//This file is automatically rebuilt by the Cesium build process.
|
export default "uniform sampler2D u_noiseTexture;\n\
|
uniform vec3 u_noiseTextureDimensions;\n\
|
uniform float u_noiseDetail;\n\
|
varying vec2 v_offset;\n\
|
varying vec3 v_maximumSize;\n\
|
varying float v_slice;\n\
|
varying float v_brightness;\n\
|
\n\
|
float wrap(float value, float rangeLength) {\n\
|
if(value < 0.0) {\n\
|
float absValue = abs(value);\n\
|
float modValue = mod(absValue, rangeLength);\n\
|
return mod(rangeLength - modValue, rangeLength);\n\
|
}\n\
|
return mod(value, rangeLength);\n\
|
}\n\
|
\n\
|
vec3 wrapVec(vec3 value, float rangeLength) {\n\
|
return vec3(wrap(value.x, rangeLength),\n\
|
wrap(value.y, rangeLength),\n\
|
wrap(value.z, rangeLength));\n\
|
}\n\
|
\n\
|
float textureSliceWidth = u_noiseTextureDimensions.x;\n\
|
float noiseTextureRows = u_noiseTextureDimensions.y;\n\
|
float inverseNoiseTextureRows = u_noiseTextureDimensions.z;\n\
|
\n\
|
float textureSliceWidthSquared = textureSliceWidth * textureSliceWidth;\n\
|
vec2 inverseNoiseTextureDimensions = vec2(noiseTextureRows / textureSliceWidthSquared,\n\
|
inverseNoiseTextureRows / textureSliceWidth);\n\
|
\n\
|
vec2 voxelToUV(vec3 voxelIndex) {\n\
|
vec3 wrappedIndex = wrapVec(voxelIndex, textureSliceWidth);\n\
|
float column = mod(wrappedIndex.z, textureSliceWidth * inverseNoiseTextureRows);\n\
|
float row = floor(wrappedIndex.z / textureSliceWidth * noiseTextureRows);\n\
|
\n\
|
float xPixelCoord = wrappedIndex.x + column * textureSliceWidth;\n\
|
float yPixelCoord = wrappedIndex.y + row * textureSliceWidth;\n\
|
return vec2(xPixelCoord, yPixelCoord) * inverseNoiseTextureDimensions;\n\
|
}\n\
|
\n\
|
// Interpolate a voxel with its neighbor (along the positive X-axis)\n\
|
vec4 lerpSamplesX(vec3 voxelIndex, float x) {\n\
|
vec2 uv0 = voxelToUV(voxelIndex);\n\
|
vec2 uv1 = voxelToUV(voxelIndex + vec3(1.0, 0.0, 0.0));\n\
|
vec4 sample0 = texture2D(u_noiseTexture, uv0);\n\
|
vec4 sample1 = texture2D(u_noiseTexture, uv1);\n\
|
return mix(sample0, sample1, x);\n\
|
}\n\
|
\n\
|
vec4 sampleNoiseTexture(vec3 position) {\n\
|
vec3 recenteredPos = position + vec3(textureSliceWidth / 2.0);\n\
|
vec3 lerpValue = fract(recenteredPos);\n\
|
vec3 voxelIndex = floor(recenteredPos);\n\
|
\n\
|
vec4 xLerp00 = lerpSamplesX(voxelIndex, lerpValue.x);\n\
|
vec4 xLerp01 = lerpSamplesX(voxelIndex + vec3(0.0, 0.0, 1.0), lerpValue.x);\n\
|
vec4 xLerp10 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 0.0), lerpValue.x);\n\
|
vec4 xLerp11 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 1.0), lerpValue.x);\n\
|
\n\
|
vec4 yLerp0 = mix(xLerp00, xLerp10, lerpValue.y);\n\
|
vec4 yLerp1 = mix(xLerp01, xLerp11, lerpValue.y);\n\
|
return mix(yLerp0, yLerp1, lerpValue.z);\n\
|
}\n\
|
\n\
|
// Intersection with a unit sphere with radius 0.5 at center (0, 0, 0).\n\
|
bool intersectSphere(vec3 origin, vec3 dir, float slice,\n\
|
out vec3 point, out vec3 normal) {\n\
|
float A = dot(dir, dir);\n\
|
float B = dot(origin, dir);\n\
|
float C = dot(origin, origin) - 0.25;\n\
|
float discriminant = (B * B) - (A * C);\n\
|
if(discriminant < 0.0) {\n\
|
return false;\n\
|
}\n\
|
float root = sqrt(discriminant);\n\
|
float t = (-B - root) / A;\n\
|
if(t < 0.0) {\n\
|
t = (-B + root) / A;\n\
|
}\n\
|
point = origin + t * dir;\n\
|
\n\
|
if(slice >= 0.0) {\n\
|
point.z = (slice / 2.0) - 0.5;\n\
|
if(length(point) > 0.5) {\n\
|
return false;\n\
|
}\n\
|
}\n\
|
\n\
|
normal = normalize(point);\n\
|
point -= czm_epsilon2 * normal;\n\
|
return true;\n\
|
}\n\
|
\n\
|
