClockwise.add(end);
|
|
// 计算逆时针路径
|
List<Point> pathCounterClockwise = new ArrayList<>();
|
pathCounterClockwise.add(start);
|
curr = startEdgeIndex;
|
while (curr != endEdgeIndex) {
|
pathCounterClockwise.add(boundary.get(curr));
|
curr = (curr - 1 + n) % n;
|
}
|
pathCounterClockwise.add(end);
|
|
// 选择较短的路径
|
List<Point> chosenPath = getPathLength(pathClockwise) < getPathLength(pathCounterClockwise)
|
? pathClockwise : pathCounterClockwise;
|
|
// 转换为路径段
|
for (int i = 0; i < chosenPath.size() - 1; i++) {
|
if (distance(chosenPath.get(i), chosenPath.get(i + 1)) > 1e-6) {
|
result.add(new PathSegment(chosenPath.get(i), chosenPath.get(i + 1), false));
|
}
|
}
|
|
return result;
|
}
|
|
/**
|
* 计算路径总长度
|
*/
|
private static double getPathLength(List<Point> path) {
|
double len = 0;
|
for (int i = 0; i < path.size() - 1; i++) {
|
len += distance(path.get(i), path.get(i + 1));
|
}
|
return len;
|
}
|
|
/**
|
* 判断两个点是否相同(考虑浮点误差)
|
*/
|
private static boolean isSamePoint(Point a, Point b) {
|
return Math.abs(a.x - b.x) < 1e-6 && Math.abs(a.y - b.y) < 1e-6;
|
}
|
|
/**
|
* 判断两条线段是否相交(不包括端点)
|
*/
|
private static boolean segmentsIntersect(Point a, Point b, Point c, Point d) {
|
return ccw(a, c, d) != ccw(b, c, d) && ccw(a, b, c) != ccw(a, b, d);
|
}
|
|
/**
|
* 判断三点是否逆时针排列
|
*/
|
private static boolean ccw(Point a, Point b, Point c) {
|
return (c.y - a.y) * (b.x - a.x) > (b.y - a.y) * (c.x - a.x);
|
}
|
|
/**
|
* 交点信息内部类
|
*/
|
private static class IntersectionInfo {
|
Point point; // 交点坐标
|
int edgeIndex; // 交点所在的边界边索引
|
|
IntersectionInfo(Point point, int edgeIndex) {
|
this.point = point;
|
this.edgeIndex = edgeIndex;
|
}
|
}
|
|
/**
|
* 边界吸附结果内部类
|
*/
|
private static class SnapResult {
|
Point onEdge; // 在边界上的投影点
|
int edgeIndex; // 所在的边界边索引
|
|
SnapResult(Point p, int idx) {
|
this.onEdge = p;
|
this.edgeIndex = idx;
|
}
|
}
|
|
/**
|
* 计算点到边界最近的投影点以及所在边索引
|
* @param p 要吸附的点
|
* @param poly 边界多边形
|
* @return 吸附结果
|
*/
|
private static SnapResult snapToBoundary(Point p, List<Point> poly) {
|
double minD = Double.MAX_VALUE;
|
Point bestProj = p;
|
int bestIdx = -1;
|
for (int i = 0; i < poly.size(); i++) {
|
Point s = poly.get(i);
|
Point e = poly.get((i + 1) % poly.size());
|
double l2 = (s.x - e.x) * (s.x - e.x) + (s.y - e.y) * (s.y - e.y);
|
if (l2 < 1e-10) {
|
double d = Math.hypot(p.x - s.x, p.y - s.y);
|
if (d < minD) {
|
minD = d;
|
bestProj = s;
|
bestIdx = i;
|
}
|
continue;
|
}
|
double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2;
|
t = Math.max(0, Math.min(1, t));
|
Point proj = new Point(s.x + t * (e.x - s.x), s.y + t * (e.y - s.y));
|
double d = Math.hypot(p.x - proj.x, p.y - proj.y);
|
if (d < minD) {
|
minD = d;
|
bestProj = proj;
|
bestIdx = i;
|
}
|
}
|
return new SnapResult(bestProj, bestIdx == -1 ? 0 : bestIdx);
|
}
|
|
/**
|
* 判断点是否在边界上(距离边界很近)
|
* @param p 要检查的点
|
* @param boundary 边界多边形
|
* @return 是否在边界上
|
*/
|
@SuppressWarnings("unused")
|
private static boolean isPointOnBoundary(Point p, List<Point> boundary) {
|
double threshold = 1e-4; // 阈值,考虑浮点误差
|
for (int i = 0; i < boundary.size(); i++) {
|
Point s = boundary.get(i);
|
Point e = boundary.get((i + 1) % boundary.size());
