chen
2024-11-08 cc432b761c884a0bd8e9d83db0a4e26109fc08b1
keil/include/components/utilities/lzma/LzmaEnc.c
对比新文件
@@ -0,0 +1,3116 @@
/* LzmaEnc.c -- LZMA Encoder
2023-04-13: Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define SHOW_STAT */
/* #define SHOW_STAT2 */
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
#include <stdio.h>
#endif
#include "CpuArch.h"
#include "LzmaEnc.h"
#include "LzFind.h"
#ifndef Z7_ST
#include "LzFindMt.h"
#endif
/* the following LzmaEnc_* declarations is internal LZMA interface for LZMA2 encoder */
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit, Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p);
void LzmaEnc_Finish(CLzmaEncHandle p);
void LzmaEnc_SaveState(CLzmaEncHandle p);
void LzmaEnc_RestoreState(CLzmaEncHandle p);
#ifdef SHOW_STAT
static unsigned g_STAT_OFFSET = 0;
#endif
/* for good normalization speed we still reserve 256 MB before 4 GB range */
#define kLzmaMaxHistorySize ((UInt32)15 << 28)
// #define kNumTopBits 24
#define kTopValue ((UInt32)1 << 24)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define kProbInitValue (kBitModelTotal >> 1)
#define kNumMoveReducingBits 4
#define kNumBitPriceShiftBits 4
// #define kBitPrice (1 << kNumBitPriceShiftBits)
#define REP_LEN_COUNT 64
void LzmaEncProps_Init(CLzmaEncProps *p)
{
    p->level = 5;
    p->dictSize = p->mc = 0;
    p->reduceSize = (UInt64)(Int64)-1;
    p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
    p->numHashOutBits = 0;
    p->writeEndMark = 0;
    p->affinity = 0;
}
void LzmaEncProps_Normalize(CLzmaEncProps *p)
{
    int level = p->level;
    if (level < 0)
        level = 5;
    p->level = level;
    if (p->dictSize == 0)
        p->dictSize =
            (level <= 3 ? ((UInt32)1 << (level * 2 + 16)) : (level <= 6 ? ((UInt32)1 << (level + 19)) : (level <= 7 ? ((UInt32)1 << 25) : ((UInt32)1 << 26))));
    if (p->dictSize > p->reduceSize)
    {
        UInt32 v = (UInt32)p->reduceSize;
        const UInt32 kReduceMin = ((UInt32)1 << 12);
        if (v < kReduceMin)
            v = kReduceMin;
        if (p->dictSize > v)
            p->dictSize = v;
    }
    if (p->lc < 0)
        p->lc = 3;
    if (p->lp < 0)
        p->lp = 0;
    if (p->pb < 0)
        p->pb = 2;
    if (p->algo < 0)
        p->algo = (level < 5 ? 0 : 1);
    if (p->fb < 0)
        p->fb = (level < 7 ? 32 : 64);
    if (p->btMode < 0)
        p->btMode = (p->algo == 0 ? 0 : 1);
    if (p->numHashBytes < 0)
        p->numHashBytes = (p->btMode ? 4 : 5);
    if (p->mc == 0)
        p->mc = (16 + ((unsigned)p->fb >> 1)) >> (p->btMode ? 0 : 1);
    if (p->numThreads < 0)
        p->numThreads =
#ifndef Z7_ST
            ((p->btMode && p->algo) ? 2 : 1);
#else
            1;
#endif
}
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
{
    CLzmaEncProps props = *props2;
    LzmaEncProps_Normalize(&props);
    return props.dictSize;
}
/*
x86/x64:
BSR:
  IF (SRC == 0) ZF = 1, DEST is undefined;
                  AMD : DEST is unchanged;
  IF (SRC != 0) ZF = 0; DEST is index of top non-zero bit
  BSR is slow in some processors
LZCNT:
  IF (SRC  == 0) CF = 1, DEST is size_in_bits_of_register(src) (32 or 64)
  IF (SRC  != 0) CF = 0, DEST = num_lead_zero_bits
  IF (DEST == 0) ZF = 1;
LZCNT works only in new processors starting from Haswell.
if LZCNT is not supported by processor, then it's executed as BSR.
LZCNT can be faster than BSR, if supported.
