import Cartesian3 from "./Cartesian3.js";
|
import defined from "./defined.js";
|
import DeveloperError from "./DeveloperError.js";
|
import JulianDate from "./JulianDate.js";
|
import CesiumMath from "./Math.js";
|
import Matrix3 from "./Matrix3.js";
|
import TimeConstants from "./TimeConstants.js";
|
import TimeStandard from "./TimeStandard.js";
|
|
/**
|
* Contains functions for finding the Cartesian coordinates of the sun and the moon in the
|
* Earth-centered inertial frame.
|
*
|
* @namespace Simon1994PlanetaryPositions
|
*/
|
var Simon1994PlanetaryPositions = {};
|
|
function computeTdbMinusTtSpice(daysSinceJ2000InTerrestrialTime) {
|
/* STK Comments ------------------------------------------------------
|
* This function uses constants designed to be consistent with
|
* the SPICE Toolkit from JPL version N0051 (unitim.c)
|
* M0 = 6.239996
|
* M0Dot = 1.99096871e-7 rad/s = 0.01720197 rad/d
|
* EARTH_ECC = 1.671e-2
|
* TDB_AMPL = 1.657e-3 secs
|
*--------------------------------------------------------------------*/
|
|
//* Values taken as specified in STK Comments except: 0.01720197 rad/day = 1.99096871e-7 rad/sec
|
//* Here we use the more precise value taken from the SPICE value 1.99096871e-7 rad/sec converted to rad/day
|
//* All other constants are consistent with the SPICE implementation of the TDB conversion
|
//* except where we treat the independent time parameter to be in TT instead of TDB.
|
//* This is an approximation made to facilitate performance due to the higher prevalance of
|
//* the TT2TDB conversion over TDB2TT in order to avoid having to iterate when converting to TDB for the JPL ephemeris.
|
//* Days are used instead of seconds to provide a slight improvement in numerical precision.
|
|
//* For more information see:
|
//* http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html#TDB
|
//* ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf
|
|
var g = 6.239996 + 0.0172019696544 * daysSinceJ2000InTerrestrialTime;
|
return 1.657e-3 * Math.sin(g + 1.671e-2 * Math.sin(g));
|
}
|
|
var TdtMinusTai = 32.184;
|
var J2000d = 2451545;
|
function taiToTdb(date, result) {
|
//Converts TAI to TT
|
result = JulianDate.addSeconds(date, TdtMinusTai, result);
|
|
//Converts TT to TDB
|
var days = JulianDate.totalDays(result) - J2000d;
|
result = JulianDate.addSeconds(result, computeTdbMinusTtSpice(days), result);
|
|
return result;
|
}
|
|
var epoch = new JulianDate(2451545, 0, TimeStandard.TAI); //Actually TDB (not TAI)
|
var MetersPerKilometer = 1000.0;
|
var RadiansPerDegree = CesiumMath.RADIANS_PER_DEGREE;
|
var RadiansPerArcSecond = CesiumMath.RADIANS_PER_ARCSECOND;
|
var MetersPerAstronomicalUnit = 1.4959787e11; // IAU 1976 value
|
|
var perifocalToEquatorial = new Matrix3();
|
function elementsToCartesian(
|
semimajorAxis,
|
eccentricity,
|
inclination,
|
longitudeOfPerigee,
|
longitudeOfNode,
|
meanLongitude,
|
result
|
) {
|
if (inclination < 0.0) {
|
inclination = -inclination;
|
longitudeOfNode += CesiumMath.PI;
|
}
|
|
//>>includeStart('debug', pragmas.debug);
|
if (inclination < 0 || inclination > CesiumMath.PI) {
|
throw new DeveloperError(
|
"The inclination is out of range. Inclination must be greater than or equal to zero and less than or equal to Pi radians."
|
);
|
}
|
//>>includeEnd('debug')
|
|
var radiusOfPeriapsis = semimajorAxis * (1.0 - eccentricity);
|
var argumentOfPeriapsis = longitudeOfPerigee - longitudeOfNode;
|
var rightAscensionOfAscendingNode = longitudeOfNode;
|
var trueAnomaly = meanAnomalyToTrueAnomaly(
|
meanLongitude - longitudeOfPerigee,
|
eccentricity
|
);
|
var type = chooseOrbit(eccentricity, 0.0);
|
|
//>>includeStart('debug', pragmas.debug);
|
if (
|
type === "Hyperbolic" &&
|
Math.abs(CesiumMath.negativePiToPi(trueAnomaly)) >=
|
Math.acos(-1.0 / eccentricity)
|
) {
|
throw new DeveloperError(
|
"The true anomaly of the hyperbolic orbit lies outside of the bounds of the hyperbola."
