/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_cmplx_mat_mult_q15.c
|
* Description: Q15 complex matrix multiplication
|
*
|
* $Date: 18. March 2019
|
* $Revision: V1.6.0
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
@ingroup groupMatrix
|
*/
|
|
/**
|
@addtogroup CmplxMatrixMult
|
@{
|
*/
|
|
/**
|
@brief Q15 Complex matrix multiplication.
|
@param[in] pSrcA points to first input complex matrix structure
|
@param[in] pSrcB points to second input complex matrix structure
|
@param[out] pDst points to output complex matrix structure
|
@param[in] pScratch points to an array for storing intermediate results
|
@return execution status
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
@par Conditions for optimum performance
|
Input, output and state buffers should be aligned by 32-bit
|
|
@par Scaling and Overflow Behavior
|
The function is implemented using an internal 64-bit accumulator. The inputs to the
|
multiplications are in 1.15 format and multiplications yield a 2.30 result.
|
The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
This approach provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
|
truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
|
*/
|
|
arm_status arm_mat_cmplx_mult_q15(
|
const arm_matrix_instance_q15 * pSrcA,
|
const arm_matrix_instance_q15 * pSrcB,
|
arm_matrix_instance_q15 * pDst,
|
q15_t * pScratch)
|
{
|
q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
|
q15_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
q63_t sumReal, sumImag; /* accumulator */
|
uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
|
arm_status status; /* Status of matrix multiplication */
|
|
#if defined (ARM_MATH_DSP)
|
q31_t prod1, prod2;
|
q31_t pSourceA, pSourceB;
|
#else
|
q15_t a, b, c, d;
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
/* Check for matrix mismatch condition */
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) ||
|
(pSrcB->numCols != pDst->numCols) )
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
/* Matrix transpose */
|
do
|
{
|
/* The pointer px is set to starting address of column being processed */
|
px = pSrcBT + i;
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
/* Apply loop unrolling and exchange the columns with row elements */
|
col = numColsB >> 2;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
a second loop below computes the remaining 1 to 3 samples. */
|
while (col > 0U)
|
{
|
/* Read two elements from row */
|
write_q15x2 (px, read_q15x2_ia (&pInB));
|
|
/* Update pointer px to point to next row of transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from row */
|
write_q15x2 (px, read_q15x2_ia (&pInB));
|
|
/* Update pointer px to point to next row of transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from row */
|
write_q15x2 (px, read_q15x2_ia (&pInB));
|
|
/* Update pointer px to point to next row of transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from row */
|
write_q15x2 (px, read_q15x2_ia (&pInB));
|
|
/* Update pointer px to point to next row of transposed matrix */
|
px += numRowsB * 2;
|
|
/* Decrement column loop counter */
|
col--;
|
}
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
col = numColsB % 0x4U;
|
|
#else
|
|
/* Initialize blkCnt with number of samples */
|
col = numColsB;
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
while (col > 0U)
|
{
|
/* Read two elements from row */
|
write_q15x2 (px, read_q15x2_ia (&pInB));
|
|
/* Update pointer px to point to next row of transposed matrix */
|
px += numRowsB * 2;
|
|
/* Decrement column loop counter */
|
col--;
|
}
|
|
i = i + 2U;
|
|
/* Decrement row loop counter */
|
row--;
|
|
} while (row > 0U);
|
|
/* Reset variables for usage in following multiplication process */
|
row = numRowsA;
|
i = 0U;
|
px = pDst->pData;
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* For every row wise process, column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
|
pInB = pSrcBT;
|
|
/* column loop */
|
do
|
{
|
/* Set variable sum, that acts as accumulator, to zero */
|
sumReal = 0;
|
sumImag = 0;
|
|
/* Initiate pointer pInA to point to starting address of column being processed */
|
pInA = pSrcA->pData + i * 2;
|
|
/* Apply loop unrolling and compute 2 MACs simultaneously. */
|
colCnt = numColsA >> 1U;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
#if defined (ARM_MATH_DSP)
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = read_q15x2_ia ((q15_t **) &pInA);
|
pSourceB = read_q15x2_ia ((q15_t **) &pInB);
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = read_q15x2_ia ((q15_t **) &pInA);
|
pSourceB = read_q15x2_ia ((q15_t **) &pInB);
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
#else /* #if defined (ARM_MATH_DSP) */
|
|
/* read real and imag values from pSrcA buffer */
|
a = *pInA;
|
b = *(pInA + 1U);
|
/* read real and imag values from pSrcB buffer */
|
c = *pInB;
|
d = *(pInB + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a *c;
|
sumImag += (q31_t) a *d;
|
sumReal -= (q31_t) b *d;
|
sumImag += (q31_t) b *c;
|
|
/* read next real and imag values from pSrcA buffer */
|
a = *(pInA + 2U);
|
b = *(pInA + 3U);
|
/* read next real and imag values from pSrcB buffer */
|
c = *(pInB + 2U);
|
d = *(pInB + 3U);
|
|
/* update pointer */
|
pInA += 4U;
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a * c;
|
sumImag += (q31_t) a * d;
|
sumReal -= (q31_t) b * d;
|
sumImag += (q31_t) b * c;
|
/* update pointer */
|
pInB += 4U;
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
/* Decrement loop counter */
|
colCnt--;
|
}
|
|
/* process odd column samples */
|
if ((numColsA & 0x1U) > 0U)
|
{
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
#if defined (ARM_MATH_DSP)
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = read_q15x2_ia ((q15_t **) &pInA);
|
pSourceB = read_q15x2_ia ((q15_t **) &pInB);
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
#else /* #if defined (ARM_MATH_DSP) */
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
a = *pInA++;
|
b = *pInA++;
|
c = *pInB++;
|
d = *pInB++;
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a * c;
|
sumImag += (q31_t) a * d;
|
sumReal -= (q31_t) b * d;
|
sumImag += (q31_t) b * c;
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
}
|
|
/* Saturate and store result in destination buffer */
|
*px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
|
*px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
|
|
/* Decrement column loop counter */
|
col--;
|
|
} while (col > 0U);
|
|
i = i + numColsA;
|
|
/* Decrement row loop counter */
|
row--;
|
|
} while (row > 0U);
|
|
/* Set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
@} end of MatrixMult group
|
*/
|