chen
2024-11-08 cc432b761c884a0bd8e9d83db0a4e26109fc08b1
keil/include/components/app/src/ranging_simple_task.c
对比新文件
@@ -0,0 +1,442 @@
/*
 * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and
 * its subsidiaries and affiliates (collectly called MKSEMI).
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into an MKSEMI
 *    integrated circuit in a product or a software update for such product,
 *    must reproduce the above copyright notice, this list of conditions and
 *    the following disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * 3. Neither the name of MKSEMI nor the names of its contributors may be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    MKSEMI integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be
 *    reverse engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include "mk_trace.h"
#include "mk_clock.h"
#include "mk_uwb.h"
#include "mk_calib.h"
#include "mk_misc.h"
#include "ranging_simple.h"
#include "lib_aoa.h"
#include "lib_ranging.h"
#if KF_EN
#include "lib_kf.h"
#endif
#include "board.h"
#define PRINT_PAYLOAD_EN 0
#define PDOA_PRINT_EN 0
#if FILTER_EN
static void ranging_result_filter(uint16_t *distance, int16_t *azimuth, int16_t *elevation)
{
    if ((distance == NULL) || (azimuth == NULL) || (elevation == NULL))
    {
        return;
    }
#if KF_EN
    float post_range, post_azimuth, post_elevation;
    float azimuth_meas = mk_q7_to_f32(*azimuth);
    float elevation_meas = mk_q7_to_f32(*elevation);
    float range_meas = (float)*distance / 100;
    // call filter
    uint16_t target_addr = uwbs_peer_short_addr_get();
    uint8_t mac_addr[8];
    memset(mac_addr, 0, 8);
    mac_addr[0] = target_addr & 0xff;
    mac_addr[1] = (target_addr >> 8) & 0xff;
    loc_kf_filter(range_meas, KF_DATA_TYPE_RANGING, mac_addr, &post_range);
    if (uwb_app_config.session_param.aoa_result_req)
    {
        loc_kf_filter(azimuth_meas, KF_DATA_TYPE_AZIMUTH, mac_addr, &post_azimuth);
        loc_kf_filter(elevation_meas, KF_DATA_TYPE_ELEVATION, mac_addr, &post_elevation);
    }
    else
    {
        post_azimuth = azimuth_meas;
        post_elevation = elevation_meas;
    }
    // update distance
    *distance = (uint16_t)(post_range * 100);
    // update angle
    *azimuth = mk_f32_to_q7(post_azimuth);
    *elevation = mk_f32_to_q7(post_elevation);
    // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d %d %d;\r\n", (uint16_t)(range_meas*100),(uint16_t)(post_range*100),(int16_t)azimuth_meas,(int16_t)post_azimuth,
    // (int16_t)elevation_meas, (int16_t)post_elevation);
#else
    float post_range, post_azimuth;
    int azimuth_meas = mk_q7_to_s16(*azimuth);
    float range_meas = (float)*distance;
    // call filter
    loc_post_filter(0, range_meas, azimuth_meas, &post_range, &post_azimuth);
    // update distance
    *distance = (uint16_t)(post_range);
    // update angle
    *azimuth = mk_f32_to_q7(post_azimuth);
    // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d;\r\n", (uint16_t)(range_meas*100), (uint16_t)(post_range*100),(int16_t)azimuth_meas, (int16_t)post_azimuth);
#endif
}
#endif
/*************************************************************************************************/
/*!
 *  \brief  WSF event handler for ranging task.
 *
 *  \param  event   WSF event mask.
 *  \param  msg    WSF message.
 *
 *  \return None.