|
double dist = distToSegment(p, s, e);
|
if (dist < threshold) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
/**
|
* 计算点到线段的距离
|
* @param p 点
|
* @param s 线段起点
|
* @param e 线段终点
|
* @return 距离
|
*/
|
private static double distToSegment(Point p, Point s, Point e) {
|
double l2 = (s.x - e.x) * (s.x - e.x) + (s.y - e.y) * (s.y - e.y);
|
if (l2 < 1e-10) {
|
return Math.hypot(p.x - s.x, p.y - s.y);
|
}
|
double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2;
|
t = Math.max(0, Math.min(1, t));
|
return Math.hypot(p.x - (s.x + t * (e.x - s.x)), p.y - (s.y + t * (e.y - s.y)));
|
}
|
|
/**
|
* 生成原始扫描路径(无障碍物版本)
|
*/
|
private static List<PathSegment> generateGlobalScanPath(
|
List<Point> polygon, double width, double angle, Point currentPos) {
|
|
List<PathSegment> segments = new ArrayList<>();
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
boolean leftToRight = true;
|
for (double y = minY + width/2; y <= maxY - width/2; y += width) {
|
List<Double> xIntersections = getXIntersections(rotatedPoly, y);
|
if (xIntersections.size() < 2) continue;
|
Collections.sort(xIntersections);
|
|
List<PathSegment> lineSegmentsInRow = new ArrayList<>();
|
for (int i = 0; i < xIntersections.size() - 1; i += 2) {
|
Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle);
|
Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle);
|
lineSegmentsInRow.add(new PathSegment(pS, pE, true));
|
}
|
|
if (!leftToRight) {
|
Collections.reverse(lineSegmentsInRow);
|
for (PathSegment s : lineSegmentsInRow) {
|
Point temp = s.start;
|
s.start = s.end;
|
s.end = temp;
|
}
|
}
|
|
for (PathSegment s : lineSegmentsInRow) {
|
if (distance(currentPos, s.start) > 0.01) {
|
segments.add(new PathSegment(currentPos, s.start, false));
|
}
|
segments.add(s);
|
currentPos = s.end;
|
}
|
leftToRight = !leftToRight;
|
}
|
|
return segments;
|
}
|
|
/**
|
* 解析障碍物字符串
|
* 格式:"(x1,y1;x2,y2)(x1,y1;x2,y2;x3,y3)"
|
*/
|
private static List<Obstacle> parseObstacles(String obstaclesStr) {
|
List<Obstacle> obstacles = new ArrayList<>();
|
if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) {
|
return obstacles;
|
}
|
|
String trimmed = obstaclesStr.trim();
|
List<String> obstacleStrs = new ArrayList<>();
|
|
// 分割每个障碍物(用括号分隔)
|
int start = trimmed.indexOf('(');
|
while (start != -1) {
|
int end = trimmed.indexOf(')', start);
|
if (end == -1) break;
|
|
String obsStr = trimmed.substring(start + 1, end);
|
obstacleStrs.add(obsStr);
|
start = trimmed.indexOf('(', end);
|
}
|
|
// 解析每个障碍物
|
for (String obsStr : obstacleStrs) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = obsStr.split(";");
|
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) {
|
points.add(new Point(
|
Double.parseDouble(xy[0].trim()),
|
Double.parseDouble(xy[1].trim())
|
));
|
}
|
}
|
|
if (points.size() == 2) {
|
// 圆形障碍物:第一个点为圆心,第二个点为圆上一点
|
Point center = points.get(0);
|
Point onCircle = points.get(1);
|
double radius = distance(center, onCircle);
|
obstacles.add(new Obstacle(center, radius));
|
} else if (points.size() > 2) {
|
// 多边形障碍物
|
obstacles.add(new Obstacle(points));
|
}
|
}
|
|
return obstacles;
|
}
|
|
/**
|
* 外扩障碍物(增加安全边距)
|
*/
|
