yzt
2023-09-27 726603df43447f8cfedfeaae4267209adbd01699
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
/* This file is automatically rebuilt by the Cesium build process. */
define(['exports', './Matrix2-0e286ffc', './RuntimeError-4fdc4459', './ComponentDatatype-9ed50558', './when-8166c7dd', './EllipsoidRhumbLine-403e6a39', './GeometryAttribute-83cf1273', './WebGLConstants-0664004c'], (function (exports, Matrix2, RuntimeError, ComponentDatatype, when, EllipsoidRhumbLine, GeometryAttribute, WebGLConstants) { 'use strict';
 
    /* This file is automatically rebuilt by the Cesium build process. */
    var earcut_1 = earcut;
    var _default = earcut;
 
    function earcut(data, holeIndices, dim) {
 
        dim = dim || 2;
 
        var hasHoles = holeIndices && holeIndices.length,
            outerLen = hasHoles ? holeIndices[0] * dim : data.length,
            outerNode = linkedList(data, 0, outerLen, dim, true),
            triangles = [];
 
        if (!outerNode || outerNode.next === outerNode.prev) return triangles;
 
        var minX, minY, maxX, maxY, x, y, invSize;
 
        if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
 
        // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
        if (data.length > 80 * dim) {
            minX = maxX = data[0];
            minY = maxY = data[1];
 
            for (var i = dim; i < outerLen; i += dim) {
                x = data[i];
                y = data[i + 1];
                if (x < minX) minX = x;
                if (y < minY) minY = y;
                if (x > maxX) maxX = x;
                if (y > maxY) maxY = y;
            }
 
            // minX, minY and invSize are later used to transform coords into integers for z-order calculation
            invSize = Math.max(maxX - minX, maxY - minY);
            invSize = invSize !== 0 ? 1 / invSize : 0;
        }
 
        earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
 
        return triangles;
    }
 
    // create a circular doubly linked list from polygon points in the specified winding order
    function linkedList(data, start, end, dim, clockwise) {
        var i, last;
 
        if (clockwise === (signedArea(data, start, end, dim) > 0)) {
            for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
        } else {
            for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
        }
 
        if (last && equals(last, last.next)) {
            removeNode(last);
            last = last.next;
        }
 
        return last;
    }
 
    // eliminate colinear or duplicate points
    function filterPoints(start, end) {
        if (!start) return start;
        if (!end) end = start;
 
        var p = start,
            again;
        do {
            again = false;
 
            if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
                removeNode(p);
                p = end = p.prev;
                if (p === p.next) break;
                again = true;
 
            } else {
                p = p.next;
            }
        } while (again || p !== end);
 
        return end;
    }
 
    // main ear slicing loop which triangulates a polygon (given as a linked list)
    function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
        if (!ear) return;
 
        // interlink polygon nodes in z-order
        if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
 
        var stop = ear,
            prev, next;
 
        // iterate through ears, slicing them one by one
        while (ear.prev !== ear.next) {
            prev = ear.prev;
            next = ear.next;
 
            if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
                // cut off the triangle
                triangles.push(prev.i / dim);
                triangles.push(ear.i / dim);
                triangles.push(next.i / dim);
 
                removeNode(ear);
 
                // skipping the next vertex leads to less sliver triangles
                ear = next.next;
                stop = next.next;
 
                continue;
            }
 
            ear = next;
 
            // if we looped through the whole remaining polygon and can't find any more ears
            if (ear === stop) {
                // try filtering points and slicing again
                if (!pass) {
                    earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
 
                // if this didn't work, try curing all small self-intersections locally
                } else if (pass === 1) {
                    ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
                    earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
 
                // as a last resort, try splitting the remaining polygon into two
                } else if (pass === 2) {
                    splitEarcut(ear, triangles, dim, minX, minY, invSize);
                }
 
                break;
            }
        }
    }
 
    // check whether a polygon node forms a valid ear with adjacent nodes
    function isEar(ear) {
        var a = ear.prev,
            b = ear,
            c = ear.next;
 
        if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
 
        // now make sure we don't have other points inside the potential ear
        var p = ear.next.next;
 
        while (p !== ear.prev) {
            if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                area(p.prev, p, p.next) >= 0) return false;
            p = p.next;
        }
 
        return true;
    }
 
    function isEarHashed(ear, minX, minY, invSize) {
        var a = ear.prev,
            b = ear,
            c = ear.next;
 
        if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
 
        // triangle bbox; min & max are calculated like this for speed
        var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x),
            minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y),
            maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x),
            maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);
 