// Transforms the ray origin and direction into unit sphere space,\n\
|
// then transforms the result back into the ellipsoid's space.\n\
|
bool intersectEllipsoid(vec3 origin, vec3 dir, vec3 center, vec3 scale, float slice,\n\
|
out vec3 point, out vec3 normal) {\n\
|
if(scale.x <= 0.01 || scale.y < 0.01 || scale.z < 0.01) {\n\
|
return false;\n\
|
}\n\
|
\n\
|
vec3 o = (origin - center) / scale;\n\
|
vec3 d = dir / scale;\n\
|
vec3 p, n;\n\
|
bool intersected = intersectSphere(o, d, slice, p, n);\n\
|
if(intersected) {\n\
|
point = (p * scale) + center;\n\
|
normal = n;\n\
|
}\n\
|
return intersected;\n\
|
}\n\
|
\n\
|
// Assume that if phase shift is being called for octave i,\n\
|
// the frequency is of i - 1. This saves us from doing extra\n\
|
// division / multiplication operations.\n\
|
vec2 phaseShift2D(vec2 p, vec2 freq) {\n\
|
return (czm_pi / 2.0) * sin(freq.yx * p.yx);\n\
|
}\n\
|
\n\
|
vec2 phaseShift3D(vec3 p, vec2 freq) {\n\
|
return phaseShift2D(p.xy, freq) + czm_pi * vec2(sin(freq.x * p.z));\n\
|
}\n\
|
\n\
|
// The cloud texture function derived from Gardner's 1985 paper,\n\
|
// \"Visual Simulation of Clouds.\"\n\
|
// https://www.cs.drexel.edu/~david/Classes/Papers/p297-gardner.pdf\n\
|
const float T0 = 0.6; // contrast of the texture pattern\n\
|
const float k = 0.1; // computed to produce a maximum value of 1\n\
|
const float C0 = 0.8; // coefficient\n\
|
const float FX0 = 0.6; // frequency X\n\
|
const float FY0 = 0.6; // frequency Y\n\
|
const int octaves = 5;\n\
|
\n\
|
float T(vec3 point) {\n\
|
vec2 sum = vec2(0.0);\n\
|
float Ci = C0;\n\
|
vec2 FXY = vec2(FX0, FY0);\n\
|
vec2 PXY = vec2(0.0);\n\
|
for(int i = 1; i <= octaves; i++) {\n\
|
PXY = phaseShift3D(point, FXY);\n\
|
Ci *= 0.707;\n\
|
FXY *= 2.0;\n\
|
vec2 sinTerm = sin(FXY * point.xy + PXY);\n\
|
sum += Ci * sinTerm + vec2(T0);\n\
|
}\n\
|
return k * sum.x * sum.y;\n\
|
}\n\
|
\n\
|
const float a = 0.5; // fraction of surface reflection due to ambient or scattered light,\n\
|
const float t = 0.4; // fraction of texture shading\n\
|
const float s = 0.25; // fraction of specular reflection\n\
|
\n\
|
float I(float Id, float Is, float It) {\n\
|
return (1.0 - a) * ((1.0 - t) * ((1.0 - s) * Id + s * Is) + t * It) + a;\n\
|
}\n\
|
\n\
|
const vec3 lightDir = normalize(vec3(0.2, -1.0, 0.7));\n\
|
\n\
|
vec4 drawCloud(vec3 rayOrigin, vec3 rayDir, vec3 cloudCenter, vec3 cloudScale, float cloudSlice,\n\
|
float brightness) {\n\
|
vec3 cloudPoint, cloudNormal;\n\
|
if(!intersectEllipsoid(rayOrigin, rayDir, cloudCenter, cloudScale, cloudSlice,\n\
|
cloudPoint, cloudNormal)) {\n\
|
return vec4(0.0);\n\
|
}\n\
|
\n\
|
float Id = clamp(dot(cloudNormal, -lightDir), 0.0, 1.0); // diffuse reflection\n\
|
float Is = max(pow(dot(-lightDir, -rayDir), 2.0), 0.0); // specular reflection\n\
|
float It = T(cloudPoint); // texture function\n\
|
float intensity = I(Id, Is, It);\n\
|
vec3 color = intensity * clamp(brightness, 0.1, 1.0) * vec3(1.0);\n\
|
\n\
|
vec4 noise = sampleNoiseTexture(u_noiseDetail * cloudPoint);\n\
|
float W = noise.x;\n\
|
float W2 = noise.y;\n\
|
float W3 = noise.z;\n\
|
\n\
|
// The dot product between the cloud's normal and the ray's direction is greatest\n\
|
// in the center of the ellipsoid's surface. It decreases towards the edge.\n\
|
// Thus, it is used to blur the areas leading to the edges of the ellipsoid,\n\
|
// so that no harsh lines appear.\n\
|
\n\
|
// The first (and biggest) layer of worley noise is then subtracted from this.\n\
|
// The final result is scaled up so that the base cloud is not too translucent.\n\
