import binarySearch from "./binarySearch.js";
|
import defaultValue from "./defaultValue.js";
|
import defined from "./defined.js";
|
import DeveloperError from "./DeveloperError.js";
|
import GregorianDate from "./GregorianDate.js";
|
import isLeapYear from "./isLeapYear.js";
|
import LeapSecond from "./LeapSecond.js";
|
import TimeConstants from "./TimeConstants.js";
|
import TimeStandard from "./TimeStandard.js";
|
|
var gregorianDateScratch = new GregorianDate();
|
var daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
|
var daysInLeapFeburary = 29;
|
|
function compareLeapSecondDates(leapSecond, dateToFind) {
|
return JulianDate.compare(leapSecond.julianDate, dateToFind.julianDate);
|
}
|
|
// we don't really need a leap second instance, anything with a julianDate property will do
|
var binarySearchScratchLeapSecond = new LeapSecond();
|
|
function convertUtcToTai(julianDate) {
|
//Even though julianDate is in UTC, we'll treat it as TAI and
|
//search the leap second table for it.
|
binarySearchScratchLeapSecond.julianDate = julianDate;
|
var leapSeconds = JulianDate.leapSeconds;
|
var index = binarySearch(
|
leapSeconds,
|
binarySearchScratchLeapSecond,
|
compareLeapSecondDates
|
);
|
|
if (index < 0) {
|
index = ~index;
|
}
|
|
if (index >= leapSeconds.length) {
|
index = leapSeconds.length - 1;
|
}
|
|
var offset = leapSeconds[index].offset;
|
if (index > 0) {
|
//Now we have the index of the closest leap second that comes on or after our UTC time.
|
//However, if the difference between the UTC date being converted and the TAI
|
//defined leap second is greater than the offset, we are off by one and need to use
|
//the previous leap second.
|
var difference = JulianDate.secondsDifference(
|
leapSeconds[index].julianDate,
|
julianDate
|
);
|
if (difference > offset) {
|
index--;
|
offset = leapSeconds[index].offset;
|
}
|
}
|
|
JulianDate.addSeconds(julianDate, offset, julianDate);
|
}
|
|
function convertTaiToUtc(julianDate, result) {
|
binarySearchScratchLeapSecond.julianDate = julianDate;
|
var leapSeconds = JulianDate.leapSeconds;
|
var index = binarySearch(
|
leapSeconds,
|
binarySearchScratchLeapSecond,
|
compareLeapSecondDates
|
);
|
if (index < 0) {
|
index = ~index;
|
}
|
|
//All times before our first leap second get the first offset.
|
if (index === 0) {
|
return JulianDate.addSeconds(julianDate, -leapSeconds[0].offset, result);
|
}
|
|
//All times after our leap second get the last offset.
|
if (index >= leapSeconds.length) {
|
return JulianDate.addSeconds(
|
julianDate,
|
-leapSeconds[index - 1].offset,
|
result
|
);
|
}
|
|
//Compute the difference between the found leap second and the time we are converting.
|
var difference = JulianDate.secondsDifference(
|
leapSeconds[index].julianDate,
|
julianDate
|
);
|
|
if (difference === 0) {
|
//The date is in our leap second table.
|
return JulianDate.addSeconds(
|
julianDate,
|
-leapSeconds[index].offset,
|
result
|
);
|
}
|
|
if (difference <= 1.0) {
|
//The requested date is during the moment of a leap second, then we cannot convert to UTC
|
return undefined;
|
}
|
|
//The time is in between two leap seconds, index is the leap second after the date
|
//we're converting, so we subtract one to get the correct LeapSecond instance.
|
return JulianDate.addSeconds(
|
julianDate,
|
-leapSeconds[--index].offset,
|
result
|
);
|
}
|
|
function setComponents(wholeDays, secondsOfDay, julianDate) {
|
var extraDays = (secondsOfDay / TimeConstants.SECONDS_PER_DAY) | 0;
|
wholeDays += extraDays;
|
secondsOfDay -= TimeConstants.SECONDS_PER_DAY * extraDays;
|
|
if (secondsOfDay < 0) {
|
wholeDays--;
|
secondsOfDay += TimeConstants.SECONDS_PER_DAY;
|
}
|
|
julianDate.dayNumber = wholeDays;
|
julianDate.secondsOfDay = secondsOfDay;
|
return julianDate;
|
}
|
|
function computeJulianDateComponents(
|
year,
|
month,
|
day,
|
hour,
|
minute,
|
second,
|
millisecond
|
) {
|
// Algorithm from page 604 of the Explanatory Supplement to the
|
// Astronomical Almanac (Seidelmann 1992).
|
|
var a = ((month - 14) / 12) | 0;
|
var b = year + 4800 + a;
|
var dayNumber =
|
(((1461 * b) / 4) | 0) +
|
(((367 * (month - 2 - 12 * a)) / 12) | 0) -
|
(((3 * (((b + 100) / 100) | 0)) / 4) | 0) +
|
day -
|
32075;
|
|
// JulianDates are noon-based
|
hour = hour - 12;
|
if (hour < 0) {
|
hour += 24;
|
}
|
|
var secondsOfDay =
|
second +
|
(hour * TimeConstants.SECONDS_PER_HOUR +
|
minute * TimeConstants.SECONDS_PER_MINUTE +
|
millisecond * TimeConstants.SECONDS_PER_MILLISECOND);
|
|
if (secondsOfDay >= 43200.0) {
|
dayNumber -= 1;
|
}
|
|
return [dayNumber, secondsOfDay];
|
}
|
|
//Regular expressions used for ISO8601 date parsing.
