|
/*! ----------------------------------------------------------------------------
|
* @file main.c
|
* @brief Double-sided two-way ranging (DS TWR) initiator example code
|
*
|
*
|
*
|
* @attention
|
*
|
* Copyright 2015 (c) Decawave Ltd, Dublin, Ireland.
|
*
|
* All rights reserved.
|
*
|
* @author Decawave
|
*/
|
|
#include <string.h>
|
#include "dw_app.h"
|
#include "deca_device_api.h"
|
#include "deca_regs.h"
|
#include "dw_driver.h"
|
#include "Spi.h"
|
#include "led.h"
|
#include "serial_at_cmd_app.h"
|
#include "Usart.h"
|
#include "global_param.h"
|
#include "filters.h"
|
#include <stdio.h>
|
#include "beep.h"
|
#include "modbus.h"
|
|
/*------------------------------------ Marcos ------------------------------------------*/
|
/* Inter-ranging delay period, in milliseconds. */
|
#define RNG_DELAY_MS 100
|
|
/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */
|
#define TX_ANT_DLY 0
|
#define RX_ANT_DLY 32899
|
|
/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor.
|
* 1 uus = 512 / 499.2 µs and 1 µs = 499.2 * 128 dtu. */
|
#define UUS_TO_DWT_TIME 65536
|
|
/* Delay between frames, in UWB microseconds. See NOTE 4 below. */
|
/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
|
#define POLL_TX_TO_RESP_RX_DLY_UUS 150
|
/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
|
* frame length of approximately 2.66 ms with above configuration. */
|
#define RESP_RX_TO_FINAL_TX_DLY_UUS 800
|
/* Receive response timeout. See NOTE 5 below. */
|
#define RESP_RX_TIMEOUT_UUS 600
|
|
#define POLL_RX_TO_RESP_TX_DLY_UUS 420
|
/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
|
#define RESP_TX_TO_FINAL_RX_DLY_UUS 200
|
/* Receive final timeout. See NOTE 5 below. */
|
#define FINAL_RX_TIMEOUT_UUS 4300
|
|
#define SPEED_OF_LIGHT 299702547
|
|
/* Indexes to access some of the fields in the frames defined above. */
|
#define FINAL_MSG_POLL_TX_TS_IDX 10
|
#define FINAL_MSG_RESP_RX_TS_IDX 14
|
#define FINAL_MSG_FINAL_TX_TS_IDX 18
|
#define FINAL_MSG_TS_LEN 4
|
|
#define SYNC_SEQ_IDX 5
|
|
#define GROUP_ID_IDX 0
|
#define ANCHOR_ID_IDX 1
|
#define TAG_ID_IDX 5
|
#define MESSAGE_TYPE_IDX 9
|
#define DIST_IDX 10
|
//Poll
|
#define ANC_TYPE_IDX 14
|
#define BATTARY_IDX 15
|
#define BUTTON_IDX 16
|
#define SEQUENCE_IDX 17
|
//respose
|
#define ANCTIMEMS 14
|
#define ANCTIMEUS 16
|
|
#define POLL 0x01
|
#define RESPONSE 0x02
|
#define FINAL 0x03
|
#define SYNC 0x04
|
|
/*------------------------------------ Variables ------------------------------------------*/
|
/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
|
static dwt_config_t config = {
|
2, /* Channel number. */
|
DWT_PRF_64M, /* Pulse repetition frequency. */
|
DWT_PLEN_128, /* Preamble length. */
|
DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */
|
9, /* TX preamble code. Used in TX only. */
|
9, /* RX preamble code. Used in RX only. */
|
1, /* Use non-standard SFD (Boolean) */
|
DWT_BR_6M8, /* Data rate. */
|
DWT_PHRMODE_STD, /* PHY header mode. */
|
(129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
|
};
|
|
/* Frames used in the ranging process. See NOTE 2 below. */
|
static uint8_t tx_poll_msg[20] = {0};
|
static uint8_t tx_sync_msg[14] = {0};
|
//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
|
static uint8_t tx_final_msg[24] = {0};
|
|
//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
|
static uint8_t tx_resp_msg[20] = {0};
|
//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
/* Frame sequence number, incremented after each transmission. */
|
static uint32_t frame_seq_nb = 0,frame_seq_nb2=0;
|
|
/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
|
static uint32_t status_reg = 0;
|
|
/* Buffer to store received response message.
