package lujing;
|
import java.util.*;
|
|
|
/**
|
* 异形草地路径规划 - 含障碍物版
|
* 功能:在地块内部避开障碍物,生成连续弓字形割草路径
|
*/
|
public class YixinglujingHaveObstacel {
|
|
public static List<PathSegment> planPath(String coordinates, String obstaclesStr,
|
String widthStr, String marginStr) {
|
// 1. 解析参数
|
List<Point> rawPoints = parseCoordinates(coordinates);
|
if (rawPoints.size() < 3) return new ArrayList<>();
|
|
double mowWidth = Double.parseDouble(widthStr);
|
double safeMargin = Double.parseDouble(marginStr);
|
|
// 解析障碍物
|
List<Obstacle> obstacles = parseObstacles(obstaclesStr);
|
|
// 2. 预处理:确保边界逆时针
|
ensureCounterClockwise(rawPoints);
|
|
// 3. 生成内缩多边形(安全边界)
|
List<Point> boundary = getInsetPolygon(rawPoints, safeMargin);
|
if (boundary.size() < 3) return new ArrayList<>();
|
|
// 4. 外扩障碍物(安全边距)
|
List<Obstacle> expandedObstacles = expandObstacles(obstacles, safeMargin);
|
|
// 5. 确定最优作业角度
|
double bestAngle = findOptimalAngle(boundary);
|
|
// 6. 获取首个作业点,用于对齐围边起点
|
Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle);
|
|
// 7. 对齐围边
|
List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart);
|
|
// 8. 第一阶段:围边路径
|
List<PathSegment> finalPath = new ArrayList<>();
|
for (int i = 0; i < alignedBoundary.size(); i++) {
|
Point pStart = alignedBoundary.get(i);
|
Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size());
|
finalPath.add(new PathSegment(pStart, pEnd, true));
|
}
|
|
// 9. 第二阶段:生成内部扫描路径(考虑障碍物)
|
Point lastEdgePos = alignedBoundary.get(0);
|
List<PathSegment> scanPath = generateGlobalScanPathWithObstacles(
|
boundary, expandedObstacles, mowWidth, bestAngle, lastEdgePos);
|
|
finalPath.addAll(scanPath);
|
|
// 10. 格式化坐标:保留两位小数
|
for (PathSegment segment : finalPath) {
|
segment.start.x = Math.round(segment.start.x * 100.0) / 100.0;
|
segment.start.y = Math.round(segment.start.y * 100.0) / 100.0;
|
segment.end.x = Math.round(segment.end.x * 100.0) / 100.0;
|
segment.end.y = Math.round(segment.end.y * 100.0) / 100.0;
|
}
|
|
// 11. 打印输出路径坐标
|
printPathCoordinates(finalPath);
|
|
return finalPath;
|
}
|
|
/**
|
* 生成带障碍物的扫描路径
|
*/
|
private static List<PathSegment> generateGlobalScanPathWithObstacles(
|
List<Point> polygon, List<Obstacle> obstacles,
|
double width, double angle, Point startPos) {
|
|
// 1. 生成原始扫描线(无障碍物)
|
List<PathSegment> originalSegments = generateGlobalScanPath(polygon, width, angle, startPos);
|
|
// 2. 移除在障碍物内部的线段
|
List<PathSegment> remainingSegments = new ArrayList<>();
|
for (PathSegment seg : originalSegments) {
|
if (!seg.isMowing) {
|
// 空走段直接保留
|
remainingSegments.add(seg);
|
continue;
|
}
|
|
// 将割草段与所有障碍物进行裁剪
|
List<PathSegment> clippedSegments = new ArrayList<>();
|
clippedSegments.add(seg);
|
|
for (Obstacle obs : obstacles) {
|
List<PathSegment> newSegments = new ArrayList<>();
|
for (PathSegment s : clippedSegments) {
|
newSegments.addAll(clipSegmentWithObstacle(s, obs));
|
}
|
clippedSegments = newSegments;
|
}
|
|
remainingSegments.addAll(clippedSegments);
|
}
|
|
// 3. 重新连接路径段(弓字形连接)
|
return reconnectSegments(remainingSegments);
|
}
|
|
/**
|
* 将线段与障碍物进行裁剪
|
* 返回不在障碍物内部的子线段