|
);
|
}
|
//>>includeEnd('debug')
|
|
perifocalToCartesianMatrix(
|
argumentOfPeriapsis,
|
inclination,
|
rightAscensionOfAscendingNode,
|
perifocalToEquatorial
|
);
|
var semilatus = radiusOfPeriapsis * (1.0 + eccentricity);
|
var costheta = Math.cos(trueAnomaly);
|
var sintheta = Math.sin(trueAnomaly);
|
|
var denom = 1.0 + eccentricity * costheta;
|
|
//>>includeStart('debug', pragmas.debug);
|
if (denom <= CesiumMath.Epsilon10) {
|
throw new DeveloperError("elements cannot be converted to cartesian");
|
}
|
//>>includeEnd('debug')
|
|
var radius = semilatus / denom;
|
if (!defined(result)) {
|
result = new Cartesian3(radius * costheta, radius * sintheta, 0.0);
|
} else {
|
result.x = radius * costheta;
|
result.y = radius * sintheta;
|
result.z = 0.0;
|
}
|
|
return Matrix3.multiplyByVector(perifocalToEquatorial, result, result);
|
}
|
|
function chooseOrbit(eccentricity, tolerance) {
|
//>>includeStart('debug', pragmas.debug);
|
if (eccentricity < 0) {
|
throw new DeveloperError("eccentricity cannot be negative.");
|
}
|
//>>includeEnd('debug')
|
|
if (eccentricity <= tolerance) {
|
return "Circular";
|
} else if (eccentricity < 1.0 - tolerance) {
|
return "Elliptical";
|
} else if (eccentricity <= 1.0 + tolerance) {
|
return "Parabolic";
|
}
|
return "Hyperbolic";
|
}
|
|
// Calculates the true anomaly given the mean anomaly and the eccentricity.
|
function meanAnomalyToTrueAnomaly(meanAnomaly, eccentricity) {
|
//>>includeStart('debug', pragmas.debug);
|
if (eccentricity < 0.0 || eccentricity >= 1.0) {
|
throw new DeveloperError("eccentricity out of range.");
|
}
|
//>>includeEnd('debug')
|
|
var eccentricAnomaly = meanAnomalyToEccentricAnomaly(
|
meanAnomaly,
|
eccentricity
|
);
|
return eccentricAnomalyToTrueAnomaly(eccentricAnomaly, eccentricity);
|
}
|
|
var maxIterationCount = 50;
|
var keplerEqConvergence = CesiumMath.EPSILON8;
|
// Calculates the eccentric anomaly given the mean anomaly and the eccentricity.
|
function meanAnomalyToEccentricAnomaly(meanAnomaly, eccentricity) {
|
//>>includeStart('debug', pragmas.debug);
|
if (eccentricity < 0.0 || eccentricity >= 1.0) {
|
throw new DeveloperError("eccentricity out of range.");
|
}
|
//>>includeEnd('debug')
|
|
var revs = Math.floor(meanAnomaly / CesiumMath.TWO_PI);
|
|
// Find angle in current revolution
|
meanAnomaly -= revs * CesiumMath.TWO_PI;
|
|
// calculate starting value for iteration sequence
|
var iterationValue =
|
meanAnomaly +
|
(eccentricity * Math.sin(meanAnomaly)) /
|
(1.0 - Math.sin(meanAnomaly + eccentricity) + Math.sin(meanAnomaly));
|
|
// Perform Newton-Raphson iteration on Kepler's equation
|
var eccentricAnomaly = Number.MAX_VALUE;
|
|
var count;
|
for (
|
count = 0;
|
count < maxIterationCount &&
|
Math.abs(eccentricAnomaly - iterationValue) > keplerEqConvergence;
|
++count
|
) {
|
eccentricAnomaly = iterationValue;
|
var NRfunction =
|
eccentricAnomaly -
|
eccentricity * Math.sin(eccentricAnomaly) -
|
meanAnomaly;
|
var dNRfunction = 1 - eccentricity * Math.cos(eccentricAnomaly);
|
iterationValue = eccentricAnomaly - NRfunction / dNRfunction;
|
}
|
|
//>>includeStart('debug', pragmas.debug);
|
if (count >= maxIterationCount) {
|
throw new DeveloperError("Kepler equation did not converge");
|
// STK Components uses a numerical method to find the eccentric anomaly in the case that Kepler's
|
// equation does not converge. We don't expect that to ever be necessary for the reasonable orbits used here.