|
//YYYY
|
var matchCalendarYear = /^(\d{4})$/;
|
//YYYY-MM (YYYYMM is invalid)
|
var matchCalendarMonth = /^(\d{4})-(\d{2})$/;
|
//YYYY-DDD or YYYYDDD
|
var matchOrdinalDate = /^(\d{4})-?(\d{3})$/;
|
//YYYY-Www or YYYYWww or YYYY-Www-D or YYYYWwwD
|
var matchWeekDate = /^(\d{4})-?W(\d{2})-?(\d{1})?$/;
|
//YYYY-MM-DD or YYYYMMDD
|
var matchCalendarDate = /^(\d{4})-?(\d{2})-?(\d{2})$/;
|
// Match utc offset
|
var utcOffset = /([Z+\-])?(\d{2})?:?(\d{2})?$/;
|
// Match hours HH or HH.xxxxx
|
var matchHours = /^(\d{2})(\.\d+)?/.source + utcOffset.source;
|
// Match hours/minutes HH:MM HHMM.xxxxx
|
var matchHoursMinutes = /^(\d{2}):?(\d{2})(\.\d+)?/.source + utcOffset.source;
|
// Match hours/minutes HH:MM:SS HHMMSS.xxxxx
|
var matchHoursMinutesSeconds =
|
/^(\d{2}):?(\d{2}):?(\d{2})(\.\d+)?/.source + utcOffset.source;
|
|
var iso8601ErrorMessage = "Invalid ISO 8601 date.";
|
|
/**
|
* Represents an astronomical Julian date, which is the number of days since noon on January 1, -4712 (4713 BC).
|
* For increased precision, this class stores the whole number part of the date and the seconds
|
* part of the date in separate components. In order to be safe for arithmetic and represent
|
* leap seconds, the date is always stored in the International Atomic Time standard
|
* {@link TimeStandard.TAI}.
|
* @alias JulianDate
|
* @constructor
|
*
|
* @param {Number} [julianDayNumber=0.0] The Julian Day Number representing the number of whole days. Fractional days will also be handled correctly.
|
* @param {Number} [secondsOfDay=0.0] The number of seconds into the current Julian Day Number. Fractional seconds, negative seconds and seconds greater than a day will be handled correctly.
|
* @param {TimeStandard} [timeStandard=TimeStandard.UTC] The time standard in which the first two parameters are defined.
|
*/
|
function JulianDate(julianDayNumber, secondsOfDay, timeStandard) {
|
/**
|
* Gets or sets the number of whole days.
|
* @type {Number}
|
*/
|
this.dayNumber = undefined;
|
|
/**
|
* Gets or sets the number of seconds into the current day.
|
* @type {Number}
|
*/
|
this.secondsOfDay = undefined;
|
|
julianDayNumber = defaultValue(julianDayNumber, 0.0);
|
secondsOfDay = defaultValue(secondsOfDay, 0.0);
|
timeStandard = defaultValue(timeStandard, TimeStandard.UTC);
|
|
//If julianDayNumber is fractional, make it an integer and add the number of seconds the fraction represented.
|
var wholeDays = julianDayNumber | 0;
|
secondsOfDay =
|
secondsOfDay +
|
(julianDayNumber - wholeDays) * TimeConstants.SECONDS_PER_DAY;
|
|
setComponents(wholeDays, secondsOfDay, this);
|
|
if (timeStandard === TimeStandard.UTC) {
|
convertUtcToTai(this);
|
}
|
}
|
|
/**
|
* Creates a new instance from a GregorianDate.
|
*
|
* @param {GregorianDate} date A GregorianDate.
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
|
*
|
* @exception {DeveloperError} date must be a valid GregorianDate.
|
*/
|
JulianDate.fromGregorianDate = function (date, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!(date instanceof GregorianDate)) {
|
throw new DeveloperError("date must be a valid GregorianDate.");
|
}
|
//>>includeEnd('debug');
|
|
var components = computeJulianDateComponents(
|
date.year,
|
date.month,
|
date.day,
|
date.hour,
|
date.minute,
|
date.second,
|
date.millisecond
|
);
|
if (!defined(result)) {
|
return new JulianDate(components[0], components[1], TimeStandard.UTC);
|
}
|
setComponents(components[0], components[1], result);
|
convertUtcToTai(result);
|
return result;
|
};
|
|
/**
|
* Creates a new instance from a JavaScript Date.
|
*
|
* @param {Date} date A JavaScript Date.
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
|
*
|
* @exception {DeveloperError} date must be a valid JavaScript Date.
|
*/
|
JulianDate.fromDate = function (date, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!(date instanceof Date) || isNaN(date.getTime())) {
|
throw new DeveloperError("date must be a valid JavaScript Date.");
|
}
|
//>>includeEnd('debug');
|
|
var components = computeJulianDateComponents(
|
date.getUTCFullYear(),
|
date.getUTCMonth() + 1,
|
date.getUTCDate(),
|
date.getUTCHours(),
|
date.getUTCMinutes(),
|
date.getUTCSeconds(),
|
date.getUTCMilliseconds()
|
);
|
if (!defined(result)) {
|
return new JulianDate(components[0], components[1], TimeStandard.UTC);
|
}
|
setComponents(components[0], components[1], result);
|
convertUtcToTai(result);
|
return result;
|
};
|
|
/**
|
* Creates a new instance from a from an {@link http://en.wikipedia.org/wiki/ISO_8601|ISO 8601} date.
|
* This method is superior to <code>Date.parse</code> because it will handle all valid formats defined by the ISO 8601
|
* specification, including leap seconds and sub-millisecond times, which discarded by most JavaScript implementations.
|
*
|
* @param {String} iso8601String An ISO 8601 date.