        // z-order range for the current triangle bbox;
        var minZ = zOrder(minTX, minTY, minX, minY, invSize),
            maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
 
        var p = ear.prevZ,
            n = ear.nextZ;
 
        // look for points inside the triangle in both directions
        while (p && p.z >= minZ && n && n.z <= maxZ) {
            if (p !== ear.prev && p !== ear.next &&
                pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                area(p.prev, p, p.next) >= 0) return false;
            p = p.prevZ;
 
            if (n !== ear.prev && n !== ear.next &&
                pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
                area(n.prev, n, n.next) >= 0) return false;
            n = n.nextZ;
        }
 
        // look for remaining points in decreasing z-order
        while (p && p.z >= minZ) {
            if (p !== ear.prev && p !== ear.next &&
                pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
                area(p.prev, p, p.next) >= 0) return false;
            p = p.prevZ;
        }
 
        // look for remaining points in increasing z-order
        while (n && n.z <= maxZ) {
            if (n !== ear.prev && n !== ear.next &&
                pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
                area(n.prev, n, n.next) >= 0) return false;
            n = n.nextZ;
        }
 
        return true;
    }
 
    // go through all polygon nodes and cure small local self-intersections
    function cureLocalIntersections(start, triangles, dim) {
        var p = start;
        do {
            var a = p.prev,
                b = p.next.next;
 
            if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
 
                triangles.push(a.i / dim);
                triangles.push(p.i / dim);
                triangles.push(b.i / dim);
 
                // remove two nodes involved
                removeNode(p);
                removeNode(p.next);
 
                p = start = b;
            }
            p = p.next;
        } while (p !== start);
 
        return filterPoints(p);
    }
 
    // try splitting polygon into two and triangulate them independently
    function splitEarcut(start, triangles, dim, minX, minY, invSize) {
        // look for a valid diagonal that divides the polygon into two
        var a = start;
        do {
            var b = a.next.next;
            while (b !== a.prev) {
                if (a.i !== b.i && isValidDiagonal(a, b)) {
                    // split the polygon in two by the diagonal
                    var c = splitPolygon(a, b);
 
                    // filter colinear points around the cuts
                    a = filterPoints(a, a.next);
                    c = filterPoints(c, c.next);
 
                    // run earcut on each half
                    earcutLinked(a, triangles, dim, minX, minY, invSize);
                    earcutLinked(c, triangles, dim, minX, minY, invSize);
                    return;
                }
                b = b.next;
            }
            a = a.next;
        } while (a !== start);
    }
 
    // link every hole into the outer loop, producing a single-ring polygon without holes
    function eliminateHoles(data, holeIndices, outerNode, dim) {
        var queue = [],
            i, len, start, end, list;
 
        for (i = 0, len = holeIndices.length; i < len; i++) {
            start = holeIndices[i] * dim;
            end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
            list = linkedList(data, start, end, dim, false);
            if (list === list.next) list.steiner = true;
            queue.push(getLeftmost(list));
        }
 
        queue.sort(compareX);
 
        // process holes from left to right
        for (i = 0; i < queue.length; i++) {
            outerNode = eliminateHole(queue[i], outerNode);
            outerNode = filterPoints(outerNode, outerNode.next);
        }
 
        return outerNode;
    }
 
    function compareX(a, b) {
        return a.x - b.x;
    }
 
    // find a bridge between vertices that connects hole with an outer ring and and link it
    function eliminateHole(hole, outerNode) {
        var bridge = findHoleBridge(hole, outerNode);
        if (!bridge) {
            return outerNode;
        }
 
        var bridgeReverse = splitPolygon(bridge, hole);
 
        // filter collinear points around the cuts
        var filteredBridge = filterPoints(bridge, bridge.next);
        filterPoints(bridgeReverse, bridgeReverse.next);
 