|
}
|
//>>includeEnd('debug')
|
|
eccentricAnomaly = iterationValue + revs * CesiumMath.TWO_PI;
|
return eccentricAnomaly;
|
}
|
|
// Calculates the true anomaly given the eccentric anomaly and the eccentricity.
|
function eccentricAnomalyToTrueAnomaly(eccentricAnomaly, eccentricity) {
|
//>>includeStart('debug', pragmas.debug);
|
if (eccentricity < 0.0 || eccentricity >= 1.0) {
|
throw new DeveloperError("eccentricity out of range.");
|
}
|
//>>includeEnd('debug')
|
|
// Calculate the number of previous revolutions
|
var revs = Math.floor(eccentricAnomaly / CesiumMath.TWO_PI);
|
|
// Find angle in current revolution
|
eccentricAnomaly -= revs * CesiumMath.TWO_PI;
|
|
// Calculate true anomaly from eccentric anomaly
|
var trueAnomalyX = Math.cos(eccentricAnomaly) - eccentricity;
|
var trueAnomalyY =
|
Math.sin(eccentricAnomaly) * Math.sqrt(1 - eccentricity * eccentricity);
|
|
var trueAnomaly = Math.atan2(trueAnomalyY, trueAnomalyX);
|
|
// Ensure the correct quadrant
|
trueAnomaly = CesiumMath.zeroToTwoPi(trueAnomaly);
|
if (eccentricAnomaly < 0) {
|
trueAnomaly -= CesiumMath.TWO_PI;
|
}
|
|
// Add on previous revolutions
|
trueAnomaly += revs * CesiumMath.TWO_PI;
|
|
return trueAnomaly;
|
}
|
|
// Calculates the transformation matrix to convert from the perifocal (PQW) coordinate
|
// system to inertial cartesian coordinates.
|
function perifocalToCartesianMatrix(
|
argumentOfPeriapsis,
|
inclination,
|
rightAscension,
|
result
|
) {
|
//>>includeStart('debug', pragmas.debug);
|
if (inclination < 0 || inclination > CesiumMath.PI) {
|
throw new DeveloperError("inclination out of range");
|
}
|
//>>includeEnd('debug')
|
|
var cosap = Math.cos(argumentOfPeriapsis);
|
var sinap = Math.sin(argumentOfPeriapsis);
|
|
var cosi = Math.cos(inclination);
|
var sini = Math.sin(inclination);
|
|
var cosraan = Math.cos(rightAscension);
|
var sinraan = Math.sin(rightAscension);
|
if (!defined(result)) {
|
result = new Matrix3(
|
cosraan * cosap - sinraan * sinap * cosi,
|
-cosraan * sinap - sinraan * cosap * cosi,
|
sinraan * sini,
|
|
sinraan * cosap + cosraan * sinap * cosi,
|
-sinraan * sinap + cosraan * cosap * cosi,
|
-cosraan * sini,
|
|
sinap * sini,
|
cosap * sini,
|
cosi
|
);
|
} else {
|
result[0] = cosraan * cosap - sinraan * sinap * cosi;
|
result[1] = sinraan * cosap + cosraan * sinap * cosi;
|
result[2] = sinap * sini;
|
result[3] = -cosraan * sinap - sinraan * cosap * cosi;
|
result[4] = -sinraan * sinap + cosraan * cosap * cosi;
|
result[5] = cosap * sini;
|
result[6] = sinraan * sini;
|
result[7] = -cosraan * sini;
|
result[8] = cosi;
|
}
|
return result;
|
}
|
|
// From section 5.8
|
var semiMajorAxis0 = 1.0000010178 * MetersPerAstronomicalUnit;
|
var meanLongitude0 = 100.46645683 * RadiansPerDegree;
|
var meanLongitude1 = 1295977422.83429 * RadiansPerArcSecond;
|
|
// From table 6
|
var p1u = 16002;
|
var p2u = 21863;
|
var p3u = 32004;
|
var p4u = 10931;
|
var p5u = 14529;
|
var p6u = 16368;
|
var p7u = 15318;
|
var p8u = 32794;
|
|
var Ca1 = 64 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca2 = -152 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca3 = 62 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca4 = -8 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca5 = 32 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca6 = -41 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca7 = 19 * 1e-7 * MetersPerAstronomicalUnit;