|
float ndDot = clamp(dot(cloudNormal, -rayDir), 0.0, 1.0);\n\
|
float TR = pow(ndDot, 3.0) - W; // translucency\n\
|
TR *= 1.3;\n\
|
\n\
|
// Subtracting the second and third layers of worley noise is more complicated.\n\
|
// If these layers of noise were simply subtracted from the current translucency,\n\
|
// the shape derived from the first layer of noise would be completely deleted.\n\
|
// The erosion of this noise should thus be constricted to the edges of the cloud.\n\
|
// However, because the edges of the ellipsoid were already blurred away, mapping\n\
|
// the noise to (1.0 - ndDot) will have no impact on most of the cloud's appearance.\n\
|
// The value of (0.5 - ndDot) provides the best compromise.\n\
|
float minusDot = 0.5 - ndDot;\n\
|
\n\
|
// Even with the previous calculation, subtracting the second layer of wnoise\n\
|
// erode too much of the cloud. The addition of it, however, will detailed\n\
|
// volume to the cloud. As long as the noise is only added and not subtracted,\n\
|
// the results are aesthetically pleasing.\n\
|
\n\
|
// The minusDot product is mapped in a way that it is larger at the edges of\n\
|
// the ellipsoid, so a subtraction and min operation are used instead of\n\
|
// an addition and max one.\n\
|
TR -= min(minusDot * W2, 0.0);\n\
|
\n\
|
// The third level of worley noise is subtracted from the result, with some\n\
|
// modifications. First, a scalar is added to minusDot so that the noise\n\
|
// starts affecting the shape farther away from the center of the ellipsoid's\n\
|
// surface. Then, it is scaled down so its impact is not too intense.\n\
|
TR -= 0.8 * (minusDot + 0.25) * W3;\n\
|
\n\
|
// The texture function's shading does not correlate with the shape of the cloud\n\
|
// produced by the layers of noise, so an extra shading scalar is calculated.\n\
|
// The darkest areas of the cloud are assigned to be where the noise erodes\n\
|
// the cloud the most. This is then interpolated based on the translucency\n\
|
// and the diffuse shading term of that point in the cloud.\n\
|
float shading = mix(1.0 - 0.8 * W * W, 1.0, Id * TR);\n\
|
\n\
|
// To avoid values that are too dark, this scalar is increased by a small amount\n\
|
// and clamped so it never goes to zero.\n\
|
shading = clamp(shading + 0.2, 0.3, 1.0);\n\
|
\n\
|
// Finally, the contrast of the cloud's color is increased.\n\
|
vec3 finalColor = mix(vec3(0.5), shading * color, 1.15);\n\
|
return vec4(finalColor, clamp(TR, 0.0, 1.0));\n\
|
}\n\
|
\n\
|
void main() {\n\
|
#ifdef DEBUG_BILLBOARDS\n\
|
gl_FragColor = vec4(0.0, 0.5, 0.5, 1.0);\n\
|
#endif\n\
|
// To avoid calculations with high values,\n\
|
// we raycast from an arbitrarily smaller space.\n\
|
vec2 coordinate = v_maximumSize.xy * v_offset;\n\
|
\n\
|
vec3 ellipsoidScale = 0.82 * v_maximumSize;\n\
|
vec3 ellipsoidCenter = vec3(0.0);\n\
|
\n\
|
float zOffset = max(ellipsoidScale.z - 10.0, 0.0);\n\
|
vec3 eye = vec3(0, 0, -10.0 - zOffset);\n\
|
vec3 rayDir = normalize(vec3(coordinate, 1.0) - eye);\n\
|
vec3 rayOrigin = eye;\n\
|
#ifdef DEBUG_ELLIPSOIDS\n\
|
vec3 point, normal;\n\
|
if(intersectEllipsoid(rayOrigin, rayDir, ellipsoidCenter, ellipsoidScale, v_slice,\n\
|
point, normal)) {\n\
|
gl_FragColor = v_brightness * vec4(1.0);\n\
|
}\n\
|
#else\n\
|
#ifndef DEBUG_BILLBOARDS\n\
|
vec4 cloud = drawCloud(rayOrigin, rayDir,\n\
|
ellipsoidCenter, ellipsoidScale, v_slice, v_brightness);\n\
|
if(cloud.w < 0.01) {\n\
|
discard;\n\
|
}\n\
|
gl_FragColor = cloud;\n\
|
#endif\n\
|
#endif\n\
|
}\n\
|
";
|