|
* Its size is adjusted to longest frame that this example code is supposed to handle. */
|
#define RX_BUF_LEN 24
|
static uint8_t rx_buffer[RX_BUF_LEN];
|
|
/* Time-stamps of frames transmission/reception, expressed in device time units.
|
* As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
|
static uint64_t poll_tx_ts;
|
static uint64_t resp_rx_ts;
|
static uint64_t final_tx_ts;
|
|
/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
|
static uint64_t poll_rx_ts;
|
static uint64_t resp_tx_ts;
|
static uint64_t final_rx_ts;
|
|
static double tof;
|
|
int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ;
|
uint32_t tag_id = 0;
|
uint32_t tag_id_recv = 0;
|
uint8_t random_delay_tim = 0;
|
|
double distance, dist_no_bias, dist_cm;
|
|
uint32_t g_UWB_com_interval = 0;
|
float dis_after_filter; //µ±Ç°¾àÀëÖµ
|
LPFilter_Frac* p_Dis_Filter; //²â¾àÓõĵÍͨÂ˲¨Æ÷
|
|
int32_t g_Tagdist[TAG_NUM_IN_SYS];
|
uint8_t g_flag_Taggetdist[256];
|
/*------------------------------------ Functions ------------------------------------------*/
|
|
|
/*! ------------------------------------------------------------------------------------------------------------------
|
* @fn get_tx_timestamp_u64()
|
*
|
* @brief Get the TX time-stamp in a 64-bit variable.
|
* /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
|
*
|
* @param none
|
*
|
* @return 64-bit value of the read time-stamp.
|
*/
|
static uint64_t get_tx_timestamp_u64(void)
|
{
|
uint8_t ts_tab[5];
|
uint64_t ts = 0;
|
int i;
|
dwt_readtxtimestamp(ts_tab);
|
for (i = 4; i >= 0; i--)
|
{
|
ts <<= 8;
|
ts |= ts_tab[i];
|
}
|
return ts;
|
}
|
|
/*! ------------------------------------------------------------------------------------------------------------------
|
* @fn get_rx_timestamp_u64()
|
*
|
* @brief Get the RX time-stamp in a 64-bit variable.
|
* /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
|
*
|
* @param none
|
*
|
* @return 64-bit value of the read time-stamp.
|
*/
|
static uint64_t get_rx_timestamp_u64(void)
|
{
|
uint8_t ts_tab[5];
|
uint64_t ts = 0;
|
int i;
|
dwt_readrxtimestamp(ts_tab);
|
for (i = 4; i >= 0; i--)
|
{
|
ts <<= 8;
|
ts |= ts_tab[i];
|
}
|
return ts;
|
}
|
|
/*! ------------------------------------------------------------------------------------------------------------------
|
* @fn final_msg_set_ts()
|
*
|
* @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final
|
* message, the least significant byte is at the lower address.
|
*
|
* @param ts_field pointer on the first byte of the timestamp field to fill
|
* ts timestamp value
|
*
|
* @return none
|
*/
|
static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts)
|
{
|
int i;
|
for (i = 0; i < FINAL_MSG_TS_LEN; i++)
|
{
|
ts_field[i] = (uint8_t) ts;
|
ts >>= 8;
|
}
|
}
|
|
static void final_msg_get_ts(const uint8_t *ts_field, uint32_t *ts)
|
{
|
int i;
|
*ts = 0;
|
for (i = 0; i < FINAL_MSG_TS_LEN; i++)
|
{
|
*ts += ts_field[i] << (i * 8);
|
}
|
}
|
void TagDistClear(void)
|
{
|
static uint16_t clear_judge_cnt;
|
uint16_t i;
|
if(clear_judge_cnt++>1000) //É趨1S·ÖƵ£¬Ã¿Ãë½øÒ»´Î¡£Åжϱê־λ´óÓÚµÈÓÚ2£¬2sûÊÕµ½Êý¾Ý¾Í°ÑÊý¾Ý±ä³É0xffff£¬²»´¥·¢¾¯±¨¡£
|
{
|
clear_judge_cnt=0;
|
for(i=0;i<255;i++)
|
{
|
g_flag_Taggetdist[i]++;
|
if(g_flag_Taggetdist[i]>=20)
|
{
|
g_Tagdist[i]=0xffff;
|
}
|
}
|
}
|
}
|
|
void Dw1000_Init(void)
|
{
|
/* Reset and initialise DW1000.