private static List<Obstacle> expandObstacles(List<Obstacle> obstacles, double margin) {
|
List<Obstacle> expanded = new ArrayList<>();
|
|
for (Obstacle obs : obstacles) {
|
if (obs.isCircle()) {
|
// 圆形:半径增加安全边距
|
expanded.add(new Obstacle(obs.center, obs.radius + margin));
|
} else {
|
// 多边形:向外偏移(与边界内缩方向相反)
|
List<Point> expandedPoints = getOutsetPolygon(obs.points, margin);
|
expanded.add(new Obstacle(expandedPoints));
|
}
|
}
|
|
return expanded;
|
}
|
|
/**
|
* 多边形外扩(与内缩方向相反)
|
*/
|
private static List<Point> getOutsetPolygon(List<Point> points, double margin) {
|
// 这里使用简化的外扩方法:沿法线向外移动
|
List<Point> outset = new ArrayList<>();
|
int n = points.size();
|
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
|
// 计算两个边的向量
|
double v1x = pCurr.x - pPrev.x, v1y = pCurr.y - pPrev.y;
|
double v2x = pNext.x - pCurr.x, v2y = pNext.y - pCurr.y;
|
|
// 计算法线(确保向外)
|
double nx1 = -v1y, ny1 = v1x;
|
double nx2 = -v2y, ny2 = v2x;
|
|
// 归一化
|
double len1 = Math.hypot(nx1, ny1);
|
double len2 = Math.hypot(nx2, ny2);
|
if (len1 > 1e-6) { nx1 /= len1; ny1 /= len1; }
|
if (len2 > 1e-6) { nx2 /= len2; ny2 /= len2; }
|
|
// 计算平均法线方向
|
double nx = (nx1 + nx2) / 2;
|
double ny = (ny1 + ny2) / 2;
|
double len = Math.hypot(nx, ny);
|
if (len > 1e-6) {
|
nx /= len;
|
ny /= len;
|
}
|
|
// 向外移动
|
outset.add(new Point(
|
pCurr.x + nx * margin,
|
pCurr.y + ny * margin
|
));
|
}
|
|
return outset;
|
}
|
|
/**
|
* 障碍物类
|
*/
|
private static class Obstacle {
|
List<Point> points; // 多边形顶点(对圆形为空)
|
Point center; // 圆心(仅对圆形有效)
|
double radius; // 半径(仅对圆形有效)
|
boolean isCircle;
|
|
// 多边形构造函数
|
Obstacle(List<Point> points) {
|
this.points = new ArrayList<>(points);
|
this.isCircle = false;
|
ensureCounterClockwise(this.points); // 确保顺时针(对障碍物是内部区域)
|
}
|
|
// 圆形构造函数
|
Obstacle(Point center, double radius) {
|
this.center = new Point(center.x, center.y);
|
this.radius = radius;
|
this.isCircle = true;
|
this.points = new ArrayList<>();
|
}
|
|
// 判断点是否在障碍物内部
|
boolean contains(Point p) {
|
if (isCircle) {
|
return distance(p, center) <= radius;
|
} else {
|
return isPointInPolygon(p, points);
|
}
|
}
|
|
// 获取线段与障碍物的交点
|
List<Point> getIntersections(PathSegment segment) {
|
List<Point> intersections = new ArrayList<>();
|
|
if (isCircle) {
|
// 线段与圆的交点
|
double dx = segment.end.x - segment.start.x;
|
double dy = segment.end.y - segment.start.y;
|
double a = dx * dx + dy * dy;
|
double b = 2 * (dx * (segment.start.x - center.x) +
|
dy * (segment.start.y - center.y));
|
double c = (segment.start.x - center.x) * (segment.start.x - center.x) +
|
(segment.start.y - center.y) * (segment.start.y - center.y) -
|
radius * radius;
|
|
double discriminant = b * b - 4 * a * c;
|
if (discriminant >= 0) {
|
discriminant = Math.sqrt(discriminant);
|
for (int sign = -1; sign <= 1; sign += 2) {
|
double t = (-b + sign * discriminant) / (2 * a);
|
if (t >= 0 && t <= 1) {
|
intersections.add(new Point(
|
segment.start.x + t * dx,
|
segment.start.y + t * dy
|
));
|
}
|
}
|
}
|
} else {
|
// 线段与多边形的交点
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i);
|
Point p2 = points.get((i + 1) % points.size());
|
|
Point inter = getLineIntersection(
|
segment.start, segment.end, p1, p2);