*/
// #define LZMA_LOG_BSR
#if defined(MY_CPU_ARM_OR_ARM64) /* || defined(MY_CPU_X86_OR_AMD64) */
#if (defined(__clang__) && (__clang_major__ >= 6)) || (defined(__GNUC__) && (__GNUC__ >= 6))
#define LZMA_LOG_BSR
#elif defined(_MSC_VER) && (_MSC_VER >= 1300)
// #if defined(MY_CPU_ARM_OR_ARM64)
#define LZMA_LOG_BSR
// #endif
#endif
#endif
// #include <intrin.h>
#ifdef LZMA_LOG_BSR
#if defined(__clang__) || defined(__GNUC__)
/*
  C code:                  : (30 - __builtin_clz(x))
    gcc9/gcc10 for x64 /x86  : 30 - (bsr(x) xor 31)
    clang10 for x64          : 31 + (bsr(x) xor -32)
*/
#define MY_clz(x) ((unsigned)__builtin_clz(x))
// __lzcnt32
// __builtin_ia32_lzcnt_u32
#else // #if defined(_MSC_VER)
#ifdef MY_CPU_ARM_OR_ARM64
#define MY_clz _CountLeadingZeros
#else // if defined(MY_CPU_X86_OR_AMD64)
// #define MY_clz  __lzcnt  // we can use lzcnt (unsupported by old CPU)
// _BitScanReverse code is not optimal for some MSVC compilers
#define BSR2_RET(pos, res)             \
    {                                  \
        unsigned long zz;              \
        _BitScanReverse(&zz, (pos));   \
        zz--;                          \
        res = (zz + zz) + (pos >> zz); \
    }
#endif // MY_CPU_X86_OR_AMD64
#endif // _MSC_VER
#ifndef BSR2_RET
#define BSR2_RET(pos, res)              \
    {                                   \
        unsigned zz = 30 - MY_clz(pos); \
        res = (zz + zz) + (pos >> zz);  \
    }
#endif
unsigned GetPosSlot1(UInt32 pos);
unsigned GetPosSlot1(UInt32 pos)
{
    unsigned res;
    BSR2_RET(pos, res);
    return res;
}
#define GetPosSlot2(pos, res) \
    {                         \
        BSR2_RET(pos, res);   \
    }
#define GetPosSlot(pos, res)    \
    {                           \
        if (pos < 2)            \
            res = pos;          \
        else                    \
            BSR2_RET(pos, res); \
    }
#else // ! LZMA_LOG_BSR
#define kNumLogBits (11 + sizeof(size_t) / 8 * 3)
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
static void LzmaEnc_FastPosInit(Byte *g_FastPos)
{
    unsigned slot;
    g_FastPos[0] = 0;
    g_FastPos[1] = 1;
    g_FastPos += 2;
    for (slot = 2; slot < kNumLogBits * 2; slot++)
    {
        size_t k = ((size_t)1 << ((slot >> 1) - 1));
        size_t j;
        for (j = 0; j < k; j++)
            g_FastPos[j] = (Byte)slot;
        g_FastPos += k;
    }
}
/* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
/*
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
  (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
  res = p->g_FastPos[pos >> zz] + (zz * 2); }
*/
/*
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
  (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
  res = p->g_FastPos[pos >> zz] + (zz * 2); }
*/
#define BSR2_RET(pos, res)                                                        \
    {                                                                             \
        unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
        res = p->g_FastPos[pos >> zz] + (zz * 2);                                 \
    }
/*
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
  p->g_FastPos[pos >> 6] + 12 : \
  p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
*/
#define GetPosSlot1(pos) p->g_FastPos[pos]
#define GetPosSlot2(pos, res) \
    {                         \
        BSR2_RET(pos, res);   \
    }
#define GetPosSlot(pos, res)                                   \
    {                                                          \
        if (pos < kNumFullDistances)                           \
            res = p->g_FastPos[pos & (kNumFullDistances - 1)]; \
        else                                                   \
            BSR2_RET(pos, res);                                \
    }
#endif // LZMA_LOG_BSR
#define LZMA_NUM_REPS 4
typedef UInt16 CState;
typedef UInt16 CExtra;
typedef struct
{
    UInt32 price;
    CState state;
    CExtra extra;
    // 0   : normal
    // 1   : LIT : MATCH
    // > 1 : MATCH (extra-1) : LIT : REP0 (len)
    UInt32 len;
    UInt32 dist;
    UInt32 reps[LZMA_NUM_REPS];
} COptimal;
// 18.06
#define kNumOpts (1 << 11)
#define kPackReserve (kNumOpts * 8)
// #define kNumOpts (1 << 12)
// #define kPackReserve (1 + kNumOpts * 2)
#define kNumLenToPosStates 4
#define kNumPosSlotBits 6
// #define kDicLogSizeMin 0
#define kDicLogSizeMax 32
#define kDistTableSizeMax (kDicLogSizeMax * 2)
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kAlignMask (kAlignTableSize - 1)
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
typedef
#ifdef Z7_LZMA_PROB32
    UInt32
#else
    UInt16
#endif
        CLzmaProb;
#define LZMA_PB_MAX 4
#define LZMA_LC_MAX 8
#define LZMA_LP_MAX 4
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
#define LZMA_MATCH_LEN_MIN 2
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
#define kNumStates 12
typedef struct
{
    CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
    CLzmaProb high[kLenNumHighSymbols];
} CLenEnc;
typedef struct
{
    unsigned tableSize;
    UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
    // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
    // UInt32 prices2[kLenNumSymbolsTotal];
} CLenPriceEnc;
#define GET_PRICE_LEN(p, posState, len) ((p)->prices[posState][(size_t)(len)-LZMA_MATCH_LEN_MIN])
/*
#define GET_PRICE_LEN(p, posState, len) \
    ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
*/
typedef struct
{
    UInt32 range;
    unsigned cache;
    UInt64 low;
    UInt64 cacheSize;
    Byte *buf;
    Byte *bufLim;
    Byte *bufBase;
    ISeqOutStreamPtr outStream;
    UInt64 processed;
    SRes res;
} CRangeEnc;
typedef struct
{
    CLzmaProb *litProbs;
    unsigned state;
    UInt32 reps[LZMA_NUM_REPS];
    CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    CLzmaProb isRep[kNumStates];
    CLzmaProb isRepG0[kNumStates];
    CLzmaProb isRepG1[kNumStates];
    CLzmaProb isRepG2[kNumStates];
    CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    CLzmaProb posEncoders[kNumFullDistances];
    CLenEnc lenProbs;
    CLenEnc repLenProbs;
} CSaveState;
typedef UInt32 CProbPrice;
struct CLzmaEnc
{
    void *matchFinderObj;
    IMatchFinder2 matchFinder;
    unsigned optCur;
    unsigned optEnd;
    unsigned longestMatchLen;
    unsigned numPairs;