        // Check if input node was removed by the filtering
        return outerNode === bridge ? filteredBridge : outerNode;
    }
 
    // David Eberly's algorithm for finding a bridge between hole and outer polygon
    function findHoleBridge(hole, outerNode) {
        var p = outerNode,
            hx = hole.x,
            hy = hole.y,
            qx = -Infinity,
            m;
 
        // find a segment intersected by a ray from the hole's leftmost point to the left;
        // segment's endpoint with lesser x will be potential connection point
        do {
            if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
                var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
                if (x <= hx && x > qx) {
                    qx = x;
                    if (x === hx) {
                        if (hy === p.y) return p;
                        if (hy === p.next.y) return p.next;
                    }
                    m = p.x < p.next.x ? p : p.next;
                }
            }
            p = p.next;
        } while (p !== outerNode);
 
        if (!m) return null;
 
        if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
 
        // look for points inside the triangle of hole point, segment intersection and endpoint;
        // if there are no points found, we have a valid connection;
        // otherwise choose the point of the minimum angle with the ray as connection point
 
        var stop = m,
            mx = m.x,
            my = m.y,
            tanMin = Infinity,
            tan;
 
        p = m;
 
        do {
            if (hx >= p.x && p.x >= mx && hx !== p.x &&
                    pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
 
                tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
 
                if (locallyInside(p, hole) &&
                    (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
                    m = p;
                    tanMin = tan;
                }
            }
 
            p = p.next;
        } while (p !== stop);
 
        return m;
    }
 
    // whether sector in vertex m contains sector in vertex p in the same coordinates
    function sectorContainsSector(m, p) {
        return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
    }
 
    // interlink polygon nodes in z-order
    function indexCurve(start, minX, minY, invSize) {
        var p = start;
        do {
            if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
            p.prevZ = p.prev;
            p.nextZ = p.next;
            p = p.next;
        } while (p !== start);
 
        p.prevZ.nextZ = null;
        p.prevZ = null;
 
        sortLinked(p);
    }
 
    // Simon Tatham's linked list merge sort algorithm
    // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
    function sortLinked(list) {
        var i, p, q, e, tail, numMerges, pSize, qSize,
            inSize = 1;
 
        do {
            p = list;
            list = null;
            tail = null;
            numMerges = 0;
 
            while (p) {
                numMerges++;
                q = p;
                pSize = 0;
                for (i = 0; i < inSize; i++) {
                    pSize++;
                    q = q.nextZ;
                    if (!q) break;
                }
                qSize = inSize;
 
                while (pSize > 0 || (qSize > 0 && q)) {
 
                    if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
                        e = p;
                        p = p.nextZ;
                        pSize--;
                    } else {
                        e = q;
                        q = q.nextZ;
                        qSize--;
                    }
 
                    if (tail) tail.nextZ = e;
                    else list = e;
 
                    e.prevZ = tail;
                    tail = e;
                }
 
                p = q;
            }
 
            tail.nextZ = null;
            inSize *= 2;
 
        } while (numMerges > 1);
 
        return list;
    }
 
    // z-order of a point given coords and inverse of the longer side of data bbox
    function zOrder(x, y, minX, minY, invSize) {
        // coords are transformed into non-negative 15-bit integer range
        x = 32767 * (x - minX) * invSize;
        y = 32767 * (y - minY) * invSize;
 
        x = (x | (x << 8)) & 0x00FF00FF;
        x = (x | (x << 4)) & 0x0F0F0F0F;
        x = (x | (x << 2)) & 0x33333333;
        x = (x | (x << 1)) & 0x55555555;
 
        y = (y | (y << 8)) & 0x00FF00FF;
        y = (y | (y << 4)) & 0x0F0F0F0F;
        y = (y | (y << 2)) & 0x33333333;
        y = (y | (y << 1)) & 0x55555555;
 
        return x | (y << 1);
    }
 
    // find the leftmost node of a polygon ring
    function getLeftmost(start) {
        var p = start,
            leftmost = start;
        do {
            if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
            p = p.next;
        } while (p !== start);
 
        return leftmost;
    }
 
    // check if a point lies within a convex triangle
    function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
        return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
               (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
               (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
    }
 
    // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
    function isValidDiagonal(a, b) {
        return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
               (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
                (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
                equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
    }
 
    // signed area of a triangle
    function area(p, q, r) {
        return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
    }
 
    // check if two points are equal
    function equals(p1, p2) {
        return p1.x === p2.x && p1.y === p2.y;
    }
 
    // check if two segments intersect
    function intersects(p1, q1, p2, q2) {
        var o1 = sign(area(p1, q1, p2));
        var o2 = sign(area(p1, q1, q2));
        var o3 = sign(area(p2, q2, p1));
        var o4 = sign(area(p2, q2, q1));
 
        if (o1 !== o2 && o3 !== o4) return true; // general case
 
        if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
        if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
        if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
        if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
 
        return false;
    }
 
    // for collinear points p, q, r, check if point q lies on segment pr
    function onSegment(p, q, r) {
        return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
    }
 
    function sign(num) {
        return num > 0 ? 1 : num < 0 ? -1 : 0;
    }
 
    // check if a polygon diagonal intersects any polygon segments
    function intersectsPolygon(a, b) {
        var p = a;
        do {
            if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
                    intersects(p, p.next, a, b)) return true;
            p = p.next;
        } while (p !== a);
 
        return false;
    }
 
    // check if a polygon diagonal is locally inside the polygon
    function locallyInside(a, b) {
        return area(a.prev, a, a.next) < 0 ?
            area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
            area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
    }
 
    // check if the middle point of a polygon diagonal is inside the polygon
    function middleInside(a, b) {
        var p = a,
            inside = false,
            px = (a.x + b.x) / 2,
            py = (a.y + b.y) / 2;
        do {
            if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
                    (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
                inside = !inside;
            p = p.next;
        } while (p !== a);
 
        return inside;
    }
 
    // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
    // if one belongs to the outer ring and another to a hole, it merges it into a single ring
    function splitPolygon(a, b) {
        var a2 = new Node(a.i, a.x, a.y),
            b2 = new Node(b.i, b.x, b.y),
            an = a.next,
            bp = b.prev;
 
        a.next = b;
        b.prev = a;
 
        a2.next = an;
        an.prev = a2;
 
        b2.next = a2;
        a2.prev = b2;
 
        bp.next = b2;
        b2.prev = bp;
 
        return b2;
    }
 
    // create a node and optionally link it with previous one (in a circular doubly linked list)
    function insertNode(i, x, y, last) {
        var p = new Node(i, x, y);
 
        if (!last) {
            p.prev = p;
            p.next = p;
 
        } else {
            p.next = last.next;
            p.prev = last;
            last.next.prev = p;
            last.next = p;
        }
        return p;
    }
 
    function removeNode(p) {
        p.next.prev = p.prev;
        p.prev.next = p.next;
 
        if (p.prevZ) p.prevZ.nextZ = p.nextZ;
        if (p.nextZ) p.nextZ.prevZ = p.prevZ;
    }
 
    function Node(i, x, y) {
        // vertex index in coordinates array
        this.i = i;
 
        // vertex coordinates
        this.x = x;
        this.y = y;
 
        // previous and next vertex nodes in a polygon ring
        this.prev = null;
        this.next = null;
 
        // z-order curve value
        this.z = null;
 
        // previous and next nodes in z-order
        this.prevZ = null;
        this.nextZ = null;
 
        // indicates whether this is a steiner point
        this.steiner = false;
    }
 
    // return a percentage difference between the polygon area and its triangulation area;
    // used to verify correctness of triangulation
    earcut.deviation = function (data, holeIndices, dim, triangles) {
        var hasHoles = holeIndices && holeIndices.length;
        var outerLen = hasHoles ? holeIndices[0] * dim : data.length;
 
        var polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
        if (hasHoles) {
            for (var i = 0, len = holeIndices.length; i < len; i++) {
                var start = holeIndices[i] * dim;
                var end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
                polygonArea -= Math.abs(signedArea(data, start, end, dim));
            }
        }
 
        var trianglesArea = 0;
        for (i = 0; i < triangles.length; i += 3) {
            var a = triangles[i] * dim;
            var b = triangles[i + 1] * dim;
            var c = triangles[i + 2] * dim;
            trianglesArea += Math.abs(
                (data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
                (data[a] - data[b]) * (data[c + 1] - data[a + 1]));
        }
 
        return polygonArea === 0 && trianglesArea === 0 ? 0 :
            Math.abs((trianglesArea - polygonArea) / polygonArea);
    };
 
    function signedArea(data, start, end, dim) {
        var sum = 0;
        for (var i = start, j = end - dim; i < end; i += dim) {
            sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
            j = i;
        }
        return sum;
    }
 
    // turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
    earcut.flatten = function (data) {
        var dim = data[0][0].length,
            result = {vertices: [], holes: [], dimensions: dim},
            holeIndex = 0;
 
        for (var i = 0; i < data.length; i++) {
            for (var j = 0; j < data[i].length; j++) {
                for (var d = 0; d < dim; d++) result.vertices.push(data[i][j][d]);
            }
            if (i > 0) {
                holeIndex += data[i - 1].length;
                result.holes.push(holeIndex);
            }
        }
        return result;
    };
    earcut_1.default = _default;
 
    /**
     * Winding order defines the order of vertices for a triangle to be considered front-facing.
     *
     * @enum {Number}
     */
    var WindingOrder = {
      /**
       * Vertices are in clockwise order.
       *
       * @type {Number}
       * @constant
       */
      CLOCKWISE: WebGLConstants.WebGLConstants.CW,
 
      /**
       * Vertices are in counter-clockwise order.
       *
       * @type {Number}
       * @constant
       */
      COUNTER_CLOCKWISE: WebGLConstants.WebGLConstants.CCW,
    };
 
    /**
     * @private
     */
    WindingOrder.validate = function (windingOrder) {
      return (
        windingOrder === WindingOrder.CLOCKWISE ||
        windingOrder === WindingOrder.COUNTER_CLOCKWISE
      );
    };
 
    var WindingOrder$1 = Object.freeze(WindingOrder);
 
    var scaleToGeodeticHeightN = new Matrix2.Cartesian3();
    var scaleToGeodeticHeightP = new Matrix2.Cartesian3();
 
    /**
     * @private
     */
    var PolygonPipeline = {};
 
    /**
     * @exception {DeveloperError} At least three positions are required.
     */
    PolygonPipeline.computeArea2D = function (positions) {
      //>>includeStart('debug', pragmas.debug);
      RuntimeError.Check.defined("positions", positions);
      RuntimeError.Check.typeOf.number.greaterThanOrEquals(
        "positions.length",
        positions.length,
        3
      );
      //>>includeEnd('debug');
 
      var length = positions.length;
      var area = 0.0;
 
      for (var i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
        var v0 = positions[i0];
        var v1 = positions[i1];
 
        area += v0.x * v1.y - v1.x * v0.y;
      }
 
      return area * 0.5;
    };
 
    /**
     * @returns {WindingOrder} The winding order.
     *
     * @exception {DeveloperError} At least three positions are required.
     */
    PolygonPipeline.computeWindingOrder2D = function (positions) {
      var area = PolygonPipeline.computeArea2D(positions);
      return area > 0.0 ? WindingOrder$1.COUNTER_CLOCKWISE : WindingOrder$1.CLOCKWISE;
    };
 
    /**
     * Triangulate a polygon.
     *
     * @param {Cartesian2[]} positions Cartesian2 array containing the vertices of the polygon
     * @param {Number[]} [holes] An array of the staring indices of the holes.
     * @returns {Number[]} Index array representing triangles that fill the polygon
     */
    PolygonPipeline.triangulate = function (positions, holes) {
      //>>includeStart('debug', pragmas.debug);
      RuntimeError.Check.defined("positions", positions);
      //>>includeEnd('debug');
 
      var flattenedPositions = Matrix2.Cartesian2.packArray(positions);
      return earcut_1(flattenedPositions, holes, 2);
    };
 
    var subdivisionV0Scratch = new Matrix2.Cartesian3();
    var subdivisionV1Scratch = new Matrix2.Cartesian3();
    var subdivisionV2Scratch = new Matrix2.Cartesian3();
    var subdivisionS0Scratch = new Matrix2.Cartesian3();
    var subdivisionS1Scratch = new Matrix2.Cartesian3();
    var subdivisionS2Scratch = new Matrix2.Cartesian3();
    var subdivisionMidScratch = new Matrix2.Cartesian3();
 