|
* For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum
|
* performance. */
|
Reset_DW1000();//ÖØÆôDW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */
|
Spi_ChangePrescaler(SPIx_PRESCALER_SLOW); //ÉèÖÃΪ¿ìËÙģʽ
|
dwt_initialise(DWT_LOADUCODE);//³õʼ»¯DW1000
|
Spi_ChangePrescaler(SPIx_PRESCALER_FAST); //ÉèÖÃΪ¿ìËÙģʽ
|
|
/* Configure DW1000. See NOTE 6 below. */
|
dwt_configure(&config);//ÅäÖÃDW1000
|
|
|
|
/* Apply default antenna delay value. See NOTE 1 below. */
|
dwt_setrxantennadelay(RX_ANT_DLY); //ÉèÖýÓÊÕÌìÏßÑÓ³Ù
|
dwt_settxantennadelay(TX_ANT_DLY); //ÉèÖ÷¢ÉäÌìÏßÑÓ³Ù
|
|
/* Set expected response's delay and timeout. See NOTE 4 and 5 below.
|
* As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
|
//ÉèÖýÓÊÕ³¬Ê±Ê±¼ä
|
}
|
void Dw1000_App_Init(void)
|
{
|
//g_com_map[DEV_ID] = 0x0b;
|
tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
|
tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
|
tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
|
tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
|
|
memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
|
memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
|
memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
|
memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4);
|
}
|
uint16_t Checksum_u16(uint8_t* pdata, uint32_t len)
|
{
|
uint16_t sum = 0;
|
uint32_t i;
|
for(i=0; i<len; i++)
|
sum += pdata[i];
|
sum = ~sum;
|
return sum;
|
}
|
|
uint16_t tag_time_recv[TAG_NUM_IN_SYS];
|
uint8_t usart_send[25];
|
uint8_t battary,button;
|
extern uint8_t g_pairstart;
|
void tag_sleep_configuraion(void)
|
{
|
dwt_configuresleep(0x940, 0x7);
|
dwt_entersleep();
|
}
|
uint8_t g_start_send_flag;
|
uint8_t g_start_sync_flag;
|
void SyncPoll(uint8_t sync_seq)
|
{
|
g_start_sync_flag=1;
|
dwt_forcetrxoff();
|
tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
|
dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//½«Poll°üÊý¾Ý´«¸øDW1000£¬½«ÔÚ¿ªÆô·¢ËÍʱ´«³öÈ¥
|
dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//ÉèÖó¬¿í´ø·¢ËÍÊý¾Ý³¤¶È
|
dwt_starttx(DWT_START_TX_IMMEDIATE);
|
}
|
uint16_t g_Resttimer;
|
uint8_t result;
|
uint8_t tag_succ_times=0;
|
int32_t hex_dist,hex_dist2;
|
uint16_t checksum;
|
int8_t tag_delaytime;
|
extern uint16_t sync_timer;
|
uint16_t tmp_time,current_slottimes;
|
uint32_t time32_incr;
|
int32_t ancsync_time;
|
uint32_t frame_len;
|
int32_t count_offset,nextpoll_delaytime;
|
void Tag_App(void)//·¢ËÍģʽ(TAG±êÇ©)
|
{
|
|
uint32_t final_tx_time;
|
uint32_t start_poll,id;
|
uint8_t i,getsync_flag=0;
|
//LED0_ON;
|
//dwt_forcetrxoff();
|
id = dwt_readdevid() ;
|
while (DWT_DEVICE_ID != id)
|
{
|
id = dwt_readdevid() ;
|
}
|
g_Resttimer=0;
|
dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //ÉèÖ÷¢ËÍºó¿ªÆô½ÓÊÕ£¬²¢É趨ÑÓ³Ùʱ¼ä
|
dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
|
tag_succ_times = 0;
|
tx_poll_msg[BATTARY_IDX] = bat_percent;
|
//tx_poll_msg[BUTTON_IDX] = !READ_KEY0;
|
tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++;