|
*/
|
private static List<PathSegment> clipSegmentWithObstacle(PathSegment segment, Obstacle obstacle) {
|
List<PathSegment> result = new ArrayList<>();
|
|
// 检查线段是否完全在障碍物外部
|
boolean startInside = obstacle.contains(segment.start);
|
boolean endInside = obstacle.contains(segment.end);
|
|
if (!startInside && !endInside) {
|
// 线段两端都在外部,检查是否穿过障碍物
|
List<Point> intersections = obstacle.getIntersections(segment);
|
if (intersections.isEmpty()) {
|
// 完全在外部
|
result.add(segment);
|
} else {
|
// 穿过障碍物,分割线段
|
intersections.sort(Comparator.comparingDouble(p ->
|
distance(segment.start, p)));
|
|
Point prevPoint = segment.start;
|
for (Point inter : intersections) {
|
result.add(new PathSegment(prevPoint, inter, true));
|
prevPoint = inter;
|
}
|
result.add(new PathSegment(prevPoint, segment.end, true));
|
|
// 移除在障碍物内部的段(奇数索引的段)
|
List<PathSegment> filtered = new ArrayList<>();
|
for (int i = 0; i < result.size(); i++) {
|
PathSegment s = result.get(i);
|
Point midPoint = new Point(
|
(s.start.x + s.end.x) / 2,
|
(s.start.y + s.end.y) / 2
|
);
|
if (!obstacle.contains(midPoint)) {
|
filtered.add(s);
|
}
|
}
|
return filtered;
|
}
|
} else if (startInside && endInside) {
|
// 完全在内部,丢弃
|
return result;
|
} else {
|
// 一端在内部,一端在外部
|
Point insidePoint = startInside ? segment.start : segment.end;
|
Point outsidePoint = startInside ? segment.end : segment.start;
|
|
List<Point> intersections = obstacle.getIntersections(segment);
|
if (!intersections.isEmpty()) {
|
// 取离外部点最近的交点
|
intersections.sort(Comparator.comparingDouble(p ->
|
distance(outsidePoint, p)));
|
Point inter = intersections.get(0);
|
|
// 只保留外部部分
|
if (startInside) {
|
result.add(new PathSegment(inter, outsidePoint, true));
|
} else {
|
result.add(new PathSegment(outsidePoint, inter, true));
|
}
|
}
|
}
|
|
return result;
|
}
|
|
/**
|
* 重新连接路径段,形成连续弓字形路径
|
*/
|
private static List<PathSegment> reconnectSegments(List<PathSegment> segments) {
|
if (segments.isEmpty()) return new ArrayList<>();
|
|
List<PathSegment> reconnected = new ArrayList<>();
|
Point currentPos = segments.get(0).start;
|
|
for (PathSegment seg : segments) {
|
if (seg.isMowing) {
|
// 割草段:检查是否需要添加空走段
|
if (distance(currentPos, seg.start) > 0.01) {
|
reconnected.add(new PathSegment(currentPos, seg.start, false));
|
}
|
reconnected.add(seg);
|
currentPos = seg.end;
|
} else {
|
// 空走段直接添加
|
reconnected.add(seg);
|
currentPos = seg.end;
|
}
|
}
|
|
return reconnected;
|
}
|
|
/**
|
* 生成原始扫描路径(无障碍物版本)
|
*/
|
private static List<PathSegment> generateGlobalScanPath(
|
List<Point> polygon, double width, double angle, Point currentPos) {
|
|
List<PathSegment> segments = new ArrayList<>();
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : rotatedPoly) {
|
minY = Math.min(minY, p.y);
|
maxY = Math.max(maxY, p.y);
|
}
|
|
boolean leftToRight = true;
|
for (double y = minY + width/2; y <= maxY - width/2; y += width) {
|
List<Double> xIntersections = getXIntersections(rotatedPoly, y);
|
if (xIntersections.size() < 2) continue;
|
Collections.sort(xIntersections);
|
|