    /**
     * Subdivides positions and raises points to the surface of the ellipsoid.
     *
     * @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
     * @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
     * @param {Number[]} indices An array of indices that determines the triangles in the polygon.
     * @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
     *
     * @exception {DeveloperError} At least three indices are required.
     * @exception {DeveloperError} The number of indices must be divisable by three.
     * @exception {DeveloperError} Granularity must be greater than zero.
     */
    PolygonPipeline.computeSubdivision = function (
      ellipsoid,
      positions,
      indices,
      granularity
    ) {
      granularity = when.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
 
      //>>includeStart('debug', pragmas.debug);
      RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
      RuntimeError.Check.defined("positions", positions);
      RuntimeError.Check.defined("indices", indices);
      RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
      RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
      RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
      //>>includeEnd('debug');
 
      // triangles that need (or might need) to be subdivided.
      var triangles = indices.slice(0);
 
      // New positions due to edge splits are appended to the positions list.
      var i;
      var length = positions.length;
      var subdividedPositions = new Array(length * 3);
      var q = 0;
      for (i = 0; i < length; i++) {
        var item = positions[i];
        subdividedPositions[q++] = item.x;
        subdividedPositions[q++] = item.y;
        subdividedPositions[q++] = item.z;
      }
 
      var subdividedIndices = [];
 
      // Used to make sure shared edges are not split more than once.
      var edges = {};
 
      var radius = ellipsoid.maximumRadius;
      var minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
      var minDistanceSqrd = minDistance * minDistance;
 
      while (triangles.length > 0) {
        var i2 = triangles.pop();
        var i1 = triangles.pop();
        var i0 = triangles.pop();
 
        var v0 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i0 * 3,
          subdivisionV0Scratch
        );
        var v1 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i1 * 3,
          subdivisionV1Scratch
        );
        var v2 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i2 * 3,
          subdivisionV2Scratch
        );
 
        var s0 = Matrix2.Cartesian3.multiplyByScalar(
          Matrix2.Cartesian3.normalize(v0, subdivisionS0Scratch),
          radius,
          subdivisionS0Scratch
        );
        var s1 = Matrix2.Cartesian3.multiplyByScalar(
          Matrix2.Cartesian3.normalize(v1, subdivisionS1Scratch),
          radius,
          subdivisionS1Scratch
        );
        var s2 = Matrix2.Cartesian3.multiplyByScalar(
          Matrix2.Cartesian3.normalize(v2, subdivisionS2Scratch),
          radius,
          subdivisionS2Scratch
        );
 
        var g0 = Matrix2.Cartesian3.magnitudeSquared(
          Matrix2.Cartesian3.subtract(s0, s1, subdivisionMidScratch)
        );
        var g1 = Matrix2.Cartesian3.magnitudeSquared(
          Matrix2.Cartesian3.subtract(s1, s2, subdivisionMidScratch)
        );
        var g2 = Matrix2.Cartesian3.magnitudeSquared(
          Matrix2.Cartesian3.subtract(s2, s0, subdivisionMidScratch)
        );
 
        var max = Math.max(g0, g1, g2);
        var edge;
        var mid;
 
        // if the max length squared of a triangle edge is greater than the chord length of squared
        // of the granularity, subdivide the triangle
        if (max > minDistanceSqrd) {
          if (g0 === max) {
            edge = Math.min(i0, i1) + " " + Math.max(i0, i1);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = Matrix2.Cartesian3.add(v0, v1, subdivisionMidScratch);
              Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
              subdividedPositions.push(mid.x, mid.y, mid.z);
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i0, i, i2);
            triangles.push(i, i1, i2);
          } else if (g1 === max) {
            edge = Math.min(i1, i2) + " " + Math.max(i1, i2);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = Matrix2.Cartesian3.add(v1, v2, subdivisionMidScratch);
              Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
              subdividedPositions.push(mid.x, mid.y, mid.z);
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i1, i, i0);
            triangles.push(i, i2, i0);
          } else if (g2 === max) {
            edge = Math.min(i2, i0) + " " + Math.max(i2, i0);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = Matrix2.Cartesian3.add(v2, v0, subdivisionMidScratch);
              Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
              subdividedPositions.push(mid.x, mid.y, mid.z);
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i2, i, i1);
            triangles.push(i, i0, i1);
          }
        } else {
          subdividedIndices.push(i0);
          subdividedIndices.push(i1);
          subdividedIndices.push(i2);
        }
      }
 