|
|
for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++)
|
{
|
/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
|
tx_poll_msg[ANC_TYPE_IDX] = i;
|
|
dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//½«Poll°üÊý¾Ý´«¸øDW1000£¬½«ÔÚ¿ªÆô·¢ËÍʱ´«³öÈ¥
|
dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//ÉèÖó¬¿í´ø·¢ËÍÊý¾Ý³¤¶È
|
|
/* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
|
* set by dwt_setrxaftertxdelay() has elapsed. */
|
result=dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//¿ªÆô·¢ËÍ£¬·¢ËÍÍê³ÉºóµÈ´ýÒ»¶Îʱ¼ä¿ªÆô½ÓÊÕ£¬µÈ´ýʱ¼äÔÚdwt_setrxaftertxdelayÖÐÉèÖÃ
|
start_poll = time32_incr;
|
/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
|
while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//²»¶Ï²éѯоƬ״ֱ̬µ½³É¹¦½ÓÊÕ»òÕß·¢Éú´íÎó
|
{
|
status_reg = dwt_read32bitreg(SYS_STATUS_ID);
|
// if(time32_incr - start_poll>20)
|
// NVIC_SystemReset();
|
// IdleTask();
|
|
};
|
|
/* Increment frame sequence number after transmission of the poll message (modulo 256). */
|
if(status_reg==0xffffffff)
|
{
|
// NVIC_SystemReset();
|
}
|
|
if (status_reg & SYS_STATUS_RXFCG)//Èç¹û³É¹¦½ÓÊÕ
|
{
|
/* Clear good RX frame event and TX frame sent in the DW1000 status register. */
|
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//Çå³þ¼Ä´æÆ÷±ê־λ
|
|
/* A frame has been received, read it into the local buffer. */
|
frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //»ñµÃ½ÓÊÕµ½µÄÊý¾Ý³¤¶È
|
|
dwt_readrxdata(rx_buffer, frame_len, 0); //¶ÁÈ¡½ÓÊÕÊý¾Ý
|
|
|
/* Check that the frame is the expected response from the companion "DS TWR responder" example.
|
* As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
|
|
if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //ÅжϽÓÊÕµ½µÄÊý¾ÝÊÇ·ñÊÇresponseÊý¾Ý
|
{ uint16_t anc_id_recv,current_count;
|
/* Retrieve poll transmission and response reception timestamp. */
|
poll_tx_ts = get_tx_timestamp_u64(); //»ñµÃPOLL·¢ËÍʱ¼äT1
|
resp_rx_ts = get_rx_timestamp_u64(); //»ñµÃRESPONSE½ÓÊÕʱ¼äT4
|
|
if(getsync_flag==0&&g_com_map[DEV_ROLE])
|
{
|
getsync_flag=1;
|
memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
|
memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
|
tmp_time=tmp_time+450;
|
if(tmp_time>999)
|
{
|
tmp_time-=999;
|
sync_timer++;
|
if(sync_timer>=1010)
|
{sync_timer=0;}
|
}
|
|
|
// TIM3->CNT=tmp_time;
|
}
|
memcpy(&hex_dist2, &rx_buffer[DIST_IDX], 4);
|
memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4);
|
/* Compute final message transmission time. See NOTE 9 below. */
|
final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//¼ÆËãfinal°ü·¢ËÍʱ¼ä£¬T5=T4+Treply2
|
dwt_setdelayedtrxtime(final_tx_time);//ÉèÖÃfinal°ü·¢ËÍʱ¼äT5
|
|
/* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
|
final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final°üʵ¼Ê·¢ËÍʱ¼äÊǼÆËãʱ¼ä¼ÓÉÏ·¢ËÍÌìÏßdelay
|
|
/* Write all timestamps in the final message. See NOTE 10 below. */
|
final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//½«T1£¬T4£¬T5дÈë·¢ËÍÊý¾Ý
|