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
|
*
|
* @exception {DeveloperError} Invalid ISO 8601 date.
|
*/
|
JulianDate.fromIso8601 = function (iso8601String, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (typeof iso8601String !== "string") {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug');
|
|
//Comma and decimal point both indicate a fractional number according to ISO 8601,
|
//start out by blanket replacing , with . which is the only valid such symbol in JS.
|
iso8601String = iso8601String.replace(",", ".");
|
|
//Split the string into its date and time components, denoted by a mandatory T
|
var tokens = iso8601String.split("T");
|
var year;
|
var month = 1;
|
var day = 1;
|
var hour = 0;
|
var minute = 0;
|
var second = 0;
|
var millisecond = 0;
|
|
//Lacking a time is okay, but a missing date is illegal.
|
var date = tokens[0];
|
var time = tokens[1];
|
var tmp;
|
var inLeapYear;
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(date)) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
|
var dashCount;
|
//>>includeEnd('debug');
|
|
//First match the date against possible regular expressions.
|
tokens = date.match(matchCalendarDate);
|
if (tokens !== null) {
|
//>>includeStart('debug', pragmas.debug);
|
dashCount = date.split("-").length - 1;
|
if (dashCount > 0 && dashCount !== 2) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug');
|
year = +tokens[1];
|
month = +tokens[2];
|
day = +tokens[3];
|
} else {
|
tokens = date.match(matchCalendarMonth);
|
if (tokens !== null) {
|
year = +tokens[1];
|
month = +tokens[2];
|
} else {
|
tokens = date.match(matchCalendarYear);
|
if (tokens !== null) {
|
year = +tokens[1];
|
} else {
|
//Not a year/month/day so it must be an ordinal date.
|
var dayOfYear;
|
tokens = date.match(matchOrdinalDate);
|
if (tokens !== null) {
|
year = +tokens[1];
|
dayOfYear = +tokens[2];
|
inLeapYear = isLeapYear(year);
|
|
//This validation is only applicable for this format.
|
//>>includeStart('debug', pragmas.debug);
|
if (
|
dayOfYear < 1 ||
|
(inLeapYear && dayOfYear > 366) ||
|
(!inLeapYear && dayOfYear > 365)
|
) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug')
|
} else {
|
tokens = date.match(matchWeekDate);
|
if (tokens !== null) {
|
//ISO week date to ordinal date from
|
//http://en.wikipedia.org/w/index.php?title=ISO_week_date&oldid=474176775
|
year = +tokens[1];
|
var weekNumber = +tokens[2];
|
var dayOfWeek = +tokens[3] || 0;
|
|
//>>includeStart('debug', pragmas.debug);
|
dashCount = date.split("-").length - 1;
|
if (
|
dashCount > 0 &&
|
((!defined(tokens[3]) && dashCount !== 1) ||
|
(defined(tokens[3]) && dashCount !== 2))
|
) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug')
|
|
var january4 = new Date(Date.UTC(year, 0, 4));
|
dayOfYear = weekNumber * 7 + dayOfWeek - january4.getUTCDay() - 3;
|
} else {
|
//None of our regular expressions succeeded in parsing the date properly.
|
//>>includeStart('debug', pragmas.debug);
|
throw new DeveloperError(iso8601ErrorMessage);
|
//>>includeEnd('debug')
|
}
|
}
|
//Split an ordinal date into month/day.
|
tmp = new Date(Date.UTC(year, 0, 1));
|
tmp.setUTCDate(dayOfYear);
|
month = tmp.getUTCMonth() + 1;
|
day = tmp.getUTCDate();
|
}
|
}
|
}
|
|
//Now that we have all of the date components, validate them to make sure nothing is out of range.
|
inLeapYear = isLeapYear(year);
|
//>>includeStart('debug', pragmas.debug);
|
if (
|
month < 1 ||
|
month > 12 ||
|
day < 1 ||
|
((month !== 2 || !inLeapYear) && day > daysInMonth[month - 1]) ||
|
(inLeapYear && month === 2 && day > daysInLeapFeburary)
|
) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug')
|
|
//Now move onto the time string, which is much simpler.
|
//If no time is specified, it is considered the beginning of the day, UTC to match Javascript's implementation.
|
var offsetIndex;
|
if (defined(time)) {
|
tokens = time.match(matchHoursMinutesSeconds);
|
if (tokens !== null) {
|
//>>includeStart('debug', pragmas.debug);
|
dashCount = time.split(":").length - 1;
|
if (dashCount > 0 && dashCount !== 2 && dashCount !== 3) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug')
|
|
hour = +tokens[1];
|
minute = +tokens[2];
|
second = +tokens[3];
|
millisecond = +(tokens[4] || 0) * 1000.0;
|
offsetIndex = 5;
|
} else {
|
tokens = time.match(matchHoursMinutes);
|
if (tokens !== null) {
|
//>>includeStart('debug', pragmas.debug);
|
dashCount = time.split(":").length - 1;
|
if (dashCount > 2) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug')
|
|
hour = +tokens[1];
|
minute = +tokens[2];
|
second = +(tokens[3] || 0) * 60.0;
|
offsetIndex = 4;
|
} else {
|
tokens = time.match(matchHours);
|
if (tokens !== null) {
|
hour = +tokens[1];
|
minute = +(tokens[2] || 0) * 60.0;
|
offsetIndex = 3;
|
} else {
|
//>>includeStart('debug', pragmas.debug);
|
throw new DeveloperError(iso8601ErrorMessage);
|
//>>includeEnd('debug')
|
}
|
}
|
}
|
|
//Validate that all values are in proper range. Minutes and hours have special cases at 60 and 24.