|
var Ca8 = -11 * 1e-7 * MetersPerAstronomicalUnit;
|
|
var Sa1 = -150 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa2 = -46 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa3 = 68 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa4 = 54 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa5 = 14 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa6 = 24 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa7 = -28 * 1e-7 * MetersPerAstronomicalUnit;
|
var Sa8 = 22 * 1e-7 * MetersPerAstronomicalUnit;
|
|
var q1u = 10;
|
var q2u = 16002;
|
var q3u = 21863;
|
var q4u = 10931;
|
var q5u = 1473;
|
var q6u = 32004;
|
var q7u = 4387;
|
var q8u = 73;
|
|
var Cl1 = -325 * 1e-7;
|
var Cl2 = -322 * 1e-7;
|
var Cl3 = -79 * 1e-7;
|
var Cl4 = 232 * 1e-7;
|
var Cl5 = -52 * 1e-7;
|
var Cl6 = 97 * 1e-7;
|
var Cl7 = 55 * 1e-7;
|
var Cl8 = -41 * 1e-7;
|
|
var Sl1 = -105 * 1e-7;
|
var Sl2 = -137 * 1e-7;
|
var Sl3 = 258 * 1e-7;
|
var Sl4 = 35 * 1e-7;
|
var Sl5 = -116 * 1e-7;
|
var Sl6 = -88 * 1e-7;
|
var Sl7 = -112 * 1e-7;
|
var Sl8 = -80 * 1e-7;
|
|
var scratchDate = new JulianDate(0, 0.0, TimeStandard.TAI);
|
// Gets a point describing the motion of the Earth-Moon barycenter according to the equations described in section 6.
|
function computeSimonEarthMoonBarycenter(date, result) {
|
// t is thousands of years from J2000 TDB
|
taiToTdb(date, scratchDate);
|
var x =
|
scratchDate.dayNumber -
|
epoch.dayNumber +
|
(scratchDate.secondsOfDay - epoch.secondsOfDay) /
|
TimeConstants.SECONDS_PER_DAY;
|
var t = x / (TimeConstants.DAYS_PER_JULIAN_CENTURY * 10.0);
|
|
var u = 0.3595362 * t;
|
var semimajorAxis =
|
semiMajorAxis0 +
|
Ca1 * Math.cos(p1u * u) +
|
Sa1 * Math.sin(p1u * u) +
|
Ca2 * Math.cos(p2u * u) +
|
Sa2 * Math.sin(p2u * u) +
|
Ca3 * Math.cos(p3u * u) +
|
Sa3 * Math.sin(p3u * u) +
|
Ca4 * Math.cos(p4u * u) +
|
Sa4 * Math.sin(p4u * u) +
|
Ca5 * Math.cos(p5u * u) +
|
Sa5 * Math.sin(p5u * u) +
|
Ca6 * Math.cos(p6u * u) +
|
Sa6 * Math.sin(p6u * u) +
|
Ca7 * Math.cos(p7u * u) +
|
Sa7 * Math.sin(p7u * u) +
|
Ca8 * Math.cos(p8u * u) +
|
Sa8 * Math.sin(p8u * u);
|
var meanLongitude =
|
meanLongitude0 +
|
meanLongitude1 * t +
|
Cl1 * Math.cos(q1u * u) +
|
Sl1 * Math.sin(q1u * u) +
|
Cl2 * Math.cos(q2u * u) +
|
Sl2 * Math.sin(q2u * u) +
|
Cl3 * Math.cos(q3u * u) +
|
Sl3 * Math.sin(q3u * u) +
|
Cl4 * Math.cos(q4u * u) +
|
Sl4 * Math.sin(q4u * u) +
|
Cl5 * Math.cos(q5u * u) +
|
Sl5 * Math.sin(q5u * u) +
|
Cl6 * Math.cos(q6u * u) +
|
Sl6 * Math.sin(q6u * u) +
|
Cl7 * Math.cos(q7u * u) +
|
Sl7 * Math.sin(q7u * u) +
|
Cl8 * Math.cos(q8u * u) +
|
Sl8 * Math.sin(q8u * u);
|
|
// All constants in this part are from section 5.8
|
var eccentricity = 0.0167086342 - 0.0004203654 * t;
|
var longitudeOfPerigee =
|
102.93734808 * RadiansPerDegree + 11612.3529 * RadiansPerArcSecond * t;
|
var inclination = 469.97289 * RadiansPerArcSecond * t;
|
var longitudeOfNode =
|
174.87317577 * RadiansPerDegree - 8679.27034 * RadiansPerArcSecond * t;
|
|
return elementsToCartesian(
|
semimajorAxis,
|
eccentricity,
|
inclination,
|
longitudeOfPerigee,
|
longitudeOfNode,
|
meanLongitude,
|
result
|
);
|
}
|
|
// Gets a point describing the position of the moon according to the equations described in section 4.