    UInt32 numAvail;
    unsigned state;
    unsigned numFastBytes;
    unsigned additionalOffset;
    UInt32 reps[LZMA_NUM_REPS];
    unsigned lpMask, pbMask;
    CLzmaProb *litProbs;
    CRangeEnc rc;
    UInt32 backRes;
    unsigned lc, lp, pb;
    unsigned lclp;
    BoolInt fastMode;
    BoolInt writeEndMark;
    BoolInt finished;
    BoolInt multiThread;
    BoolInt needInit;
    // BoolInt _maxMode;
    UInt64 nowPos64;
    unsigned matchPriceCount;
    // unsigned alignPriceCount;
    int repLenEncCounter;
    unsigned distTableSize;
    UInt32 dictSize;
    SRes result;
#ifndef Z7_ST
    BoolInt mtMode;
    // begin of CMatchFinderMt is used in LZ thread
    CMatchFinderMt matchFinderMt;
// end of CMatchFinderMt is used in BT and HASH threads
// #else
// CMatchFinder matchFinderBase;
#endif
    CMatchFinder matchFinderBase;
    // we suppose that we have 8-bytes alignment after CMatchFinder
#ifndef Z7_ST
    Byte pad[128];
#endif
    // LZ thread
    CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
    // we want {len , dist} pairs to be 8-bytes aligned in matches array
    UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2];
    // we want 8-bytes alignment here
    UInt32 alignPrices[kAlignTableSize];
    UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
    UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
    CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    CLzmaProb isRep[kNumStates];
    CLzmaProb isRepG0[kNumStates];
    CLzmaProb isRepG1[kNumStates];
    CLzmaProb isRepG2[kNumStates];
    CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    CLzmaProb posEncoders[kNumFullDistances];
    CLenEnc lenProbs;
    CLenEnc repLenProbs;
#ifndef LZMA_LOG_BSR
    Byte g_FastPos[1 << kNumLogBits];
#endif
    CLenPriceEnc lenEnc;
    CLenPriceEnc repLenEnc;
    COptimal opt[kNumOpts];
    CSaveState saveState;
// BoolInt mf_Failure;
#ifndef Z7_ST
    Byte pad2[128];
#endif
};
#define MFB (p->matchFinderBase)
/*
#ifndef Z7_ST
#define MFB (p->matchFinderMt.MatchFinder)
#endif
*/
// #define GET_CLzmaEnc_p  CLzmaEnc *p = (CLzmaEnc*)(void *)p;
// #define GET_const_CLzmaEnc_p  const CLzmaEnc *p = (const CLzmaEnc*)(const void *)p;
#define COPY_ARR(dest, src, arr) memcpy((dest)->arr, (src)->arr, sizeof((src)->arr));
#define COPY_LZMA_ENC_STATE(d, s, p)     \
    (d)->state = (s)->state;             \
    COPY_ARR(d, s, reps)                 \
    COPY_ARR(d, s, posAlignEncoder)      \
    COPY_ARR(d, s, isRep)                \
    COPY_ARR(d, s, isRepG0)              \
    COPY_ARR(d, s, isRepG1)              \
    COPY_ARR(d, s, isRepG2)              \
    COPY_ARR(d, s, isMatch)              \
    COPY_ARR(d, s, isRep0Long)           \
    COPY_ARR(d, s, posSlotEncoder)       \
    COPY_ARR(d, s, posEncoders)          \
    (d)->lenProbs = (s)->lenProbs;       \
    (d)->repLenProbs = (s)->repLenProbs; \
    memcpy((d)->litProbs, (s)->litProbs, ((UInt32)0x300 << (p)->lclp) * sizeof(CLzmaProb));
void LzmaEnc_SaveState(CLzmaEncHandle p)
{
    // GET_CLzmaEnc_p
    CSaveState *v = &p->saveState;
    COPY_LZMA_ENC_STATE(v, p, p)
}
void LzmaEnc_RestoreState(CLzmaEncHandle p)
{
    // GET_CLzmaEnc_p
    const CSaveState *v = &p->saveState;
    COPY_LZMA_ENC_STATE(p, v, p)
}
Z7_NO_INLINE
SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props2)
{
    // GET_CLzmaEnc_p
    CLzmaEncProps props = *props2;
    LzmaEncProps_Normalize(&props);
    if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX)
        return SZ_ERROR_PARAM;
    if (props.dictSize > kLzmaMaxHistorySize)
        props.dictSize = kLzmaMaxHistorySize;
#ifndef LZMA_LOG_BSR
    {
        const UInt64 dict64 = props.dictSize;
        if (dict64 > ((UInt64)1 << kDicLogSizeMaxCompress))
            return SZ_ERROR_PARAM;
    }
#endif
    p->dictSize = props.dictSize;
    {
        unsigned fb = (unsigned)props.fb;
        if (fb < 5)
            fb = 5;
        if (fb > LZMA_MATCH_LEN_MAX)
            fb = LZMA_MATCH_LEN_MAX;
        p->numFastBytes = fb;
    }
    p->lc = (unsigned)props.lc;
    p->lp = (unsigned)props.lp;
    p->pb = (unsigned)props.pb;
    p->fastMode = (props.algo == 0);
    // p->_maxMode = True;
    MFB.btMode = (Byte)(props.btMode ? 1 : 0);
    // MFB.btMode = (Byte)(props.btMode);
    {
        unsigned numHashBytes = 4;
        if (props.btMode)
        {
            if (props.numHashBytes < 2)
                numHashBytes = 2;
            else if (props.numHashBytes < 4)
                numHashBytes = (unsigned)props.numHashBytes;
        }
        if (props.numHashBytes >= 5)
            numHashBytes = 5;
        MFB.numHashBytes = numHashBytes;
        // MFB.numHashBytes_Min = 2;
        MFB.numHashOutBits = (Byte)props.numHashOutBits;
    }
    MFB.cutValue = props.mc;
    p->writeEndMark = (BoolInt)props.writeEndMark;
#ifndef Z7_ST
    /*
    if (newMultiThread != _multiThread)
    {
      ReleaseMatchFinder();
      _multiThread = newMultiThread;
    }
    */
    p->multiThread = (props.numThreads > 1);
    p->matchFinderMt.btSync.affinity = p->matchFinderMt.hashSync.affinity = props.affinity;
#endif
    return SZ_OK;
}
void LzmaEnc_SetDataSize(CLzmaEncHandle p, UInt64 expectedDataSiize)
{
    // GET_CLzmaEnc_p
    MFB.expectedDataSize = expectedDataSiize;
}
#define kState_Start 0
#define kState_LitAfterMatch 4
#define kState_LitAfterRep 5
#define kState_MatchAfterLit 7
#define kState_RepAfterLit 8
static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
static const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
static const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
static const Byte kShortRepNextStates[kNumStates] = {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
#define IsLitState(s) ((s) < 7)
#define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len)-2 : kNumLenToPosStates - 1)
#define kInfinityPrice (1 << 30)
static void RangeEnc_Construct(CRangeEnc *p)
{
    p->outStream = NULL;
    p->bufBase = NULL;
}
#define RangeEnc_GetProcessed(p) ((p)->processed + (size_t)((p)->buf - (p)->bufBase) + (p)->cacheSize)
#define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + (size_t)((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
#define RC_BUF_SIZE (1 << 16)
static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