|
//>>includeStart('debug', pragmas.debug);
|
if (
|
minute >= 60 ||
|
second >= 61 ||
|
hour > 24 ||
|
(hour === 24 && (minute > 0 || second > 0 || millisecond > 0))
|
) {
|
throw new DeveloperError(iso8601ErrorMessage);
|
}
|
//>>includeEnd('debug');
|
|
//Check the UTC offset value, if no value exists, use local time
|
//a Z indicates UTC, + or - are offsets.
|
var offset = tokens[offsetIndex];
|
var offsetHours = +tokens[offsetIndex + 1];
|
var offsetMinutes = +(tokens[offsetIndex + 2] || 0);
|
switch (offset) {
|
case "+":
|
hour = hour - offsetHours;
|
minute = minute - offsetMinutes;
|
break;
|
case "-":
|
hour = hour + offsetHours;
|
minute = minute + offsetMinutes;
|
break;
|
case "Z":
|
break;
|
default:
|
minute =
|
minute +
|
new Date(
|
Date.UTC(year, month - 1, day, hour, minute)
|
).getTimezoneOffset();
|
break;
|
}
|
}
|
|
//ISO8601 denotes a leap second by any time having a seconds component of 60 seconds.
|
//If that's the case, we need to temporarily subtract a second in order to build a UTC date.
|
//Then we add it back in after converting to TAI.
|
var isLeapSecond = second === 60;
|
if (isLeapSecond) {
|
second--;
|
}
|
|
//Even if we successfully parsed the string into its components, after applying UTC offset or
|
//special cases like 24:00:00 denoting midnight, we need to normalize the data appropriately.
|
|
//milliseconds can never be greater than 1000, and seconds can't be above 60, so we start with minutes
|
while (minute >= 60) {
|
minute -= 60;
|
hour++;
|
}
|
|
while (hour >= 24) {
|
hour -= 24;
|
day++;
|
}
|
|
tmp = inLeapYear && month === 2 ? daysInLeapFeburary : daysInMonth[month - 1];
|
while (day > tmp) {
|
day -= tmp;
|
month++;
|
|
if (month > 12) {
|
month -= 12;
|
year++;
|
}
|
|
tmp =
|
inLeapYear && month === 2 ? daysInLeapFeburary : daysInMonth[month - 1];
|
}
|
|
//If UTC offset is at the beginning/end of the day, minutes can be negative.
|
while (minute < 0) {
|
minute += 60;
|
hour--;
|
}
|
|
while (hour < 0) {
|
hour += 24;
|
day--;
|
}
|
|
while (day < 1) {
|
month--;
|
if (month < 1) {
|
month += 12;
|
year--;
|
}
|
|
tmp =
|
inLeapYear && month === 2 ? daysInLeapFeburary : daysInMonth[month - 1];
|
day += tmp;
|
}
|
|
//Now create the JulianDate components from the Gregorian date and actually create our instance.
|
var components = computeJulianDateComponents(
|
year,
|
month,
|
day,
|
hour,
|
minute,
|
second,
|
millisecond
|
);
|
|
if (!defined(result)) {
|
result = new JulianDate(components[0], components[1], TimeStandard.UTC);
|
} else {
|
setComponents(components[0], components[1], result);
|
convertUtcToTai(result);
|
}
|
|
//If we were on a leap second, add it back.
|
if (isLeapSecond) {
|
JulianDate.addSeconds(result, 1, result);
|
}
|
|
return result;
|
};
|
|
/**
|
* Creates a new instance that represents the current system time.
|
* This is equivalent to calling <code>JulianDate.fromDate(new Date());</code>.
|
*
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
|
*/
|
JulianDate.now = function (result) {
|
return JulianDate.fromDate(new Date(), result);
|
};
|
|
var toGregorianDateScratch = new JulianDate(0, 0, TimeStandard.TAI);
|
|
/**
|
* Creates a {@link GregorianDate} from the provided instance.
|
*
|
* @param {JulianDate} julianDate The date to be converted.
|
* @param {GregorianDate} [result] An existing instance to use for the result.
|
* @returns {GregorianDate} The modified result parameter or a new instance if none was provided.
|
*/
|
JulianDate.toGregorianDate = function (julianDate, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
//>>includeEnd('debug');
|
|
var isLeapSecond = false;
|
var thisUtc = convertTaiToUtc(julianDate, toGregorianDateScratch);
|
if (!defined(thisUtc)) {
|
//Conversion to UTC will fail if we are during a leap second.
|
//If that's the case, subtract a second and convert again.
|
//JavaScript doesn't support leap seconds, so this results in second 59 being repeated twice.
|
JulianDate.addSeconds(julianDate, -1, toGregorianDateScratch);
|
thisUtc = convertTaiToUtc(toGregorianDateScratch, toGregorianDateScratch);
|
isLeapSecond = true;
|
}
|
|
var julianDayNumber = thisUtc.dayNumber;
|
var secondsOfDay = thisUtc.secondsOfDay;
|
|
if (secondsOfDay >= 43200.0) {
|
julianDayNumber += 1;
|
}
|
|
// Algorithm from page 604 of the Explanatory Supplement to the
|
// Astronomical Almanac (Seidelmann 1992).