|
function computeSimonMoon(date, result) {
|
taiToTdb(date, scratchDate);
|
var x =
|
scratchDate.dayNumber -
|
epoch.dayNumber +
|
(scratchDate.secondsOfDay - epoch.secondsOfDay) /
|
TimeConstants.SECONDS_PER_DAY;
|
var t = x / TimeConstants.DAYS_PER_JULIAN_CENTURY;
|
var t2 = t * t;
|
var t3 = t2 * t;
|
var t4 = t3 * t;
|
|
// Terms from section 3.4 (b.1)
|
var semimajorAxis = 383397.7725 + 0.004 * t;
|
var eccentricity = 0.055545526 - 0.000000016 * t;
|
var inclinationConstant = 5.15668983 * RadiansPerDegree;
|
var inclinationSecPart =
|
-0.00008 * t + 0.02966 * t2 - 0.000042 * t3 - 0.00000013 * t4;
|
var longitudeOfPerigeeConstant = 83.35324312 * RadiansPerDegree;
|
var longitudeOfPerigeeSecPart =
|
14643420.2669 * t - 38.2702 * t2 - 0.045047 * t3 + 0.00021301 * t4;
|
var longitudeOfNodeConstant = 125.04455501 * RadiansPerDegree;
|
var longitudeOfNodeSecPart =
|
-6967919.3631 * t + 6.3602 * t2 + 0.007625 * t3 - 0.00003586 * t4;
|
var meanLongitudeConstant = 218.31664563 * RadiansPerDegree;
|
var meanLongitudeSecPart =
|
1732559343.4847 * t - 6.391 * t2 + 0.006588 * t3 - 0.00003169 * t4;
|
|
// Delaunay arguments from section 3.5 b
|
var D =
|
297.85019547 * RadiansPerDegree +
|
RadiansPerArcSecond *
|
(1602961601.209 * t - 6.3706 * t2 + 0.006593 * t3 - 0.00003169 * t4);
|
var F =
|
93.27209062 * RadiansPerDegree +
|
RadiansPerArcSecond *
|
(1739527262.8478 * t - 12.7512 * t2 - 0.001037 * t3 + 0.00000417 * t4);
|
var l =
|
134.96340251 * RadiansPerDegree +
|
RadiansPerArcSecond *
|
(1717915923.2178 * t + 31.8792 * t2 + 0.051635 * t3 - 0.0002447 * t4);
|
var lprime =
|
357.52910918 * RadiansPerDegree +
|
RadiansPerArcSecond *
|
(129596581.0481 * t - 0.5532 * t2 + 0.000136 * t3 - 0.00001149 * t4);
|
var psi =
|
310.17137918 * RadiansPerDegree -
|
RadiansPerArcSecond *
|
(6967051.436 * t + 6.2068 * t2 + 0.007618 * t3 - 0.00003219 * t4);
|
|
// Add terms from Table 4
|
var twoD = 2.0 * D;
|
var fourD = 4.0 * D;
|
var sixD = 6.0 * D;
|
var twol = 2.0 * l;
|
var threel = 3.0 * l;
|
var fourl = 4.0 * l;
|
var twoF = 2.0 * F;
|
semimajorAxis +=
|
3400.4 * Math.cos(twoD) -
|
635.6 * Math.cos(twoD - l) -
|
235.6 * Math.cos(l) +
|
218.1 * Math.cos(twoD - lprime) +
|
181.0 * Math.cos(twoD + l);
|
eccentricity +=
|
0.014216 * Math.cos(twoD - l) +
|
0.008551 * Math.cos(twoD - twol) -
|
0.001383 * Math.cos(l) +
|
0.001356 * Math.cos(twoD + l) -
|
0.001147 * Math.cos(fourD - threel) -
|
0.000914 * Math.cos(fourD - twol) +
|
0.000869 * Math.cos(twoD - lprime - l) -
|
0.000627 * Math.cos(twoD) -
|
0.000394 * Math.cos(fourD - fourl) +
|
0.000282 * Math.cos(twoD - lprime - twol) -
|
0.000279 * Math.cos(D - l) -
|
0.000236 * Math.cos(twol) +
|
0.000231 * Math.cos(fourD) +
|
0.000229 * Math.cos(sixD - fourl) -
|
0.000201 * Math.cos(twol - twoF);