 */
/*************************************************************************************************/
void ranging_handler(wsfEventMask_t event, const void *param)
{
    const wsfMsgHdr_t *msg = (const wsfMsgHdr_t *)param;
    if (msg != NULL)
    {
        switch (msg->event)
        {
            case RANGING_DAEMON_TIMER_MSG:
            {
                uint8_t count = ranging_count_get();
                if (count == ranging_env.count_last)
                {
                    LOG_INFO(TRACE_MODULE_APP, "Ranging was suspended %u\r\n", count);
                    ranging_restart();
                }
                else
                {
                    // LOG_INFO(TRACE_MODULE_APP, "Ranging count %u %u\r\n", ranging_env.count_last, count);
                    ranging_env.count_last = count;
                }
            }
            break;
            case UWB_PKT_TX_DONE_MSG:
            {
                const struct UWB_PKT_TX_DONE_IND_T *ind = (const struct UWB_PKT_TX_DONE_IND_T *)param;
                uint8_t flag_print = 1;
                switch (ind->ranging_stage)
                {
                    case RANGING_SYNC:
                    {
                        LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n");
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Sync ", ind->tx_len);
                    }
                    break;
                    case RANGING_CFG:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Config ", ind->tx_len);
                    }
                    break;
                    case RANGING_POLL:
                    {
                        LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                        struct RANGING_COMMON_MSG_T *p_msg = (struct RANGING_COMMON_MSG_T *)ind->tx_data;
                        LOG_INFO(TRACE_MODULE_APP, "DS-TWR Initiator SEQ NUM %u\r\n", p_msg->seqNum);
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Poll ", ind->tx_len);
                    }
                    break;
                    case RANGING_RESPONSE:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Response ", ind->tx_len);
                    }
                    break;
                    case RANGING_FINAL:
                    {
                        LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Final", ind->tx_len);
                    }
                    break;
                    default:
                        flag_print = 2;
                        break;
                }
                if (flag_print == 1)
                {
#if PRINT_PAYLOAD_EN
                    if (ind->tx_len)
                    {
                        LOG_INFO(TRACE_MODULE_APP, " ");
                        for (uint8_t i = 0; i < ind->tx_len; i++)
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->tx_data[i]);
                        }
                    }
#endif
                    LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                }
            }
            break;
            case UWB_PKT_RX_DONE_MSG:
            {
                const struct UWB_PKT_RX_DONE_IND_T *ind = (const struct UWB_PKT_RX_DONE_IND_T *)param;
                if (ind->status == UWB_RX_OK)
                {
                    uint8_t flag_print = 1;
                    switch (ind->ranging_stage)
                    {
                        case RANGING_SYNC:
                        {
                            LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n");
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Sync ", ind->rx_len);
                        }
                        break;
                        case RANGING_CFG:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Config ", ind->rx_len);
                        }
                        break;
                        case RANGING_POLL:
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Poll ", ind->rx_len);
                        }
                        break;
                        case RANGING_RESPONSE:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Response ", ind->rx_len);
                        }
                        break;
                        case RANGING_FINAL:
                        {
                            LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Final ", ind->rx_len);
                        }
                        break;
                        default:
                            flag_print = 2;
                            break;
                    }
                    if (flag_print == 1)
                    {
#if PRINT_PAYLOAD_EN
                        for (uint8_t ii = 0; ii < ind->rx_len; ii++)
                        {
                            LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->rx_data[ii]);
                        }
#endif
                        LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n");
#if RSSI_EN
                        LOG_INFO(TRACE_MODULE_APP, "RSSI: %ddBm, SNR: %ddB \r\n", ind->rssi, ind->snr);
#endif
                    }
                    if (ind->ranging_stage == RANGING_POLL)
                    {
                        int32_t freq_offset = phy_freq_offset_get();
                        int32_t freq_offset_filter = average_filter(freq_offset);
                        LOG_INFO(TRACE_MODULE_APP, "CH Freq Offset %d\r\n", freq_offset_filter);
#if XTAL_AUTO_TUNE_EN
                        int32_t ppm = freq_offset_filter / (int32_t)(ch_center_freq_map[uwb_app_config.ppdu_params.ch_num] * 1e-6);
                        calib_xtal38m4_load_cap_auto_tune(ppm);
#endif
                        struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0];
                        uint8_t NLoS, FoM;
                        ranging_fom_get(&NLoS, &FoM);
                        range_result->NLoS = NLoS;
                        // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
                    }
                    else if (ind->ranging_stage == RANGING_RESPONSE)
                    {
                        uint8_t NLoS, FoM;
                        ranging_fom_get(&NLoS, &FoM);
                        // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
                    }
                    else if (ind->ranging_stage == RANGING_FINAL)
                    {
                        struct RANGING_COMMON_MSG_T *p_final_msg = (struct RANGING_COMMON_MSG_T *)ind->rx_data;
                        int64_t Tround1 = 0;
                        int64_t Tround2 = 0;
                        int64_t Treply1 = 0;
                        int64_t Treply2 = 0;
                        if (ranging_env.responder_final_flag)
                        {
                            Tround2 = ranging_tround(DEV_ROLE_RESPONDER, 0);