      return new GeometryAttribute.Geometry({
        attributes: {
          position: new GeometryAttribute.GeometryAttribute({
            componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
            componentsPerAttribute: 3,
            values: subdividedPositions,
          }),
        },
        indices: subdividedIndices,
        primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
      });
    };
 
    var subdivisionC0Scratch = new Matrix2.Cartographic();
    var subdivisionC1Scratch = new Matrix2.Cartographic();
    var subdivisionC2Scratch = new Matrix2.Cartographic();
    var subdivisionCartographicScratch = new Matrix2.Cartographic();
 
    /**
     * Subdivides positions on rhumb lines and raises points to the surface of the ellipsoid.
     *
     * @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
     * @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
     * @param {Number[]} indices An array of indices that determines the triangles in the polygon.
     * @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
     *
     * @exception {DeveloperError} At least three indices are required.
     * @exception {DeveloperError} The number of indices must be divisable by three.
     * @exception {DeveloperError} Granularity must be greater than zero.
     */
    PolygonPipeline.computeRhumbLineSubdivision = function (
      ellipsoid,
      positions,
      indices,
      granularity
    ) {
      granularity = when.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
 
      //>>includeStart('debug', pragmas.debug);
      RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
      RuntimeError.Check.defined("positions", positions);
      RuntimeError.Check.defined("indices", indices);
      RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
      RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
      RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
      //>>includeEnd('debug');
 
      // triangles that need (or might need) to be subdivided.
      var triangles = indices.slice(0);
 
      // New positions due to edge splits are appended to the positions list.
      var i;
      var length = positions.length;
      var subdividedPositions = new Array(length * 3);
      var q = 0;
      for (i = 0; i < length; i++) {
        var item = positions[i];
        subdividedPositions[q++] = item.x;
        subdividedPositions[q++] = item.y;
        subdividedPositions[q++] = item.z;
      }
 
      var subdividedIndices = [];
 
      // Used to make sure shared edges are not split more than once.
      var edges = {};
 
      var radius = ellipsoid.maximumRadius;
      var minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
 
      var rhumb0 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
      var rhumb1 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
      var rhumb2 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
 
      while (triangles.length > 0) {
        var i2 = triangles.pop();
        var i1 = triangles.pop();
        var i0 = triangles.pop();
 
        var v0 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i0 * 3,
          subdivisionV0Scratch
        );
        var v1 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i1 * 3,
          subdivisionV1Scratch
        );
        var v2 = Matrix2.Cartesian3.fromArray(
          subdividedPositions,
          i2 * 3,
          subdivisionV2Scratch
        );
 
        var c0 = ellipsoid.cartesianToCartographic(v0, subdivisionC0Scratch);
        var c1 = ellipsoid.cartesianToCartographic(v1, subdivisionC1Scratch);
        var c2 = ellipsoid.cartesianToCartographic(v2, subdivisionC2Scratch);
 
        rhumb0.setEndPoints(c0, c1);
        var g0 = rhumb0.surfaceDistance;
        rhumb1.setEndPoints(c1, c2);
        var g1 = rhumb1.surfaceDistance;
        rhumb2.setEndPoints(c2, c0);
        var g2 = rhumb2.surfaceDistance;
 
        var max = Math.max(g0, g1, g2);
        var edge;
        var mid;
        var midHeight;
        var midCartesian3;
 