final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts);
|
final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
|
|
/* Write and send final message. See NOTE 7 below. */
|
|
dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//½«·¢ËÍÊý¾ÝдÈëDW1000
|
dwt_writetxfctrl(sizeof(tx_final_msg), 0);//É趨·¢ËÍÊý¾Ý³¤¶È
|
result=dwt_starttx(DWT_START_TX_DELAYED);//É趨ΪÑÓ³Ù·¢ËÍ
|
|
ancsync_time=((sync_timer+0)*1000+tmp_time);
|
current_count=HAL_LPTIM_ReadCounter(&hlptim1);
|
// count_offset=sync_count-current_count-143;
|
// current_slottimes=(ancsync_time-10000)/(g_com_map[COM_INTERVAL]*1000);
|
nextpoll_delaytime=tyncpoll_time*1000+g_com_map[COM_INTERVAL]*1000-((ancsync_time-10000)%(g_com_map[COM_INTERVAL]*1000))-5150;
|
if(abs(ancsync_time-910000)<1000)
|
{
|
nextpoll_delaytime+=10000;
|
}
|
if(nextpoll_delaytime<2000)
|
{
|
nextpoll_delaytime+=g_com_map[COM_INTERVAL]*1000;
|
}
|
lastpoll_count= current_count+(nextpoll_delaytime)/LPTIMER_LSB;
|
if(lastpoll_count>LPTIMER_1S_COUNT)
|
lastpoll_count-=LPTIMER_1S_COUNT;
|
__HAL_LPTIM_COMPARE_SET(&hlptim1, lastpoll_count);
|
|
// printf("ancsync_time: %u \r\n ",ancsync_time);
|
// printf("current_slottimes: %u ",current_slottimes);
|
// printf("nextpoll_delaytime: %u ",nextpoll_delaytime);
|
// printf("current_count: %u ",current_count);
|
// printf("lastpoll_count: %u",lastpoll_count);
|
|
|
tag_succ_times++;
|
|
|
memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2);
|
// g_Tagdist[anc_id_recv]= hex_dist;
|
// g_flag_Taggetdist[anc_id_recv]=0;
|
if(!g_com_map[MODBUS_MODE])
|
{
|
usart_send[2] = 1;//Õý³£Ä£Ê½
|
usart_send[3] = 17;//Êý¾Ý¶Î³¤¶È
|
usart_send[4] = frame_seq_nb;//Êý¾Ý¶Î³¤¶È
|
memcpy(&usart_send[5],&dev_id,2);
|
memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2);
|
|
memcpy(&usart_send[9],&hex_dist2,4);
|
usart_send[13] = battary;
|
usart_send[14] = button;
|
checksum = Checksum_u16(&usart_send[2],17);
|
memcpy(&usart_send[19],&checksum,2);
|
// UART_PushFrame(usart_send,21);
|
}
|
// memcpy(&Modbus_HoldReg[anc_id_recv*2],&hex_dist,4);
|
/* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
|
if(result==0)
|
{while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//²»¶Ï²éѯоƬ״ֱ̬µ½·¢ËÍÍê³É
|
{ };
|
}
|
/* Clear TXFRS event. */
|
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//Çå³ý±ê־λ
|
|
/* Increment frame sequence number after transmission of the final message (modulo 256). */
|
|
random_delay_tim = 0;
|
}
|
else
|
{
|
random_delay_tim = DFT_RAND_DLY_TIM_MS; //Èç¹ûͨѶʧ°Ü£¬½«¼ä¸ôʱ¼äÔö¼Ó5ms£¬±Ü¿ªÒòΪ¶à±êǩͬʱ·¢ËÍÒýÆðµÄ³åÍ»¡£
|
}
|
}
|
else
|
{
|
/* Clear RX error events in the DW1000 status register. */
|
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
|
random_delay_tim = DFT_RAND_DLY_TIM_MS;
|
}
|
// deca_sleep(10);
|
}
|
dwt_entersleep();
|
// if(tag_succ_times<g_com_map[MIN_REPORT_ANC_NUM])
|
// {
|
// //poll_timer +=time32_incr&0x7+3;
|
// }
|
//HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI);
|
/* Execute a delay between ranging exchanges. */
|
|
}
|