{
    if (!p->bufBase)
    {
        p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
        if (!p->bufBase)
            return 0;
        p->bufLim = p->bufBase + RC_BUF_SIZE;
    }
    return 1;
}
static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
{
    ISzAlloc_Free(alloc, p->bufBase);
    p->bufBase = NULL;
}
static void RangeEnc_Init(CRangeEnc *p)
{
    p->range = 0xFFFFFFFF;
    p->cache = 0;
    p->low = 0;
    p->cacheSize = 0;
    p->buf = p->bufBase;
    p->processed = 0;
    p->res = SZ_OK;
}
Z7_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
{
    const size_t num = (size_t)(p->buf - p->bufBase);
    if (p->res == SZ_OK)
    {
        if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
            p->res = SZ_ERROR_WRITE;
    }
    p->processed += num;
    p->buf = p->bufBase;
}
Z7_NO_INLINE static void Z7_FASTCALL RangeEnc_ShiftLow(CRangeEnc *p)
{
    UInt32 low = (UInt32)p->low;
    unsigned high = (unsigned)(p->low >> 32);
    p->low = (UInt32)(low << 8);
    if (low < (UInt32)0xFF000000 || high != 0)
    {
        {
            Byte *buf = p->buf;
            *buf++ = (Byte)(p->cache + high);
            p->cache = (unsigned)(low >> 24);
            p->buf = buf;
            if (buf == p->bufLim)
                RangeEnc_FlushStream(p);
            if (p->cacheSize == 0)
                return;
        }
        high += 0xFF;
        for (;;)
        {
            Byte *buf = p->buf;
            *buf++ = (Byte)(high);
            p->buf = buf;
            if (buf == p->bufLim)
                RangeEnc_FlushStream(p);
            if (--p->cacheSize == 0)
                return;
        }
    }
    p->cacheSize++;
}
static void RangeEnc_FlushData(CRangeEnc *p)
{
    int i;
    for (i = 0; i < 5; i++)
        RangeEnc_ShiftLow(p);
}
#define RC_NORM(p)            \
    if (range < kTopValue)    \
    {                         \
        range <<= 8;          \
        RangeEnc_ShiftLow(p); \
    }
#define RC_BIT_PRE(p, prob) \
    ttt = *(prob);          \
    newBound = (range >> kNumBitModelTotalBits) * ttt;
// #define Z7_LZMA_ENC_USE_BRANCH
#ifdef Z7_LZMA_ENC_USE_BRANCH
#define RC_BIT(p, prob, bit)                               \
    {                                                      \
        RC_BIT_PRE(p, prob)                                \
        if (bit == 0)                                      \
        {                                                  \
            range = newBound;                              \
            ttt += (kBitModelTotal - ttt) >> kNumMoveBits; \
        }                                                  \
        else                                               \
        {                                                  \
            (p)->low += newBound;                          \
            range -= newBound;                             \
            ttt -= ttt >> kNumMoveBits;                    \
        }                                                  \
        *(prob) = (CLzmaProb)ttt;                          \
        RC_NORM(p)                                         \
    }
#else
#define RC_BIT(p, prob, bit)                                  \
    {                                                         \
        UInt32 mask;                                          \
        RC_BIT_PRE(p, prob)                                   \
        mask = 0 - (UInt32)bit;                               \
        range &= mask;                                        \
        mask &= newBound;                                     \
        range -= mask;                                        \
        (p)->low += mask;                                     \
        mask = (UInt32)bit - 1;                               \
        range += newBound & mask;                             \
        mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
        mask += ((1 << kNumMoveBits) - 1);                    \
        ttt += (UInt32)((Int32)(mask - ttt) >> kNumMoveBits); \
        *(prob) = (CLzmaProb)ttt;                             \
        RC_NORM(p)                                            \
    }
#endif
#define RC_BIT_0_BASE(p, prob) \
    range = newBound;          \
    *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define RC_BIT_1_BASE(p, prob) \
    range -= newBound;         \
    (p)->low += newBound;      \
    *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
#define RC_BIT_0(p, prob)  \
    RC_BIT_0_BASE(p, prob) \
    RC_NORM(p)
#define RC_BIT_1(p, prob)  \
    RC_BIT_1_BASE(p, prob) \
    RC_NORM(p)
static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
{
    UInt32 range, ttt, newBound;
    range = p->range;
    RC_BIT_PRE(p, prob)
    RC_BIT_0(p, prob)
    p->range = range;
}
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
{
    UInt32 range = p->range;
    sym |= 0x100;
    do
    {
        UInt32 ttt, newBound;
        // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
        CLzmaProb *prob = probs + (sym >> 8);
        UInt32 bit = (sym >> 7) & 1;
        sym <<= 1;
        RC_BIT(p, prob, bit)
    } while (sym < 0x10000);
    p->range = range;
}
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
{
    UInt32 range = p->range;
    UInt32 offs = 0x100;
    sym |= 0x100;
    do
    {
        UInt32 ttt, newBound;
        CLzmaProb *prob;
        UInt32 bit;
        matchByte <<= 1;
        // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
        prob = probs + (offs + (matchByte & offs) + (sym >> 8));
        bit = (sym >> 7) & 1;
        sym <<= 1;
        offs &= ~(matchByte ^ sym);
        RC_BIT(p, prob, bit)
    } while (sym < 0x10000);
    p->range = range;
}
static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
{
    UInt32 i;
    for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
    {
        const unsigned kCyclesBits = kNumBitPriceShiftBits;
        UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
        unsigned bitCount = 0;
        unsigned j;
        for (j = 0; j < kCyclesBits; j++)
        {
            w = w * w;
            bitCount <<= 1;
            while (w >= ((UInt32)1 << 16))
            {
                w >>= 1;
                bitCount++;
            }
        }
