yincheng.zhong
2025-11-24 275b03224aa6170d4dc8c661c1cd949dd88c1fcb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
差速履带运动学/动力学模型。
"""
 
from __future__ import annotations
 
import dataclasses
import math
import random
from typing import Tuple
 
GRAVITY = 9.80665  # m/s^2
 
 
def _clamp(value: float, min_value: float, max_value: float) -> float:
    return max(min_value, min(max_value, value))
 
 
def _wrap_angle(rad: float) -> float:
    """Wrap angle to [-pi, pi)."""
    pi2 = math.tau  # 2*pi
    while rad >= math.pi:
        rad -= pi2
    while rad < -math.pi:
        rad += pi2
    return rad
 
 
@dataclasses.dataclass
class DifferentialDriveState:
    east: float = 0.0
    north: float = 0.0
    up: float = 0.0
    heading: float = 0.0  # rad, 数学坐标系 (东=0, CCW>0)
    linear_velocity: float = 0.0  # m/s
    angular_velocity: float = 0.0  # rad/s
    pitch_deg: float = 0.0
    roll_deg: float = 0.0
    east_velocity: float = 0.0
    north_velocity: float = 0.0
    up_velocity: float = 0.0
    body_accel_g: Tuple[float, float, float] = (0.0, 0.0, -1.0)
    gyro_deg_s: Tuple[float, float, float] = (0.0, 0.0, 0.0)
    temperature_c: float = 30.0
 
    def copy(self) -> "DifferentialDriveState":
        return dataclasses.replace(self)
 
 
class DifferentialDriveModel:
    """准静态差速履带模型,可模拟原地转向。"""
 
    def __init__(
        self,
        track_width: float = 0.8,
        max_linear_speed: float = 2.0,
        max_linear_accel: float = 1.5,
        max_angular_speed: float = math.radians(120.0),
        max_angular_accel: float = math.radians(180.0),
    ):
        self.track_width = track_width
        self.max_linear_speed = max_linear_speed
        self.max_linear_accel = max_linear_accel
        self.max_angular_speed = max_angular_speed
        self.max_angular_accel = max_angular_accel
        self.state = DifferentialDriveState()
        self._rng = random.Random(42)
 
    def reset(self, east: float = 0.0, north: float = 0.0, up: float = 0.0, heading_deg: float = 0.0):
        self.state = DifferentialDriveState(east=east, north=north, up=up, heading=math.radians(heading_deg))
 
    def step(self, target_linear: float, target_angular: float, dt: float) -> DifferentialDriveState:
        if dt <= 0.0:
            return self.state
 
        target_linear = _clamp(target_linear, -self.max_linear_speed, self.max_linear_speed)
        target_angular = _clamp(target_angular, -self.max_angular_speed, self.max_angular_speed)
 
        dv = target_linear - self.state.linear_velocity
        max_dv = self.max_linear_accel * dt
        dv = _clamp(dv, -max_dv, max_dv)
        linear_acc = dv / dt
        self.state.linear_velocity += dv
 
        # 符号定义:
        # - 罗盘方向:负的控制信号 → 逆时针旋转,正的控制信号 → 顺时针旋转
        # - 数学坐标系:东为0°,逆时针为正(CCW>0)
        # - 所以:负的turn_rate(逆时针)→ angular_velocity为正,正的turn_rate(顺时针)→ angular_velocity为负
        # - 需要取反:angular_velocity = -target_angular
        target_angular_math = -target_angular  # 取反以匹配数学坐标系
        
        dw = target_angular_math - self.state.angular_velocity
        max_dw = self.max_angular_accel * dt
        dw = _clamp(dw, -max_dw, max_dw)
        angular_acc = dw / dt
        self.state.angular_velocity += dw
 
        # 更新姿态与位置
        self.state.heading = _wrap_angle(self.state.heading + self.state.angular_velocity * dt)
        cos_h = math.cos(self.state.heading)
        sin_h = math.sin(self.state.heading)
        self.state.east += self.state.linear_velocity * cos_h * dt
        self.state.north += self.state.linear_velocity * sin_h * dt
        self.state.up += 0.0  # 可扩展地形模型
 
        # 速度 (ENU)
        self.state.east_velocity = self.state.linear_velocity * cos_h
        self.state.north_velocity = self.state.linear_velocity * sin_h
        self.state.up_velocity = 0.0
 
        # 体轴加速度:前向加速度 + 向心加速度
        lateral_acc = self.state.linear_velocity * self.state.angular_velocity
        ax_g = linear_acc / GRAVITY
        ay_g = lateral_acc / GRAVITY
        az_g = -1.0  # 假设水平地面
        self.state.body_accel_g = (
            ax_g + self._rng.gauss(0.0, 0.002),
            ay_g + self._rng.gauss(0.0, 0.002),
            az_g + self._rng.gauss(0.0, 0.0005),
        )
 
        # 姿态近似:由加速度分量映射成小角度
        self.state.pitch_deg = math.degrees(math.atan2(ax_g, 1.0))
        self.state.roll_deg = math.degrees(math.atan2(-ay_g, 1.0))
 
        # 惯导(IMU)符号定义:顺时针正,逆时针负(从上往下看Z轴,右手螺旋定则)
        # 在数学坐标系中:顺时针 → angular_velocity为负,逆时针 → angular_velocity为正
        # 所以:GyroZ = -angular_velocity(取反以匹配惯导定义)
        # 例如:angular_velocity = -0.8 rad/s(顺时针)→ GyroZ = 0.8 deg/s(正值,顺时针)
        self.state.gyro_deg_s = (
            self._rng.gauss(0.0, 0.01),
            self._rng.gauss(0.0, 0.01),
            -math.degrees(self.state.angular_velocity) + self._rng.gauss(0.0, 0.1),  # 取反以匹配惯导定义
        )
 
        temp_drift = self._rng.gauss(0.0, 0.0005)
        self.state.temperature_c += temp_drift
 
        return self.state