|
inclinationSecPart +=
|
486.26 * Math.cos(twoD - twoF) -
|
40.13 * Math.cos(twoD) +
|
37.51 * Math.cos(twoF) +
|
25.73 * Math.cos(twol - twoF) +
|
19.97 * Math.cos(twoD - lprime - twoF);
|
longitudeOfPerigeeSecPart +=
|
-55609 * Math.sin(twoD - l) -
|
34711 * Math.sin(twoD - twol) -
|
9792 * Math.sin(l) +
|
9385 * Math.sin(fourD - threel) +
|
7505 * Math.sin(fourD - twol) +
|
5318 * Math.sin(twoD + l) +
|
3484 * Math.sin(fourD - fourl) -
|
3417 * Math.sin(twoD - lprime - l) -
|
2530 * Math.sin(sixD - fourl) -
|
2376 * Math.sin(twoD) -
|
2075 * Math.sin(twoD - threel) -
|
1883 * Math.sin(twol) -
|
1736 * Math.sin(sixD - 5.0 * l) +
|
1626 * Math.sin(lprime) -
|
1370 * Math.sin(sixD - threel);
|
longitudeOfNodeSecPart +=
|
-5392 * Math.sin(twoD - twoF) -
|
540 * Math.sin(lprime) -
|
441 * Math.sin(twoD) +
|
423 * Math.sin(twoF) -
|
288 * Math.sin(twol - twoF);
|
meanLongitudeSecPart +=
|
-3332.9 * Math.sin(twoD) +
|
1197.4 * Math.sin(twoD - l) -
|
662.5 * Math.sin(lprime) +
|
396.3 * Math.sin(l) -
|
218.0 * Math.sin(twoD - lprime);
|
|
// Add terms from Table 5
|
var twoPsi = 2.0 * psi;
|
var threePsi = 3.0 * psi;
|
inclinationSecPart +=
|
46.997 * Math.cos(psi) * t -
|
0.614 * Math.cos(twoD - twoF + psi) * t +
|
0.614 * Math.cos(twoD - twoF - psi) * t -
|
0.0297 * Math.cos(twoPsi) * t2 -
|
0.0335 * Math.cos(psi) * t2 +
|
0.0012 * Math.cos(twoD - twoF + twoPsi) * t2 -
|
0.00016 * Math.cos(psi) * t3 +
|
0.00004 * Math.cos(threePsi) * t3 +
|
0.00004 * Math.cos(twoPsi) * t3;
|
var perigeeAndMean =
|
2.116 * Math.sin(psi) * t -
|
0.111 * Math.sin(twoD - twoF - psi) * t -
|
0.0015 * Math.sin(psi) * t2;
|
longitudeOfPerigeeSecPart += perigeeAndMean;
|
meanLongitudeSecPart += perigeeAndMean;
|
longitudeOfNodeSecPart +=
|
-520.77 * Math.sin(psi) * t +
|
13.66 * Math.sin(twoD - twoF + psi) * t +
|
1.12 * Math.sin(twoD - psi) * t -
|
1.06 * Math.sin(twoF - psi) * t +
|
0.66 * Math.sin(twoPsi) * t2 +
|
0.371 * Math.sin(psi) * t2 -
|
0.035 * Math.sin(twoD - twoF + twoPsi) * t2 -
|
0.015 * Math.sin(twoD - twoF + psi) * t2 +
|
0.0014 * Math.sin(psi) * t3 -
|
0.0011 * Math.sin(threePsi) * t3 -
|
0.0009 * Math.sin(twoPsi) * t3;
|
|
// Add constants and convert units
|
semimajorAxis *= MetersPerKilometer;
|
var inclination =
|
inclinationConstant + inclinationSecPart * RadiansPerArcSecond;
|
var longitudeOfPerigee =
|
longitudeOfPerigeeConstant +
|
longitudeOfPerigeeSecPart * RadiansPerArcSecond;
|
var meanLongitude =
|
meanLongitudeConstant + meanLongitudeSecPart * RadiansPerArcSecond;
|
var longitudeOfNode =
|
longitudeOfNodeConstant + longitudeOfNodeSecPart * RadiansPerArcSecond;
|
|
return elementsToCartesian(
|
semimajorAxis,
|
eccentricity,
|
inclination,
|
longitudeOfPerigee,
|
longitudeOfNode,
|
meanLongitude,
|
result
|
);
|
}