        ProbPrices[i] = (CProbPrice)(((unsigned)kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
        // printf("\n%3d: %5d", i, ProbPrices[i]);
    }
}
#define GET_PRICE(prob, bit) p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]
#define GET_PRICEa(prob, bit) ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
#define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
{
    UInt32 price = 0;
    sym |= 0x100;
    do
    {
        unsigned bit = sym & 1;
        sym >>= 1;
        price += GET_PRICEa(probs[sym], bit);
    } while (sym >= 2);
    return price;
}
static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
{
    UInt32 price = 0;
    UInt32 offs = 0x100;
    sym |= 0x100;
    do
    {
        matchByte <<= 1;
        price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
        sym <<= 1;
        offs &= ~(matchByte ^ sym);
    } while (sym < 0x10000);
    return price;
}
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
{
    UInt32 range = rc->range;
    unsigned m = 1;
    do
    {
        UInt32 ttt, newBound;
        unsigned bit = sym & 1;
        // RangeEnc_EncodeBit(rc, probs + m, bit);
        sym >>= 1;
        RC_BIT(rc, probs + m, bit)
        m = (m << 1) | bit;
    } while (--numBits);
    rc->range = range;
}
static void LenEnc_Init(CLenEnc *p)
{
    unsigned i;
    for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
        p->low[i] = kProbInitValue;
    for (i = 0; i < kLenNumHighSymbols; i++)
        p->high[i] = kProbInitValue;
}
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
{
    UInt32 range, ttt, newBound;
    CLzmaProb *probs = p->low;
    range = rc->range;
    RC_BIT_PRE(rc, probs)
    if (sym >= kLenNumLowSymbols)
    {
        RC_BIT_1(rc, probs)
        probs += kLenNumLowSymbols;
        RC_BIT_PRE(rc, probs)
        if (sym >= kLenNumLowSymbols * 2)
        {
            RC_BIT_1(rc, probs)
            rc->range = range;
            // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
            LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
            return;
        }
        sym -= kLenNumLowSymbols;
    }
    // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
    {
        unsigned m;
        unsigned bit;
        RC_BIT_0(rc, probs)
        probs += (posState << (1 + kLenNumLowBits));
        bit = (sym >> 2);
        RC_BIT(rc, probs + 1, bit) m = (1 << 1) + bit;
        bit = (sym >> 1) & 1;
        RC_BIT(rc, probs + m, bit) m = (m << 1) + bit;
        bit = sym & 1;
        RC_BIT(rc, probs + m, bit)
        rc->range = range;
    }
}
static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
{
    unsigned i;
    for (i = 0; i < 8; i += 2)
    {
        UInt32 price = startPrice;
        UInt32 prob;
        price += GET_PRICEa(probs[1], (i >> 2));
        price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
        prob = probs[4 + (i >> 1)];
        prices[i] = price + GET_PRICEa_0(prob);
        prices[i + 1] = price + GET_PRICEa_1(prob);
    }
}
Z7_NO_INLINE static void Z7_FASTCALL LenPriceEnc_UpdateTables(CLenPriceEnc *p, unsigned numPosStates, const CLenEnc *enc, const CProbPrice *ProbPrices)
{
    UInt32 b;
    {
        unsigned prob = enc->low[0];
        UInt32 a, c;
        unsigned posState;
        b = GET_PRICEa_1(prob);
        a = GET_PRICEa_0(prob);
        c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
        for (posState = 0; posState < numPosStates; posState++)
        {
            UInt32 *prices = p->prices[posState];
            const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
            SetPrices_3(probs, a, prices, ProbPrices);
            SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
        }
    }
    /*
    {
      unsigned i;
      UInt32 b;
      a = GET_PRICEa_0(enc->low[0]);
      for (i = 0; i < kLenNumLowSymbols; i++)
        p->prices2[i] = a;
      a = GET_PRICEa_1(enc->low[0]);
      b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
      for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
        p->prices2[i] = b;
      a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
    }
    */
    // p->counter = numSymbols;
    // p->counter = 64;
    {
        unsigned i = p->tableSize;
        if (i > kLenNumLowSymbols * 2)
        {
            const CLzmaProb *probs = enc->high;
            UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
            i -= kLenNumLowSymbols * 2 - 1;
            i >>= 1;
            b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
            do
            {
                /*
                p->prices2[i] = a +
                // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
                LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
                */
                // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
                unsigned sym = --i + (1 << (kLenNumHighBits - 1));
                UInt32 price = b;
                do
                {
                    unsigned bit = sym & 1;
                    sym >>= 1;
                    price += GET_PRICEa(probs[sym], bit);
                } while (sym >= 2);
                {
                    unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
                    prices[(size_t)i * 2] = price + GET_PRICEa_0(prob);
                    prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
                }
            } while (i);
            {
                unsigned posState;
                size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
                for (posState = 1; posState < numPosStates; posState++)
                    memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
            }
        }
    }
}
/*
  #ifdef SHOW_STAT
  g_STAT_OFFSET += num;
  printf("\n MovePos %u", num);
  #endif
*/
#define MOVE_POS(p, num)                                       \
    {                                                          \
        p->additionalOffset += (num);                          \
        p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); \
    }
static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
{
    unsigned numPairs;
    p->additionalOffset++;
    p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
    {