|
var L = (julianDayNumber + 68569) | 0;
|
var N = ((4 * L) / 146097) | 0;
|
L = (L - (((146097 * N + 3) / 4) | 0)) | 0;
|
var I = ((4000 * (L + 1)) / 1461001) | 0;
|
L = (L - (((1461 * I) / 4) | 0) + 31) | 0;
|
var J = ((80 * L) / 2447) | 0;
|
var day = (L - (((2447 * J) / 80) | 0)) | 0;
|
L = (J / 11) | 0;
|
var month = (J + 2 - 12 * L) | 0;
|
var year = (100 * (N - 49) + I + L) | 0;
|
|
var hour = (secondsOfDay / TimeConstants.SECONDS_PER_HOUR) | 0;
|
var remainingSeconds = secondsOfDay - hour * TimeConstants.SECONDS_PER_HOUR;
|
var minute = (remainingSeconds / TimeConstants.SECONDS_PER_MINUTE) | 0;
|
remainingSeconds =
|
remainingSeconds - minute * TimeConstants.SECONDS_PER_MINUTE;
|
var second = remainingSeconds | 0;
|
var millisecond =
|
(remainingSeconds - second) / TimeConstants.SECONDS_PER_MILLISECOND;
|
|
// JulianDates are noon-based
|
hour += 12;
|
if (hour > 23) {
|
hour -= 24;
|
}
|
|
//If we were on a leap second, add it back.
|
if (isLeapSecond) {
|
second += 1;
|
}
|
|
if (!defined(result)) {
|
return new GregorianDate(
|
year,
|
month,
|
day,
|
hour,
|
minute,
|
second,
|
millisecond,
|
isLeapSecond
|
);
|
}
|
|
result.year = year;
|
result.month = month;
|
result.day = day;
|
result.hour = hour;
|
result.minute = minute;
|
result.second = second;
|
result.millisecond = millisecond;
|
result.isLeapSecond = isLeapSecond;
|
return result;
|
};
|
|
/**
|
* Creates a JavaScript Date from the provided instance.
|
* Since JavaScript dates are only accurate to the nearest millisecond and
|
* cannot represent a leap second, consider using {@link JulianDate.toGregorianDate} instead.
|
* If the provided JulianDate is during a leap second, the previous second is used.
|
*
|
* @param {JulianDate} julianDate The date to be converted.
|
* @returns {Date} A new instance representing the provided date.
|
*/
|
JulianDate.toDate = function (julianDate) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
//>>includeEnd('debug');
|
|
var gDate = JulianDate.toGregorianDate(julianDate, gregorianDateScratch);
|
var second = gDate.second;
|
if (gDate.isLeapSecond) {
|
second -= 1;
|
}
|
return new Date(
|
Date.UTC(
|
gDate.year,
|
gDate.month - 1,
|
gDate.day,
|
gDate.hour,
|
gDate.minute,
|
second,
|
gDate.millisecond
|
)
|
);
|
};
|
|
/**
|
* Creates an ISO8601 representation of the provided date.
|
*
|
* @param {JulianDate} julianDate The date to be converted.
|
* @param {Number} [precision] The number of fractional digits used to represent the seconds component. By default, the most precise representation is used.
|
* @returns {String} The ISO8601 representation of the provided date.
|
*/
|
JulianDate.toIso8601 = function (julianDate, precision) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
//>>includeEnd('debug');
|
|
var gDate = JulianDate.toGregorianDate(julianDate, gregorianDateScratch);
|
var year = gDate.year;
|
var month = gDate.month;
|
var day = gDate.day;
|
var hour = gDate.hour;
|
var minute = gDate.minute;
|
var second = gDate.second;
|
var millisecond = gDate.millisecond;
|
|
// special case - Iso8601.MAXIMUM_VALUE produces a string which we can't parse unless we adjust.
|
// 10000-01-01T00:00:00 is the same instant as 9999-12-31T24:00:00
|
if (
|
year === 10000 &&
|
month === 1 &&
|
day === 1 &&
|
hour === 0 &&
|
minute === 0 &&
|
second === 0 &&
|
millisecond === 0
|
) {
|
year = 9999;
|
month = 12;
|
day = 31;
|
hour = 24;
|
}
|
|
var millisecondStr;
|
|
if (!defined(precision) && millisecond !== 0) {
|
//Forces milliseconds into a number with at least 3 digits to whatever the default toString() precision is.
|
millisecondStr = (millisecond * 0.01).toString().replace(".", "");
|
return (
|
year.toString().padStart(4, "0") +
|
"-" +
|
month.toString().padStart(2, "0") +
|
"-" +
|
day.toString().padStart(2, "0") +
|
"T" +
|
hour.toString().padStart(2, "0") +
|
":" +
|
minute.toString().padStart(2, "0") +
|
":" +
|
second.toString().padStart(2, "0") +
|
"." +
|
millisecondStr +
|
"Z"
|
);
|
}
|
|
//Precision is either 0 or milliseconds is 0 with undefined precision, in either case, leave off milliseconds entirely
|
if (!defined(precision) || precision === 0) {
|
return (
|
year.toString().padStart(4, "0") +
|
"-" +
|
month.toString().padStart(2, "0") +
|
"-" +
|
day.toString().padStart(2, "0") +
|
"T" +
|
hour.toString().padStart(2, "0") +
|
":" +
|
minute.toString().padStart(2, "0") +
|
":" +
|
second.toString().padStart(2, "0") +
|
"Z"
|
);
|
}
|
|
//Forces milliseconds into a number with at least 3 digits to whatever the specified precision is.
