/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_mult_fast_q31.c
|
* Description: Q31 matrix multiplication (fast variant)
|
*
|
* $Date: 18. March 2019
|
* $Revision: V1.6.0
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
@ingroup groupMatrix
|
*/
|
|
/**
|
@addtogroup MatrixMult
|
@{
|
*/
|
|
/**
|
@brief Q31 matrix multiplication (fast variant).
|
@param[in] pSrcA points to the first input matrix structure
|
@param[in] pSrcB points to the second input matrix structure
|
@param[out] pDst points to output matrix structure
|
@return execution status
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
@par Scaling and Overflow Behavior
|
The difference between the function \ref arm_mat_mult_q31() and this fast variant is that
|
the fast variant use a 32-bit rather than a 64-bit accumulator.
|
The result of each 1.31 x 1.31 multiplication is truncated to
|
2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
|
format. Finally, the accumulator is saturated and converted to a 1.31 result.
|
@par
|
The fast version has the same overflow behavior as the standard version but provides
|
less precision since it discards the low 32 bits of each multiplication result.
|
In order to avoid overflows completely the input signals must be scaled down.
|
Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
|
as a total of numColsA additions are computed internally for each output element.
|
@remark
|
Refer to \ref arm_mat_mult_q31() for a slower implementation of this function
|
which uses 64-bit accumulation to provide higher precision.
|
*/
|
|
arm_status arm_mat_mult_fast_q31(
|
const arm_matrix_instance_q31 * pSrcA,
|
const arm_matrix_instance_q31 * pSrcB,
|
arm_matrix_instance_q31 * pDst)
|
{
|
q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
|
q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
|
q31_t *pInA2;
|
q31_t *px; /* Temporary output data matrix pointer */
|
q31_t *px2;
|
q31_t sum1, sum2, sum3, sum4; /* Accumulator */
|
q31_t inA1, inA2, inB1, inB2;
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* Loop counters */
|
arm_status status; /* Status of matrix multiplication */
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
/* Check for matrix mismatch condition */
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) ||
|
(pSrcB->numCols != pDst->numCols) )
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
px = pDst->pData;
|
|
row = row >> 1U;
|
px2 = px + numColsB;
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
while (row > 0U)
|
{
|
/* For every row wise process, column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
pInB = pSrcB->pData;
|
|
j = 0U;
|
|
col = col >> 1U;
|
|
/* column loop */
|
while (col > 0U)
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum1 = 0;
|
sum2 = 0;
|
sum3 = 0;
|
sum4 = 0;
|
|
/* Initiate data pointers */
|
pInA = pSrcA->pData + i;
|
pInB = pSrcB->pData + j;
|
pInA2 = pInA + numColsA;
|
|
colCnt = numColsA;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
inA1 = *pInA++;
|
inB1 = pInB[0];
|
inA2 = *pInA2++;
|
inB2 = pInB[1];
|
pInB += numColsB;
|
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(inA1, inB1, sum1);
|
sum2 = __SMMLA(inA1, inB2, sum2);
|
sum3 = __SMMLA(inA2, inB1, sum3);
|
sum4 = __SMMLA(inA2, inB2, sum4);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
|
sum2 = (q31_t) ((((q63_t) sum2 << 32) + ((q63_t) inA1 * inB2)) >> 32);
|
sum3 = (q31_t) ((((q63_t) sum3 << 32) + ((q63_t) inA2 * inB1)) >> 32);
|
sum4 = (q31_t) ((((q63_t) sum4 << 32) + ((q63_t) inA2 * inB2)) >> 32);
|
#endif
|
|
/* Decrement loop counter */
|
colCnt--;
|
}
|
|
/* Convert the result from 2.30 to 1.31 format and store in destination buffer */
|
*px++ = sum1 << 1;
|
*px++ = sum2 << 1;
|
*px2++ = sum3 << 1;
|
*px2++ = sum4 << 1;
|
|
j += 2;
|
|
/* Decrement column loop counter */
|
col--;
|
}
|
|
i = i + (numColsA << 1U);
|
px = px2 + (numColsB & 1U);
|
px2 = px + numColsB;
|
|
/* Decrement row loop counter */
|
row--;
|
}
|
|
/* Compute any remaining odd row/column below */
|
|
/* Compute remaining output column */
|
if (numColsB & 1U) {
|
|
/* Avoid redundant computation of last element */
|
row = numRowsA & (~1U);
|
|
/* Point to remaining unfilled column in output matrix */
|
px = pDst->pData + numColsB-1;
|
pInA = pSrcA->pData;
|
|
/* row loop */
|
while (row > 0)
|
{
|
|
/* point to last column in matrix B */
|
pInB = pSrcB->pData + numColsB-1;
|
|
/* Set variable sum1, that acts as accumulator, to zero */
|
sum1 = 0;
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
/* Loop unrolling: Compute 4 columns at a time. */
|
colCnt = numColsA >> 2U;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
/* Decrement loop counter */
|
colCnt--;
|
}
|
|
/* Loop unrolling: Compute remaining column */
|
colCnt = numColsA % 4U;
|
|
#else
|
|
/* Initialize colCnt with number of columns */
|
colCnt = numColsA;
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
while (colCnt > 0U) {
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
colCnt--;
|
}
|
|
/* Convert the result from 2.30 to 1.31 format and store in destination buffer */
|
*px = sum1 << 1;
|
px += numColsB;
|
|
/* Decrement row loop counter */
|
row--;
|
}
|
}
|
|
/* Compute remaining output row */
|
if (numRowsA & 1U) {
|
|
/* point to last row in output matrix */
|
px = pDst->pData + (numColsB) * (numRowsA-1);
|
|
col = numColsB;
|
i = 0U;
|
|
/* col loop */
|
while (col > 0)
|
{
|
|
/* point to last row in matrix A */
|
pInA = pSrcA->pData + (numRowsA-1) * numColsA;
|
pInB = pSrcB->pData + i;
|
|
/* Set variable sum1, that acts as accumulator, to zero */
|
sum1 = 0;
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
/* Loop unrolling: Compute 4 columns at a time. */
|
colCnt = numColsA >> 2U;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(inA1, inB1, sum1);
|
sum1 = __SMMLA(inA2, inB2, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
|
#endif
|
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(inA1, inB1, sum1);
|
sum1 = __SMMLA(inA2, inB2, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
|
#endif
|
|
/* Decrement loop counter */
|
colCnt--;
|
}
|
|
/* Loop unrolling: Compute remaining column */
|
colCnt = numColsA % 4U;
|
|
#else
|
|
/* Initialize colCnt with number of columns */
|
colCnt = numColsA;
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
while (colCnt > 0U) {
|
#if defined (ARM_MATH_DSP)
|
sum1 = __SMMLA(*pInA++, *pInB, sum1);
|
#else
|
sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
|
#endif
|
pInB += numColsB;
|
|
colCnt--;
|
}
|
|
/* Saturate and store the result in the destination buffer */
|
*px++ = sum1 << 1;
|
i++;
|
|
/* Decrement col loop counter */
|
col--;
|
}
|
}
|
|
/* Set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
@} end of MatrixMult group
|
*/
|