List<PathSegment> lineSegmentsInRow = new ArrayList<>();
|
for (int i = 0; i < xIntersections.size() - 1; i += 2) {
|
Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle);
|
Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle);
|
lineSegmentsInRow.add(new PathSegment(pS, pE, true));
|
}
|
|
if (!leftToRight) {
|
Collections.reverse(lineSegmentsInRow);
|
for (PathSegment s : lineSegmentsInRow) {
|
Point temp = s.start;
|
s.start = s.end;
|
s.end = temp;
|
}
|
}
|
|
for (PathSegment s : lineSegmentsInRow) {
|
if (distance(currentPos, s.start) > 0.01) {
|
segments.add(new PathSegment(currentPos, s.start, false));
|
}
|
segments.add(s);
|
currentPos = s.end;
|
}
|
leftToRight = !leftToRight;
|
}
|
|
return segments;
|
}
|
|
/**
|
* 解析障碍物字符串
|
* 格式:"(x1,y1;x2,y2)(x1,y1;x2,y2;x3,y3)"
|
*/
|
private static List<Obstacle> parseObstacles(String obstaclesStr) {
|
List<Obstacle> obstacles = new ArrayList<>();
|
if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) {
|
return obstacles;
|
}
|
|
String trimmed = obstaclesStr.trim();
|
List<String> obstacleStrs = new ArrayList<>();
|
|
// 分割每个障碍物(用括号分隔)
|
int start = trimmed.indexOf('(');
|
while (start != -1) {
|
int end = trimmed.indexOf(')', start);
|
if (end == -1) break;
|
|
String obsStr = trimmed.substring(start + 1, end);
|
obstacleStrs.add(obsStr);
|
start = trimmed.indexOf('(', end);
|
}
|
|
// 解析每个障碍物
|
for (String obsStr : obstacleStrs) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = obsStr.split(";");
|
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) {
|
points.add(new Point(
|
Double.parseDouble(xy[0].trim()),
|
Double.parseDouble(xy[1].trim())
|
));
|
}
|
}
|
|
if (points.size() == 2) {
|
// 圆形障碍物:第一个点为圆心,第二个点为圆上一点
|
Point center = points.get(0);
|
Point onCircle = points.get(1);
|
double radius = distance(center, onCircle);
|
obstacles.add(new Obstacle(center, radius));
|
} else if (points.size() > 2) {
|
// 多边形障碍物
|
obstacles.add(new Obstacle(points));
|
}
|
}
|
|
return obstacles;
|
}
|
|
/**
|
* 外扩障碍物(增加安全边距)
|
*/
|
private static List<Obstacle> expandObstacles(List<Obstacle> obstacles, double margin) {
|
List<Obstacle> expanded = new ArrayList<>();
|
|
for (Obstacle obs : obstacles) {
|
if (obs.isCircle()) {
|
// 圆形:半径增加安全边距
|
expanded.add(new Obstacle(obs.center, obs.radius + margin));
|
} else {
|
// 多边形:向外偏移(与边界内缩方向相反)
|
List<Point> expandedPoints = getOutsetPolygon(obs.points, margin);
|
expanded.add(new Obstacle(expandedPoints));
|
}
|
}
|
|
return expanded;
|
}
|
|
/**
|
* 多边形外扩(与内缩方向相反)
|
*/
|
private static List<Point> getOutsetPolygon(List<Point> points, double margin) {
|
// 这里使用简化的外扩方法:沿法线向外移动
|
List<Point> outset = new ArrayList<>();
|
int n = points.size();
|
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
|
// 计算两个边的向量
|
double v1x = pCurr.x - pPrev.x, v1y = pCurr.y - pPrev.y;
|
double v2x = pNext.x - pCurr.x, v2y = pNext.y - pCurr.y;
|
|
// 计算法线(确保向外)
|
double nx1 = -v1y, ny1 = v1x;
|
double nx2 = -v2y, ny2 = v2x;
|
|
// 归一化
|
double len1 = Math.hypot(nx1, ny1);
|
double len2 = Math.hypot(nx2, ny2);
|
if (len1 > 1e-6) { nx1 /= len1; ny1 /= len1; }