|
if (inter != null) {
|
intersections.add(inter);
|
}
|
}
|
}
|
|
return intersections;
|
}
|
|
boolean isCircle() {
|
return isCircle;
|
}
|
}
|
|
/**
|
* 判断点是否在多边形内部(射线法)
|
*/
|
private static boolean isPointInPolygon(Point p, List<Point> polygon) {
|
boolean inside = false;
|
for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) {
|
Point pi = polygon.get(i);
|
Point pj = polygon.get(j);
|
|
if (((pi.y > p.y) != (pj.y > p.y)) &&
|
(p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y) + pi.x)) {
|
inside = !inside;
|
}
|
}
|
return inside;
|
}
|
|
/**
|
* 计算两条线段的交点
|
*/
|
private static Point getLineIntersection(Point p1, Point p2, Point p3, Point p4) {
|
double denom = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x);
|
if (Math.abs(denom) < 1e-6) return null; // 平行
|
|
double t = ((p1.x - p3.x) * (p3.y - p4.y) - (p1.y - p3.y) * (p3.x - p4.x)) / denom;
|
double u = -((p1.x - p2.x) * (p1.y - p3.y) - (p1.y - p2.y) * (p1.x - p3.x)) / denom;
|
|
if (t >= 0 && t <= 1 && u >= 0 && u <= 1) {
|
return new Point(
|
p1.x + t * (p2.x - p1.x),
|
p1.y + t * (p2.y - p1.y)
|
);
|
}
|
return null;
|
}
|
|
/**
|
* 计算两点距离
|
*/
|
private static double distance(Point p1, Point p2) {
|
return Math.hypot(p1.x - p2.x, p1.y - p2.y);
|
}
|
|
// ============ 以下是从A代码复用的方法 ============
|
|
private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) {
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
double minY = Double.MAX_VALUE;
|
for (Point p : rotatedPoly) minY = Math.min(minY, p.y);
|
|
double firstY = minY + width/2;
|
List<Double> xInter = getXIntersections(rotatedPoly, firstY);
|
if (xInter.isEmpty()) return polygon.get(0);
|
Collections.sort(xInter);
|
return rotatePoint(new Point(xInter.get(0), firstY), angle);
|
}
|
|
private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) {
|
int bestIdx = 0;
|
double minDist = Double.MAX_VALUE;
|
for (int i = 0; i < boundary.size(); i++) {
|
double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y);
|
if (d < minDist) { minDist = d; bestIdx = i; }
|
}
|
List<Point> aligned = new ArrayList<>();
|
for (int i = 0; i < boundary.size(); i++) {
|
aligned.add(boundary.get((bestIdx + i) % boundary.size()));
|
}
|
return aligned;
|
}
|
|
private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) {
|
List<Double> xIntersections = new ArrayList<>();
|
for (int i = 0; i < rotatedPoly.size(); i++) {
|
Point p1 = rotatedPoly.get(i);
|
Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size());
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y);
|
xIntersections.add(x);
|
}
|
}
|
return xIntersections;
|
}
|
|
private static double findOptimalAngle(List<Point> polygon) {
|
double bestAngle = 0;
|
double minHeight = Double.MAX_VALUE;
|
for (int i = 0; i < polygon.size(); i++) {
|
Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size());
|
double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calculateHeightAtAngle(polygon, angle);
|
if (h < minHeight) { minHeight = h; bestAngle = angle; }
|
}
|
return bestAngle;
|
}
|
|
private static double calculateHeightAtAngle(List<Point> poly, double angle) {
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : poly) {