|
|
// Gets a point describing the motion of the Earth. This point uses the Moon point and
|
// the 1992 mu value (ratio between Moon and Earth masses) in Table 2 of the paper in order
|
// to determine the position of the Earth relative to the Earth-Moon barycenter.
|
var moonEarthMassRatio = 0.012300034; // From 1992 mu value in Table 2
|
var factor = (moonEarthMassRatio / (moonEarthMassRatio + 1.0)) * -1;
|
function computeSimonEarth(date, result) {
|
result = computeSimonMoon(date, result);
|
return Cartesian3.multiplyByScalar(result, factor, result);
|
}
|
|
// Values for the <code>axesTransformation</code> needed for the rotation were found using the STK Components
|
// GreographicTransformer on the position of the sun center of mass point and the earth J2000 frame.
|
|
var axesTransformation = new Matrix3(
|
1.0000000000000002,
|
5.619723173785822e-16,
|
4.690511510146299e-19,
|
-5.154129427414611e-16,
|
0.9174820620691819,
|
-0.39777715593191376,
|
-2.23970096136568e-16,
|
0.39777715593191376,
|
0.9174820620691819
|
);
|
var translation = new Cartesian3();
|
/**
|
* Computes the position of the Sun in the Earth-centered inertial frame
|
*
|
* @param {JulianDate} [julianDate] The time at which to compute the Sun's position, if not provided the current system time is used.
|
* @param {Cartesian3} [result] The object onto which to store the result.
|
* @returns {Cartesian3} Calculated sun position
|
*/
|
Simon1994PlanetaryPositions.computeSunPositionInEarthInertialFrame = function (
|
julianDate,
|
result
|
) {
|
if (!defined(julianDate)) {
|
julianDate = JulianDate.now();
|
}
|
|
if (!defined(result)) {
|
result = new Cartesian3();
|
}
|
|
//first forward transformation
|
translation = computeSimonEarthMoonBarycenter(julianDate, translation);
|
result = Cartesian3.negate(translation, result);
|
|
//second forward transformation
|
computeSimonEarth(julianDate, translation);
|
|
Cartesian3.subtract(result, translation, result);
|
Matrix3.multiplyByVector(axesTransformation, result, result);
|
|
return result;
|
};
|
|
/**
|
* Computes the position of the Moon in the Earth-centered inertial frame
|
*
|
* @param {JulianDate} [julianDate] The time at which to compute the Sun's position, if not provided the current system time is used.
|
* @param {Cartesian3} [result] The object onto which to store the result.
|
* @returns {Cartesian3} Calculated moon position
|
*/
|
Simon1994PlanetaryPositions.computeMoonPositionInEarthInertialFrame = function (
|
julianDate,
|
result
|
) {
|
if (!defined(julianDate)) {
|
julianDate = JulianDate.now();
|
}
|
|
result = computeSimonMoon(julianDate, result);
|
Matrix3.multiplyByVector(axesTransformation, result, result);
|
|
return result;
|
};
|
export default Simon1994PlanetaryPositions;
|