        const UInt32 *d = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
        // if (!d) { p->mf_Failure = True; *numPairsRes = 0;  return 0; }
        numPairs = (unsigned)(d - p->matches);
    }
    *numPairsRes = numPairs;
#ifdef SHOW_STAT
    printf("\n i = %u numPairs = %u    ", g_STAT_OFFSET, numPairs / 2);
    g_STAT_OFFSET++;
    {
        unsigned i;
        for (i = 0; i < numPairs; i += 2)
            printf("%2u %6u   | ", p->matches[i], p->matches[i + 1]);
    }
#endif
    if (numPairs == 0)
        return 0;
    {
        const unsigned len = p->matches[(size_t)numPairs - 2];
        if (len != p->numFastBytes)
            return len;
        {
            UInt32 numAvail = p->numAvail;
            if (numAvail > LZMA_MATCH_LEN_MAX)
                numAvail = LZMA_MATCH_LEN_MAX;
            {
                const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
                const Byte *p2 = p1 + len;
                const ptrdiff_t dif = (ptrdiff_t)-1 - (ptrdiff_t)p->matches[(size_t)numPairs - 1];
                const Byte *lim = p1 + numAvail;
                for (; p2 != lim && *p2 == p2[dif]; p2++)
                {
                }
                return (unsigned)(p2 - p1);
            }
        }
    }
}
#define MARK_LIT ((UInt32)(Int32)-1)
#define MakeAs_Lit(p)         \
    {                         \
        (p)->dist = MARK_LIT; \
        (p)->extra = 0;       \
    }
#define MakeAs_ShortRep(p) \
    {                      \
        (p)->dist = 0;     \
        (p)->extra = 0;    \
    }
#define IsShortRep(p) ((p)->dist == 0)
#define GetPrice_ShortRep(p, state, posState) (GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
#define GetPrice_Rep_0(p, state, posState) \
    (GET_PRICE_1(p->isMatch[state][posState]) + GET_PRICE_1(p->isRep0Long[state][posState])) + GET_PRICE_1(p->isRep[state]) + GET_PRICE_0(p->isRepG0[state])
Z7_FORCE_INLINE
static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
{
    UInt32 price;
    UInt32 prob = p->isRepG0[state];
    if (repIndex == 0)
    {
        price = GET_PRICE_0(prob);
        price += GET_PRICE_1(p->isRep0Long[state][posState]);
    }
    else
    {
        price = GET_PRICE_1(prob);
        prob = p->isRepG1[state];
        if (repIndex == 1)
            price += GET_PRICE_0(prob);
        else
        {
            price += GET_PRICE_1(prob);
            price += GET_PRICE(p->isRepG2[state], repIndex - 2);
        }
    }
    return price;
}
static unsigned Backward(CLzmaEnc *p, unsigned cur)
{
    unsigned wr = cur + 1;
    p->optEnd = wr;
    for (;;)
    {
        UInt32 dist = p->opt[cur].dist;
        unsigned len = (unsigned)p->opt[cur].len;
        unsigned extra = (unsigned)p->opt[cur].extra;
        cur -= len;
        if (extra)
        {
            wr--;
            p->opt[wr].len = (UInt32)len;
            cur -= extra;
            len = extra;
            if (extra == 1)
            {
                p->opt[wr].dist = dist;
                dist = MARK_LIT;
            }
            else
            {
                p->opt[wr].dist = 0;
                len--;
                wr--;
                p->opt[wr].dist = MARK_LIT;
                p->opt[wr].len = 1;
            }
        }
        if (cur == 0)
        {
            p->backRes = dist;
            p->optCur = wr;
            return len;
        }
        wr--;
        p->opt[wr].dist = dist;
        p->opt[wr].len = (UInt32)len;
    }
}
#define LIT_PROBS(pos, prevByte) (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
{
    unsigned last, cur;
    UInt32 reps[LZMA_NUM_REPS];
    unsigned repLens[LZMA_NUM_REPS];
    UInt32 *matches;
    {
        UInt32 numAvail;
        unsigned numPairs, mainLen, repMaxIndex, i, posState;
        UInt32 matchPrice, repMatchPrice;
        const Byte *data;
        Byte curByte, matchByte;
        p->optCur = p->optEnd = 0;
        if (p->additionalOffset == 0)
            mainLen = ReadMatchDistances(p, &numPairs);
        else
        {
            mainLen = p->longestMatchLen;
            numPairs = p->numPairs;
        }
        numAvail = p->numAvail;
        if (numAvail < 2)
        {
            p->backRes = MARK_LIT;
            return 1;
        }
        if (numAvail > LZMA_MATCH_LEN_MAX)
            numAvail = LZMA_MATCH_LEN_MAX;
        data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
        repMaxIndex = 0;
        for (i = 0; i < LZMA_NUM_REPS; i++)
        {
            unsigned len;
            const Byte *data2;
            reps[i] = p->reps[i];
            data2 = data - reps[i];
            if (data[0] != data2[0] || data[1] != data2[1])
            {
                repLens[i] = 0;
                continue;
            }
            for (len = 2; len < numAvail && data[len] == data2[len]; len++)
            {
            }
            repLens[i] = len;
            if (len > repLens[repMaxIndex])
                repMaxIndex = i;
            if (len == LZMA_MATCH_LEN_MAX) // 21.03 : optimization
                break;
        }
        if (repLens[repMaxIndex] >= p->numFastBytes)
        {
            unsigned len;
            p->backRes = (UInt32)repMaxIndex;
            len = repLens[repMaxIndex];
            MOVE_POS(p, len - 1)
            return len;
        }
        matches = p->matches;
#define MATCHES matches
        // #define MATCHES  p->matches
        if (mainLen >= p->numFastBytes)
        {
            p->backRes = MATCHES[(size_t)numPairs - 1] + LZMA_NUM_REPS;
            MOVE_POS(p, mainLen - 1)
            return mainLen;
        }
        curByte = *data;
        matchByte = *(data - reps[0]);
        last = repLens[repMaxIndex];
        if (last <= mainLen)
            last = mainLen;
        if (last < 2 && curByte != matchByte)
        {
            p->backRes = MARK_LIT;
            return 1;
        }
        p->opt[0].state = (CState)p->state;
        posState = (position & p->pbMask);
        {
            const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
            p->opt[1].price =
                GET_PRICE_0(p->isMatch[p->state][posState]) +
                (!IsLitState(p->state) ? LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices));
        }
        MakeAs_Lit(&p->opt[1])
            matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
        repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
        // 18.06
        if (matchByte == curByte && repLens[0] == 0)
        {
            UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
            if (shortRepPrice < p->opt[1].price)
            {
                p->opt[1].price = shortRepPrice;
                MakeAs_ShortRep(&p->opt[1])
            }
            if (last < 2)
            {
                p->backRes = p->opt[1].dist;
                return 1;
            }
        }
        p->opt[1].len = 1;
        p->opt[0].reps[0] = reps[0];
        p->opt[0].reps[1] = reps[1];
        p->opt[0].reps[2] = reps[2];
        p->opt[0].reps[3] = reps[3];
        // ---------- REP ----------
        for (i = 0; i < LZMA_NUM_REPS; i++)
        {
            unsigned repLen = repLens[i];
            UInt32 price;
            if (repLen < 2)
                continue;
            price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
            do
            {
                UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
                COptimal *opt = &p->opt[repLen];
                if (price2 < opt->price)
                {
                    opt->price = price2;
                    opt->len = (UInt32)repLen;
                    opt->dist = (UInt32)i;
                    opt->extra = 0;
                }
            } while (--repLen >= 2);
        }
        // ---------- MATCH ----------
        {
            unsigned len = repLens[0] + 1;
            if (len <= mainLen)
            {
                unsigned offs = 0;
                UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
                if (len < 2)
                    len = 2;
                else
                    while (len > MATCHES[offs])
                        offs += 2;
                for (;; len++)
                {
                    COptimal *opt;
                    UInt32 dist = MATCHES[(size_t)offs + 1];
                    UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
                    unsigned lenToPosState = GetLenToPosState(len);
                    if (dist < kNumFullDistances)
                        price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
                    else
                    {
                        unsigned slot;
                        GetPosSlot2(dist, slot) price += p->alignPrices[dist & kAlignMask];
                        price += p->posSlotPrices[lenToPosState][slot];
                    }
                    opt = &p->opt[len];
                    if (price < opt->price)
                    {
                        opt->price = price;
                        opt->len = (UInt32)len;
                        opt->dist = dist + LZMA_NUM_REPS;
                        opt->extra = 0;
                    }
                    if (len == MATCHES[offs])
                    {
                        offs += 2;
                        if (offs == numPairs)
                            break;
                    }
                }
            }
        }
        cur = 0;
#ifdef SHOW_STAT2
        /* if (position >= 0) */
        {
            unsigned i;
            printf("\n pos = %4X", position);
            for (i = cur; i <= last; i++)
                printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
        }
#endif
    }
    // ---------- Optimal Parsing ----------
    for (;;)
    {
        unsigned numAvail;
        UInt32 numAvailFull;
        unsigned newLen, numPairs, prev, state, posState, startLen;
        UInt32 litPrice, matchPrice, repMatchPrice;
        BoolInt nextIsLit;
        Byte curByte, matchByte;
        const Byte *data;
        COptimal *curOpt, *nextOpt;
        if (++cur == last)
            break;
        // 18.06
        if (cur >= kNumOpts - 64)
        {
            unsigned j, best;
            UInt32 price = p->opt[cur].price;
            best = cur;
            for (j = cur + 1; j <= last; j++)
            {
                UInt32 price2 = p->opt[j].price;
                if (price >= price2)
                {
                    price = price2;
                    best = j;
                }
            }
            {
                unsigned delta = best - cur;
                if (delta != 0)
                {
                    MOVE_POS(p, delta)
                }
            }
            cur = best;
            break;
        }
        newLen = ReadMatchDistances(p, &numPairs);
        if (newLen >= p->numFastBytes)
        {
            p->numPairs = numPairs;
            p->longestMatchLen = newLen;
            break;
        }
        curOpt = &p->opt[cur];
        position++;
        // we need that check here, if skip_items in p->opt are possible
        /*
        if (curOpt->price >= kInfinityPrice)
          continue;
        */
        prev = cur - curOpt->len;
        if (curOpt->len == 1)
        {
            state = (unsigned)p->opt[prev].state;
            if (IsShortRep(curOpt))
                state = kShortRepNextStates[state];
            else
                state = kLiteralNextStates[state];
        }
        else
        {
            const COptimal *prevOpt;
            UInt32 b0;
            UInt32 dist = curOpt->dist;
            if (curOpt->extra)
            {
                prev -= (unsigned)curOpt->extra;
                state = kState_RepAfterLit;
                if (curOpt->extra == 1)
                    state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
            }
            else
            {
                state = (unsigned)p->opt[prev].state;
                if (dist < LZMA_NUM_REPS)
                    state = kRepNextStates[state];
                else
                    state = kMatchNextStates[state];
            }
            prevOpt = &p->opt[prev];
            b0 = prevOpt->reps[0];
            if (dist < LZMA_NUM_REPS)
            {
                if (dist == 0)
                {
                    reps[0] = b0;
                    reps[1] = prevOpt->reps[1];
                    reps[2] = prevOpt->reps[2];
                    reps[3] = prevOpt->reps[3];
                }
                else
                {
                    reps[1] = b0;