|
Point rp = rotatePoint(p, -angle);
|
minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y);
|
}
|
return maxY - minY;
|
}
|
|
private static List<Point> getInsetPolygon(List<Point> points, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = points.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
|
if (l1 < 1e-6 || l2 < 1e-6) continue;
|
|
double n1x = -d1y / l1, n1y = d1x / l1;
|
double n2x = -d2y / l2, n2y = d2x / l2;
|
|
double bisectorX = n1x + n2x, bisectorY = n1y + n2y;
|
double bLen = Math.hypot(bisectorX, bisectorY);
|
if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; }
|
else { bisectorX /= bLen; bisectorY /= bLen; }
|
|
double cosHalfAngle = n1x * bisectorX + n1y * bisectorY;
|
double dist = margin / Math.max(cosHalfAngle, 0.1);
|
|
dist = Math.min(dist, margin * 5);
|
|
result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist));
|
}
|
return result;
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double cos = Math.cos(angle), sin = Math.sin(angle);
|
return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos);
|
}
|
|
private static void ensureCounterClockwise(List<Point> points) {
|
double sum = 0;
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i), p2 = points.get((i + 1) % points.size());
|
sum += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (sum > 0) Collections.reverse(points);
|
}
|
|
private static List<Point> parseCoordinates(String coordinates) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = coordinates.split(";");
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1);
|
return points;
|
}
|
|
/**
|
* 打印输出路径坐标到控制台
|
*/
|
private static void printPathCoordinates(List<PathSegment> path) {
|
if (path == null || path.isEmpty()) {
|
System.out.println("路径为空");
|
return;
|
}
|
|
System.out.println("========== 路径坐标输出 ==========");
|
System.out.println("总路径段数: " + path.size());
|
System.out.println();
|
System.out.println("路径坐标序列 (格式: x,y;x,y;...):");
|
|
StringBuilder sb = new StringBuilder();
|
for (int i = 0; i < path.size(); i++) {
|
PathSegment segment = path.get(i);
|
if (i == 0) {
|
// 第一个段的起点
|
sb.append(String.format("%.2f,%.2f", segment.start.x, segment.start.y));
|
}
|
// 每个段的终点
|
sb.append(";");
|
sb.append(String.format("%.2f,%.2f", segment.end.x, segment.end.y));
|
}
|
|
System.out.println(sb.toString());
|
System.out.println();
|
System.out.println("详细路径信息:");
|
for (int i = 0; i < path.size(); i++) {
|
PathSegment segment = path.get(i);
|
String type = segment.isMowing ? "割草" : "空走";
|
System.out.println(String.format("段 %d [%s]: (%.2f,%.2f) -> (%.2f,%.2f)",
|
i + 1, type, segment.start.x, segment.start.y, segment.end.x, segment.end.y));
|
}
|
System.out.println("==================================");
|
}
|
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
@Override
|
public boolean equals(Object o) {
|
if (!(o instanceof Point)) return false;
|
Point p = (Point) o;
|
return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4;
|
}
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
public PathSegment(Point s, Point e, boolean m) {
|
this.start = s;
|
this.end = e;
|
this.isMowing = m;
|
}
|
}
|
}
|