|
millisecondStr = (millisecond * 0.01)
|
.toFixed(precision)
|
.replace(".", "")
|
.slice(0, precision);
|
return (
|
year.toString().padStart(4, "0") +
|
"-" +
|
month.toString().padStart(2, "0") +
|
"-" +
|
day.toString().padStart(2, "0") +
|
"T" +
|
hour.toString().padStart(2, "0") +
|
":" +
|
minute.toString().padStart(2, "0") +
|
":" +
|
second.toString().padStart(2, "0") +
|
"." +
|
millisecondStr +
|
"Z"
|
);
|
};
|
|
/**
|
* Duplicates a JulianDate instance.
|
*
|
* @param {JulianDate} julianDate The date to duplicate.
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided. Returns undefined if julianDate is undefined.
|
*/
|
JulianDate.clone = function (julianDate, result) {
|
if (!defined(julianDate)) {
|
return undefined;
|
}
|
if (!defined(result)) {
|
return new JulianDate(
|
julianDate.dayNumber,
|
julianDate.secondsOfDay,
|
TimeStandard.TAI
|
);
|
}
|
result.dayNumber = julianDate.dayNumber;
|
result.secondsOfDay = julianDate.secondsOfDay;
|
return result;
|
};
|
|
/**
|
* Compares two instances.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Number} A negative value if left is less than right, a positive value if left is greater than right, or zero if left and right are equal.
|
*/
|
JulianDate.compare = function (left, right) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(left)) {
|
throw new DeveloperError("left is required.");
|
}
|
if (!defined(right)) {
|
throw new DeveloperError("right is required.");
|
}
|
//>>includeEnd('debug');
|
|
var julianDayNumberDifference = left.dayNumber - right.dayNumber;
|
if (julianDayNumberDifference !== 0) {
|
return julianDayNumberDifference;
|
}
|
return left.secondsOfDay - right.secondsOfDay;
|
};
|
|
/**
|
* Compares two instances and returns <code>true</code> if they are equal, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} [left] The first instance.
|
* @param {JulianDate} [right] The second instance.
|
* @returns {Boolean} <code>true</code> if the dates are equal; otherwise, <code>false</code>.
|
*/
|
JulianDate.equals = function (left, right) {
|
return (
|
left === right ||
|
(defined(left) &&
|
defined(right) &&
|
left.dayNumber === right.dayNumber &&
|
left.secondsOfDay === right.secondsOfDay)
|
);
|
};
|
|
/**
|
* Compares two instances and returns <code>true</code> if they are within <code>epsilon</code> seconds of
|
* each other. That is, in order for the dates to be considered equal (and for
|
* this function to return <code>true</code>), the absolute value of the difference between them, in
|
* seconds, must be less than <code>epsilon</code>.
|
*
|
* @param {JulianDate} [left] The first instance.
|
* @param {JulianDate} [right] The second instance.
|
* @param {Number} [epsilon=0] The maximum number of seconds that should separate the two instances.
|
* @returns {Boolean} <code>true</code> if the two dates are within <code>epsilon</code> seconds of each other; otherwise <code>false</code>.
|
*/
|
JulianDate.equalsEpsilon = function (left, right, epsilon) {
|
epsilon = defaultValue(epsilon, 0);
|
|
return (
|
left === right ||
|
(defined(left) &&
|
defined(right) &&
|
Math.abs(JulianDate.secondsDifference(left, right)) <= epsilon)
|
);
|
};
|
|
/**
|
* Computes the total number of whole and fractional days represented by the provided instance.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @returns {Number} The Julian date as single floating point number.
|
*/
|
JulianDate.totalDays = function (julianDate) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
//>>includeEnd('debug');
|
return (
|
julianDate.dayNumber +
|
julianDate.secondsOfDay / TimeConstants.SECONDS_PER_DAY
|
);
|
};
|
|
/**
|
* Computes the difference in seconds between the provided instance.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Number} The difference, in seconds, when subtracting <code>right</code> from <code>left</code>.
|
*/
|
JulianDate.secondsDifference = function (left, right) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(left)) {
|
throw new DeveloperError("left is required.");
|
}
|
if (!defined(right)) {
|
throw new DeveloperError("right is required.");
|
}
|
//>>includeEnd('debug');
|
|
var dayDifference =
|
(left.dayNumber - right.dayNumber) * TimeConstants.SECONDS_PER_DAY;
|
return dayDifference + (left.secondsOfDay - right.secondsOfDay);
|
};
|
|
/**
|
* Computes the difference in days between the provided instance.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Number} The difference, in days, when subtracting <code>right</code> from <code>left</code>.
|
*/
|
JulianDate.daysDifference = function (left, right) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(left)) {
|
throw new DeveloperError("left is required.");
|
}
|
if (!defined(right)) {
|
throw new DeveloperError("right is required.");
|
}
|
//>>includeEnd('debug');
|
|
var dayDifference = left.dayNumber - right.dayNumber;
|
var secondDifference =
|
(left.secondsOfDay - right.secondsOfDay) / TimeConstants.SECONDS_PER_DAY;
|
return dayDifference + secondDifference;
|
};
|
|
/**
|
* Computes the number of seconds the provided instance is ahead of UTC.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @returns {Number} The number of seconds the provided instance is ahead of UTC
|
*/
|
JulianDate.computeTaiMinusUtc = function (julianDate) {
|
binarySearchScratchLeapSecond.julianDate = julianDate;
|
var leapSeconds = JulianDate.leapSeconds;
|
var index = binarySearch(
|
leapSeconds,
|
binarySearchScratchLeapSecond,
|
compareLeapSecondDates
|
);
|
if (index < 0) {
|
index = ~index;
|
--index;
|
if (index < 0) {
|
index = 0;
|
}
|
}
|
return leapSeconds[index].offset;
|
};
|
|
/**
|
* Adds the provided number of seconds to the provided date instance.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @param {Number} seconds The number of seconds to add or subtract.