|
if (len2 > 1e-6) { nx2 /= len2; ny2 /= len2; }
|
|
// 计算平均法线方向
|
double nx = (nx1 + nx2) / 2;
|
double ny = (ny1 + ny2) / 2;
|
double len = Math.hypot(nx, ny);
|
if (len > 1e-6) {
|
nx /= len;
|
ny /= len;
|
}
|
|
// 向外移动
|
outset.add(new Point(
|
pCurr.x + nx * margin,
|
pCurr.y + ny * margin
|
));
|
}
|
|
return outset;
|
}
|
|
/**
|
* 障碍物类
|
*/
|
private static class Obstacle {
|
List<Point> points; // 多边形顶点(对圆形为空)
|
Point center; // 圆心(仅对圆形有效)
|
double radius; // 半径(仅对圆形有效)
|
boolean isCircle;
|
|
// 多边形构造函数
|
Obstacle(List<Point> points) {
|
this.points = new ArrayList<>(points);
|
this.isCircle = false;
|
ensureCounterClockwise(this.points); // 确保顺时针(对障碍物是内部区域)
|
}
|
|
// 圆形构造函数
|
Obstacle(Point center, double radius) {
|
this.center = new Point(center.x, center.y);
|
this.radius = radius;
|
this.isCircle = true;
|
this.points = new ArrayList<>();
|
}
|
|
// 判断点是否在障碍物内部
|
boolean contains(Point p) {
|
if (isCircle) {
|
return distance(p, center) <= radius;
|
} else {
|
return isPointInPolygon(p, points);
|
}
|
}
|
|
// 获取线段与障碍物的交点
|
List<Point> getIntersections(PathSegment segment) {
|
List<Point> intersections = new ArrayList<>();
|
|
if (isCircle) {
|
// 线段与圆的交点
|
double dx = segment.end.x - segment.start.x;
|
double dy = segment.end.y - segment.start.y;
|
double a = dx * dx + dy * dy;
|
double b = 2 * (dx * (segment.start.x - center.x) +
|
dy * (segment.start.y - center.y));
|
double c = (segment.start.x - center.x) * (segment.start.x - center.x) +
|
(segment.start.y - center.y) * (segment.start.y - center.y) -
|
radius * radius;
|
|
double discriminant = b * b - 4 * a * c;
|
if (discriminant >= 0) {
|
discriminant = Math.sqrt(discriminant);
|
for (int sign = -1; sign <= 1; sign += 2) {
|
double t = (-b + sign * discriminant) / (2 * a);
|
if (t >= 0 && t <= 1) {
|
intersections.add(new Point(
|
segment.start.x + t * dx,
|
segment.start.y + t * dy
|
));
|
}
|
}
|
}
|
} else {
|
// 线段与多边形的交点
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i);
|
Point p2 = points.get((i + 1) % points.size());
|
|
Point inter = getLineIntersection(
|
segment.start, segment.end, p1, p2);
|
if (inter != null) {
|
intersections.add(inter);
|
}
|
}
|
}
|
|
return intersections;
|
}
|
|
boolean isCircle() {
|
return isCircle;
|
}
|
}
|
|
/**
|
* 判断点是否在多边形内部(射线法)
|
*/
|
private static boolean isPointInPolygon(Point p, List<Point> polygon) {
|
boolean inside = false;
|
for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) {
|
Point pi = polygon.get(i);
|
Point pj = polygon.get(j);
|
|
if (((pi.y > p.y) != (pj.y > p.y)) &&
|
(p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y) + pi.x)) {
|
inside = !inside;
|
}
|
}
|
return inside;
|
}
|
|
/**
|
* 计算两条线段的交点
|
*/
|
private static Point getLineIntersection(Point p1, Point p2, Point p3, Point p4) {
|
double denom = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x);
|
if (Math.abs(denom) < 1e-6) return null; // 平行
|
|
double t = ((p1.x - p3.x) * (p3.y - p4.y) - (p1.y - p3.y) * (p3.x - p4.x)) / denom;
|
double u = -((p1.x - p2.x) * (p1.y - p3.y) - (p1.y - p2.y) * (p1.x - p3.x)) / denom;