                            Treply1 = ranging_treply(DEV_ROLE_RESPONDER, 0);
                            // recv   tx_poll_timestamp,  rx_response_timestamp, tx_final_timestamp
                            int64_t buff_timestamp[3] = {0};
                            for (int j = 0; j < 3; j++)
                            {
                                for (int i = 4; i >= 0; i--)
                                {
                                    buff_timestamp[j] = (buff_timestamp[j] << 8) | p_final_msg->user_data[j * 5 + i];
                                }
                            }
                            Tround1 = buff_timestamp[1] - buff_timestamp[0];
                            Treply2 = buff_timestamp[2] - buff_timestamp[1];
                        }
                        if ((Tround1) && (Treply1) && (Tround2) && (Treply2))
                        {
                            int64_t tof_i = (Tround1 * Tround2 - Treply1 * Treply2) / (Tround1 + Tround2 + Treply1 + Treply2);
                            // outlier filter
                            if (tof_i < 0)
                            {
                                tof_i = 0;
                            }
                            ranging_env.tof = (uint32_t)tof_i;
                            double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof);
                            struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0];
                            // update distance result
                            range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR);
                            range_result->status = STATUS_OK;
                            if (ranging_frame_type_get() == SP1)
                            {
                                range_result->status = sts_valid_check() ? STATUS_OK : STATUS_FAILED;
                            }
                            // STS valid
                            if (range_result->status == STATUS_OK)
                            {
#if AOA_EN || PDOA_PRINT_EN
                                // update PDoA IQ and calculate AoA angles (depends on aoa_aux_cfg)
                                aoa_calculate(NULL, &range_result->aoa_azimuth);
#endif
#if PDOA_PRINT_EN
                                float pdoa[3];
                                pdoa[0] = pdoa_select_get(0, 3);
                                pdoa[1] = pdoa_select_get(1, 3);
                                pdoa[2] = pdoa_select_get(2, 3);
                                LOG_INFO(TRACE_MODULE_APP, "PDOA: %f %f %f\r\n", pdoa[0], pdoa[1], pdoa[2]);
                                // float *sts_rssi = sts_rssi_output_get();
                                // LOG_INFO(TRACE_MODULE_APP, "STS RSSI: %f %f %f %f\r\n", sts_rssi[0], sts_rssi[1], sts_rssi[2], sts_rssi[3]);
                                // float *iq = sts_first_path_iq_get();
                                // LOG_INFO(TRACE_MODULE_APP, "ANT0 IQ: %f %f\r\n", iq[0], iq[1]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT1 IQ: %f %f\r\n", iq[2], iq[3]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT2 IQ: %f %f\r\n", iq[4], iq[5]);
                                // LOG_INFO(TRACE_MODULE_APP, "ANT3 IQ: %f %f\r\n", iq[6], iq[7]);
#endif
#if FILTER_EN
                                if (uwb_app_config.filter_en)
                                {
                                    // filter process
                                    ranging_result_filter(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation);
                                }
#endif
                                uint8_t aoa_en = uwb_app_config.session_param.aoa_result_req;
                                if (aoa_en)
                                {
                                    uint8_t fom;
                                    aoa_fom_get(NULL, &fom);
                                    board_ranging_result_correct(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation);
                                    LOG_INFO(TRACE_MODULE_APP, "Distance %ucm, AoA Azimuth %d FoM %u\r\n", range_result->distance,
                                             mk_q7_to_s16(range_result->aoa_azimuth), fom);
                                }
                                else
                                {
                                    range_result->aoa_azimuth = 0;
                                    LOG_INFO(TRACE_MODULE_APP, "Raw Distance %ucm\r\n", range_result->distance);
                                }
                                struct RANGE_DATA_T *range_data = &ranging_env.range_data;
                                range_data->mac_addr_mode = MAC_ADDR_LONG;
                                range_data->measurements_num = 1;
                                memcpy(range_result->mac_addr, uwbs_peer_long_addr_get(), 8);
                                range_result->slot_idx = ranging_env.responder_slot_idx;
                                uint8_t NLoS, FoM;
                                ranging_fom_get(&NLoS, &FoM);
                                if (NLoS > range_result->NLoS)
                                {
                                    range_result->NLoS = NLoS;
                                }
                                // LOG_INFO(TRACE_MODULE_APP, "NLoS: %u, FoM: %u\r\n", NLoS, FoM);
#if CSI_EN
                                struct RANGING_TAPS_INF_T taps_inf;
                                ranging_taps_inf_get(&taps_inf);
                                LOG_INFO(TRACE_MODULE_APP, "fap: %d, %f\r\n", taps_inf.fap_loc, taps_inf.fap_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap1: %d, %f\r\n", taps_inf.tap1_loc, taps_inf.tap1_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap2: %d, %f\r\n", taps_inf.tap2_loc, taps_inf.tap2_pow);
                                LOG_INFO(TRACE_MODULE_APP, "tap3: %d, %f\r\n", taps_inf.tap3_loc, taps_inf.tap3_pow);
#endif
                                // output result
                                uwbapi_report_ranging_data(range_data);
                            }
                            else
                            {
                                LOG_INFO(TRACE_MODULE_APP, "STS Invalid\r\n");
                            }
                        }
                        else
                        {
                            LOG_INFO(TRACE_MODULE_APP, "Timestamp error\r\n");
                        }
                    }
                }
                else
                {
                    LOG_INFO(TRACE_MODULE_APP, "UWB RX fail  0x%04x,  stage %d\r\n", ind->status, ind->ranging_stage);
                }
            }
            break;
            default:
                break;
        }
    }
    // Handle events
    else if (event)
    {
    }
}