|
* @param {JulianDate} result An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter.
|
*/
|
JulianDate.addSeconds = function (julianDate, seconds, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
if (!defined(seconds)) {
|
throw new DeveloperError("seconds is required.");
|
}
|
if (!defined(result)) {
|
throw new DeveloperError("result is required.");
|
}
|
//>>includeEnd('debug');
|
|
return setComponents(
|
julianDate.dayNumber,
|
julianDate.secondsOfDay + seconds,
|
result
|
);
|
};
|
|
/**
|
* Adds the provided number of minutes to the provided date instance.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @param {Number} minutes The number of minutes to add or subtract.
|
* @param {JulianDate} result An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter.
|
*/
|
JulianDate.addMinutes = function (julianDate, minutes, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
if (!defined(minutes)) {
|
throw new DeveloperError("minutes is required.");
|
}
|
if (!defined(result)) {
|
throw new DeveloperError("result is required.");
|
}
|
//>>includeEnd('debug');
|
|
var newSecondsOfDay =
|
julianDate.secondsOfDay + minutes * TimeConstants.SECONDS_PER_MINUTE;
|
return setComponents(julianDate.dayNumber, newSecondsOfDay, result);
|
};
|
|
/**
|
* Adds the provided number of hours to the provided date instance.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @param {Number} hours The number of hours to add or subtract.
|
* @param {JulianDate} result An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter.
|
*/
|
JulianDate.addHours = function (julianDate, hours, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
if (!defined(hours)) {
|
throw new DeveloperError("hours is required.");
|
}
|
if (!defined(result)) {
|
throw new DeveloperError("result is required.");
|
}
|
//>>includeEnd('debug');
|
|
var newSecondsOfDay =
|
julianDate.secondsOfDay + hours * TimeConstants.SECONDS_PER_HOUR;
|
return setComponents(julianDate.dayNumber, newSecondsOfDay, result);
|
};
|
|
/**
|
* Adds the provided number of days to the provided date instance.
|
*
|
* @param {JulianDate} julianDate The date.
|
* @param {Number} days The number of days to add or subtract.
|
* @param {JulianDate} result An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter.
|
*/
|
JulianDate.addDays = function (julianDate, days, result) {
|
//>>includeStart('debug', pragmas.debug);
|
if (!defined(julianDate)) {
|
throw new DeveloperError("julianDate is required.");
|
}
|
if (!defined(days)) {
|
throw new DeveloperError("days is required.");
|
}
|
if (!defined(result)) {
|
throw new DeveloperError("result is required.");
|
}
|
//>>includeEnd('debug');
|
|
var newJulianDayNumber = julianDate.dayNumber + days;
|
return setComponents(newJulianDayNumber, julianDate.secondsOfDay, result);
|
};
|
|
/**
|
* Compares the provided instances and returns <code>true</code> if <code>left</code> is earlier than <code>right</code>, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Boolean} <code>true</code> if <code>left</code> is earlier than <code>right</code>, <code>false</code> otherwise.
|
*/
|
JulianDate.lessThan = function (left, right) {
|
return JulianDate.compare(left, right) < 0;
|
};
|
|
/**
|
* Compares the provided instances and returns <code>true</code> if <code>left</code> is earlier than or equal to <code>right</code>, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Boolean} <code>true</code> if <code>left</code> is earlier than or equal to <code>right</code>, <code>false</code> otherwise.
|
*/
|
JulianDate.lessThanOrEquals = function (left, right) {
|
return JulianDate.compare(left, right) <= 0;
|
};
|
|
/**
|
* Compares the provided instances and returns <code>true</code> if <code>left</code> is later than <code>right</code>, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Boolean} <code>true</code> if <code>left</code> is later than <code>right</code>, <code>false</code> otherwise.
|
*/
|
JulianDate.greaterThan = function (left, right) {
|
return JulianDate.compare(left, right) > 0;
|
};
|
|
/**
|
* Compares the provided instances and returns <code>true</code> if <code>left</code> is later than or equal to <code>right</code>, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} left The first instance.
|
* @param {JulianDate} right The second instance.
|
* @returns {Boolean} <code>true</code> if <code>left</code> is later than or equal to <code>right</code>, <code>false</code> otherwise.
|
*/
|
JulianDate.greaterThanOrEquals = function (left, right) {
|
return JulianDate.compare(left, right) >= 0;
|
};
|
|
/**
|
* Duplicates this instance.
|
*
|
* @param {JulianDate} [result] An existing instance to use for the result.
|
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
|
*/
|
JulianDate.prototype.clone = function (result) {
|
return JulianDate.clone(this, result);
|
};
|
|
/**
|
* Compares this and the provided instance and returns <code>true</code> if they are equal, <code>false</code> otherwise.
|
*
|
* @param {JulianDate} [right] The second instance.
|
* @returns {Boolean} <code>true</code> if the dates are equal; otherwise, <code>false</code>.