|
|
if (t >= 0 && t <= 1 && u >= 0 && u <= 1) {
|
return new Point(
|
p1.x + t * (p2.x - p1.x),
|
p1.y + t * (p2.y - p1.y)
|
);
|
}
|
return null;
|
}
|
|
/**
|
* 计算两点距离
|
*/
|
private static double distance(Point p1, Point p2) {
|
return Math.hypot(p1.x - p2.x, p1.y - p2.y);
|
}
|
|
// ============ 以下是从A代码复用的方法 ============
|
|
private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) {
|
List<Point> rotatedPoly = new ArrayList<>();
|
for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle));
|
double minY = Double.MAX_VALUE;
|
for (Point p : rotatedPoly) minY = Math.min(minY, p.y);
|
|
double firstY = minY + width/2;
|
List<Double> xInter = getXIntersections(rotatedPoly, firstY);
|
if (xInter.isEmpty()) return polygon.get(0);
|
Collections.sort(xInter);
|
return rotatePoint(new Point(xInter.get(0), firstY), angle);
|
}
|
|
private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) {
|
int bestIdx = 0;
|
double minDist = Double.MAX_VALUE;
|
for (int i = 0; i < boundary.size(); i++) {
|
double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y);
|
if (d < minDist) { minDist = d; bestIdx = i; }
|
}
|
List<Point> aligned = new ArrayList<>();
|
for (int i = 0; i < boundary.size(); i++) {
|
aligned.add(boundary.get((bestIdx + i) % boundary.size()));
|
}
|
return aligned;
|
}
|
|
private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) {
|
List<Double> xIntersections = new ArrayList<>();
|
for (int i = 0; i < rotatedPoly.size(); i++) {
|
Point p1 = rotatedPoly.get(i);
|
Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size());
|
if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) {
|
double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y);
|
xIntersections.add(x);
|
}
|
}
|
return xIntersections;
|
}
|
|
private static double findOptimalAngle(List<Point> polygon) {
|
double bestAngle = 0;
|
double minHeight = Double.MAX_VALUE;
|
for (int i = 0; i < polygon.size(); i++) {
|
Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size());
|
double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x);
|
double h = calculateHeightAtAngle(polygon, angle);
|
if (h < minHeight) { minHeight = h; bestAngle = angle; }
|
}
|
return bestAngle;
|
}
|
|
private static double calculateHeightAtAngle(List<Point> poly, double angle) {
|
double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE;
|
for (Point p : poly) {
|
Point rp = rotatePoint(p, -angle);
|
minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y);
|
}
|
return maxY - minY;
|
}
|
|
private static List<Point> getInsetPolygon(List<Point> points, double margin) {
|
List<Point> result = new ArrayList<>();
|
int n = points.size();
|
for (int i = 0; i < n; i++) {
|
Point pPrev = points.get((i - 1 + n) % n);
|
Point pCurr = points.get(i);
|
Point pNext = points.get((i + 1) % n);
|
|
double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y;
|
double l1 = Math.hypot(d1x, d1y);
|
double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y;
|
double l2 = Math.hypot(d2x, d2y);
|
|
if (l1 < 1e-6 || l2 < 1e-6) continue;