        // if the max length squared of a triangle edge is greater than granularity, subdivide the triangle
        if (max > minDistance) {
          if (g0 === max) {
            edge = Math.min(i0, i1) + " " + Math.max(i0, i1);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = rhumb0.interpolateUsingFraction(
                0.5,
                subdivisionCartographicScratch
              );
              midHeight = (c0.height + c1.height) * 0.5;
              midCartesian3 = Matrix2.Cartesian3.fromRadians(
                mid.longitude,
                mid.latitude,
                midHeight,
                ellipsoid,
                subdivisionMidScratch
              );
              subdividedPositions.push(
                midCartesian3.x,
                midCartesian3.y,
                midCartesian3.z
              );
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i0, i, i2);
            triangles.push(i, i1, i2);
          } else if (g1 === max) {
            edge = Math.min(i1, i2) + " " + Math.max(i1, i2);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = rhumb1.interpolateUsingFraction(
                0.5,
                subdivisionCartographicScratch
              );
              midHeight = (c1.height + c2.height) * 0.5;
              midCartesian3 = Matrix2.Cartesian3.fromRadians(
                mid.longitude,
                mid.latitude,
                midHeight,
                ellipsoid,
                subdivisionMidScratch
              );
              subdividedPositions.push(
                midCartesian3.x,
                midCartesian3.y,
                midCartesian3.z
              );
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i1, i, i0);
            triangles.push(i, i2, i0);
          } else if (g2 === max) {
            edge = Math.min(i2, i0) + " " + Math.max(i2, i0);
 
            i = edges[edge];
            if (!when.defined(i)) {
              mid = rhumb2.interpolateUsingFraction(
                0.5,
                subdivisionCartographicScratch
              );
              midHeight = (c2.height + c0.height) * 0.5;
              midCartesian3 = Matrix2.Cartesian3.fromRadians(
                mid.longitude,
                mid.latitude,
                midHeight,
                ellipsoid,
                subdivisionMidScratch
              );
              subdividedPositions.push(
                midCartesian3.x,
                midCartesian3.y,
                midCartesian3.z
              );
              i = subdividedPositions.length / 3 - 1;
              edges[edge] = i;
            }
 
            triangles.push(i2, i, i1);
            triangles.push(i, i0, i1);
          }
        } else {
          subdividedIndices.push(i0);
          subdividedIndices.push(i1);
          subdividedIndices.push(i2);
        }
      }
 
      return new GeometryAttribute.Geometry({
        attributes: {
          position: new GeometryAttribute.GeometryAttribute({
            componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
            componentsPerAttribute: 3,
            values: subdividedPositions,
          }),
        },
        indices: subdividedIndices,
        primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
      });
    };
 
    /**
     * Scales each position of a geometry's position attribute to a height, in place.
     *
     * @param {Number[]} positions The array of numbers representing the positions to be scaled
     * @param {Number} [height=0.0] The desired height to add to the positions
     * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
     * @param {Boolean} [scaleToSurface=true] <code>true</code> if the positions need to be scaled to the surface before the height is added.
     * @returns {Number[]} The input array of positions, scaled to height
     */
    PolygonPipeline.scaleToGeodeticHeight = function (
      positions,
      height,
      ellipsoid,
      scaleToSurface
    ) {
      ellipsoid = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
 
      var n = scaleToGeodeticHeightN;
      var p = scaleToGeodeticHeightP;
 
      height = when.defaultValue(height, 0.0);
      scaleToSurface = when.defaultValue(scaleToSurface, true);
 
      if (when.defined(positions)) {
        var length = positions.length;
 
        for (var i = 0; i < length; i += 3) {
          Matrix2.Cartesian3.fromArray(positions, i, p);
 
          if (scaleToSurface) {
            p = ellipsoid.scaleToGeodeticSurface(p, p);
          }
 
          if (height !== 0) {
            n = ellipsoid.geodeticSurfaceNormal(p, n);
 
            Matrix2.Cartesian3.multiplyByScalar(n, height, n);
            Matrix2.Cartesian3.add(p, n, p);
          }
 
          positions[i] = p.x;
          positions[i + 1] = p.y;
          positions[i + 2] = p.z;
        }
      }
 
      return positions;
    };
 
    exports.PolygonPipeline = PolygonPipeline;
    exports.WindingOrder = WindingOrder$1;
 
}));