|
*/
|
JulianDate.prototype.equals = function (right) {
|
return JulianDate.equals(this, right);
|
};
|
|
/**
|
* Compares this and the provided instance and returns <code>true</code> if they are within <code>epsilon</code> seconds of
|
* each other. That is, in order for the dates to be considered equal (and for
|
* this function to return <code>true</code>), the absolute value of the difference between them, in
|
* seconds, must be less than <code>epsilon</code>.
|
*
|
* @param {JulianDate} [right] The second instance.
|
* @param {Number} [epsilon=0] The maximum number of seconds that should separate the two instances.
|
* @returns {Boolean} <code>true</code> if the two dates are within <code>epsilon</code> seconds of each other; otherwise <code>false</code>.
|
*/
|
JulianDate.prototype.equalsEpsilon = function (right, epsilon) {
|
return JulianDate.equalsEpsilon(this, right, epsilon);
|
};
|
|
/**
|
* Creates a string representing this date in ISO8601 format.
|
*
|
* @returns {String} A string representing this date in ISO8601 format.
|
*/
|
JulianDate.prototype.toString = function () {
|
return JulianDate.toIso8601(this);
|
};
|
|
/**
|
* Gets or sets the list of leap seconds used throughout Cesium.
|
* @memberof JulianDate
|
* @type {LeapSecond[]}
|
*/
|
JulianDate.leapSeconds = [
|
new LeapSecond(new JulianDate(2441317, 43210.0, TimeStandard.TAI), 10), // January 1, 1972 00:00:00 UTC
|
new LeapSecond(new JulianDate(2441499, 43211.0, TimeStandard.TAI), 11), // July 1, 1972 00:00:00 UTC
|
new LeapSecond(new JulianDate(2441683, 43212.0, TimeStandard.TAI), 12), // January 1, 1973 00:00:00 UTC
|
new LeapSecond(new JulianDate(2442048, 43213.0, TimeStandard.TAI), 13), // January 1, 1974 00:00:00 UTC
|
new LeapSecond(new JulianDate(2442413, 43214.0, TimeStandard.TAI), 14), // January 1, 1975 00:00:00 UTC
|
new LeapSecond(new JulianDate(2442778, 43215.0, TimeStandard.TAI), 15), // January 1, 1976 00:00:00 UTC
|
new LeapSecond(new JulianDate(2443144, 43216.0, TimeStandard.TAI), 16), // January 1, 1977 00:00:00 UTC
|
new LeapSecond(new JulianDate(2443509, 43217.0, TimeStandard.TAI), 17), // January 1, 1978 00:00:00 UTC
|
new LeapSecond(new JulianDate(2443874, 43218.0, TimeStandard.TAI), 18), // January 1, 1979 00:00:00 UTC
|
new LeapSecond(new JulianDate(2444239, 43219.0, TimeStandard.TAI), 19), // January 1, 1980 00:00:00 UTC
|
new LeapSecond(new JulianDate(2444786, 43220.0, TimeStandard.TAI), 20), // July 1, 1981 00:00:00 UTC
|
new LeapSecond(new JulianDate(2445151, 43221.0, TimeStandard.TAI), 21), // July 1, 1982 00:00:00 UTC
|
new LeapSecond(new JulianDate(2445516, 43222.0, TimeStandard.TAI), 22), // July 1, 1983 00:00:00 UTC
|
new LeapSecond(new JulianDate(2446247, 43223.0, TimeStandard.TAI), 23), // July 1, 1985 00:00:00 UTC
|
new LeapSecond(new JulianDate(2447161, 43224.0, TimeStandard.TAI), 24), // January 1, 1988 00:00:00 UTC
|
new LeapSecond(new JulianDate(2447892, 43225.0, TimeStandard.TAI), 25), // January 1, 1990 00:00:00 UTC
|
new LeapSecond(new JulianDate(2448257, 43226.0, TimeStandard.TAI), 26), // January 1, 1991 00:00:00 UTC
|
new LeapSecond(new JulianDate(2448804, 43227.0, TimeStandard.TAI), 27), // July 1, 1992 00:00:00 UTC
|
new LeapSecond(new JulianDate(2449169, 43228.0, TimeStandard.TAI), 28), // July 1, 1993 00:00:00 UTC
|
new LeapSecond(new JulianDate(2449534, 43229.0, TimeStandard.TAI), 29), // July 1, 1994 00:00:00 UTC
|
new LeapSecond(new JulianDate(2450083, 43230.0, TimeStandard.TAI), 30), // January 1, 1996 00:00:00 UTC
|
new LeapSecond(new JulianDate(2450630, 43231.0, TimeStandard.TAI), 31), // July 1, 1997 00:00:00 UTC
|
new LeapSecond(new JulianDate(2451179, 43232.0, TimeStandard.TAI), 32), // January 1, 1999 00:00:00 UTC
|
new LeapSecond(new JulianDate(2453736, 43233.0, TimeStandard.TAI), 33), // January 1, 2006 00:00:00 UTC
|
new LeapSecond(new JulianDate(2454832, 43234.0, TimeStandard.TAI), 34), // January 1, 2009 00:00:00 UTC
|
new LeapSecond(new JulianDate(2456109, 43235.0, TimeStandard.TAI), 35), // July 1, 2012 00:00:00 UTC
|
new LeapSecond(new JulianDate(2457204, 43236.0, TimeStandard.TAI), 36), // July 1, 2015 00:00:00 UTC
|
new LeapSecond(new JulianDate(2457754, 43237.0, TimeStandard.TAI), 37), // January 1, 2017 00:00:00 UTC
|
];
|
export default JulianDate;
|