|
|
double n1x = -d1y / l1, n1y = d1x / l1;
|
double n2x = -d2y / l2, n2y = d2x / l2;
|
|
double bisectorX = n1x + n2x, bisectorY = n1y + n2y;
|
double bLen = Math.hypot(bisectorX, bisectorY);
|
if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; }
|
else { bisectorX /= bLen; bisectorY /= bLen; }
|
|
double cosHalfAngle = n1x * bisectorX + n1y * bisectorY;
|
double dist = margin / Math.max(cosHalfAngle, 0.1);
|
|
dist = Math.min(dist, margin * 5);
|
|
result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist));
|
}
|
return result;
|
}
|
|
private static Point rotatePoint(Point p, double angle) {
|
double cos = Math.cos(angle), sin = Math.sin(angle);
|
return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos);
|
}
|
|
private static void ensureCounterClockwise(List<Point> points) {
|
double sum = 0;
|
for (int i = 0; i < points.size(); i++) {
|
Point p1 = points.get(i), p2 = points.get((i + 1) % points.size());
|
sum += (p2.x - p1.x) * (p2.y + p1.y);
|
}
|
if (sum > 0) Collections.reverse(points);
|
}
|
|
private static List<Point> parseCoordinates(String coordinates) {
|
List<Point> points = new ArrayList<>();
|
String[] pairs = coordinates.split(";");
|
for (String pair : pairs) {
|
String[] xy = pair.split(",");
|
if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1])));
|
}
|
if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1);
|
return points;
|
}
|
|
/**
|
* 打印输出路径坐标到控制台
|
*/
|
private static void printPathCoordinates(List<PathSegment> path) {
|
if (path == null || path.isEmpty()) {
|
System.out.println("路径为空");
|
return;
|
}
|
|
System.out.println("========== 路径坐标输出 ==========");
|
System.out.println("总路径段数: " + path.size());
|
System.out.println();
|
System.out.println("路径坐标序列 (格式: x,y;x,y;...):");
|
|
StringBuilder sb = new StringBuilder();
|
for (int i = 0; i < path.size(); i++) {
|
PathSegment segment = path.get(i);
|
if (i == 0) {
|
// 第一个段的起点
|
sb.append(String.format("%.2f,%.2f", segment.start.x, segment.start.y));
|
}
|
// 每个段的终点
|
sb.append(";");
|
sb.append(String.format("%.2f,%.2f", segment.end.x, segment.end.y));
|
}
|
|
System.out.println(sb.toString());
|
System.out.println();
|
System.out.println("详细路径信息:");
|
for (int i = 0; i < path.size(); i++) {
|
PathSegment segment = path.get(i);
|
String type = segment.isMowing ? "割草" : "空走";
|
System.out.println(String.format("段 %d [%s]: (%.2f,%.2f) -> (%.2f,%.2f)",
|
i + 1, type, segment.start.x, segment.start.y, segment.end.x, segment.end.y));
|
}
|
System.out.println("==================================");
|
}
|
|
public static class Point {
|
public double x, y;
|
public Point(double x, double y) { this.x = x; this.y = y; }
|
@Override
|
public boolean equals(Object o) {
|
if (!(o instanceof Point)) return false;
|
Point p = (Point) o;
|
return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4;
|
}
|
}
|
|
public static class PathSegment {
|
public Point start, end;
|
public boolean isMowing;
|
public PathSegment(Point s, Point e, boolean m) {
|
this.start = s;
|
this.end = e;
|
this.isMowing = m;
|
}
|
}
|
}
|