                    b0 = prevOpt->reps[1];
                    if (dist == 1)
                    {
                        reps[0] = b0;
                        reps[2] = prevOpt->reps[2];
                        reps[3] = prevOpt->reps[3];
                    }
                    else
                    {
                        reps[2] = b0;
                        reps[0] = prevOpt->reps[dist];
                        reps[3] = prevOpt->reps[dist ^ 1];
                    }
                }
            }
            else
            {
                reps[0] = (dist - LZMA_NUM_REPS + 1);
                reps[1] = b0;
                reps[2] = prevOpt->reps[1];
                reps[3] = prevOpt->reps[2];
            }
        }
        curOpt->state = (CState)state;
        curOpt->reps[0] = reps[0];
        curOpt->reps[1] = reps[1];
        curOpt->reps[2] = reps[2];
        curOpt->reps[3] = reps[3];
        data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
        curByte = *data;
        matchByte = *(data - reps[0]);
        posState = (position & p->pbMask);
        /*
        The order of Price checks:
           <  LIT
           <= SHORT_REP
           <  LIT : REP_0
           <  REP    [ : LIT : REP_0 ]
           <  MATCH  [ : LIT : REP_0 ]
        */
        {
            UInt32 curPrice = curOpt->price;
            unsigned prob = p->isMatch[state][posState];
            matchPrice = curPrice + GET_PRICE_1(prob);
            litPrice = curPrice + GET_PRICE_0(prob);
        }
        nextOpt = &p->opt[(size_t)cur + 1];
        nextIsLit = False;
        // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
        // 18.new.06
        if ((nextOpt->price < kInfinityPrice
             // && !IsLitState(state)
             && matchByte == curByte) ||
            litPrice > nextOpt->price)
            litPrice = 0;
        else
        {
            const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
            litPrice +=
                (!IsLitState(state) ? LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices));
            if (litPrice < nextOpt->price)
            {
                nextOpt->price = litPrice;
                nextOpt->len = 1;
                MakeAs_Lit(nextOpt) nextIsLit = True;
            }
        }
        repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
        numAvailFull = p->numAvail;
        {
            unsigned temp = kNumOpts - 1 - cur;
            if (numAvailFull > temp)
                numAvailFull = (UInt32)temp;
        }
        // 18.06
        // ---------- SHORT_REP ----------
        if (IsLitState(state)) // 18.new
            if (matchByte == curByte)
                if (repMatchPrice < nextOpt->price) // 18.new
                    // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
                    if (
                        // nextOpt->price >= kInfinityPrice ||
                        nextOpt->len < 2 // we can check nextOpt->len, if skip items are not allowed in p->opt
                        || (nextOpt->dist != 0
                            // && nextOpt->extra <= 1 // 17.old
                            ))
                    {
                        UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
                        // if (shortRepPrice <= nextOpt->price) // 17.old
                        if (shortRepPrice < nextOpt->price) // 18.new
                        {
                            nextOpt->price = shortRepPrice;
                            nextOpt->len = 1;
                            MakeAs_ShortRep(nextOpt) nextIsLit = False;
                        }
                    }
        if (numAvailFull < 2)
            continue;
        numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
        // numAvail <= p->numFastBytes
        // ---------- LIT : REP_0 ----------
        if (!nextIsLit && litPrice != 0 // 18.new
            && matchByte != curByte && numAvailFull > 2)
        {
            const Byte *data2 = data - reps[0];
            if (data[1] == data2[1] && data[2] == data2[2])
            {
                unsigned len;
                unsigned limit = p->numFastBytes + 1;
                if (limit > numAvailFull)
                    limit = numAvailFull;
                for (len = 3; len < limit && data[len] == data2[len]; len++)
                {
                }
                {
                    unsigned state2 = kLiteralNextStates[state];
                    unsigned posState2 = (position + 1) & p->pbMask;
                    UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
                    {
                        unsigned offset = cur + len;
                        if (last < offset)
                            last = offset;
                        // do
                        {
                            UInt32 price2;
                            COptimal *opt;
                            len--;
                            // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
                            price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
                            opt = &p->opt[offset];
                            // offset--;
                            if (price2 < opt->price)
                            {
                                opt->price = price2;
                                opt->len = (UInt32)len;
                                opt->dist = 0;
                                opt->extra = 1;
                            }
                        }
                        // while (len >= 3);
                    }
                }
            }
        }
        startLen = 2; /* speed optimization */
        {
            // ---------- REP ----------
            unsigned repIndex = 0; // 17.old
            // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
            for (; repIndex < LZMA_NUM_REPS; repIndex++)
            {
                unsigned len;
                UInt32 price;
                const Byte *data2 = data - reps[repIndex];
                if (data[0] != data2[0] || data[1] != data2[1])
                    continue;
                for (len = 2; len < numAvail && data[len] == data2[len]; len++)
                {
                }
                // if (len < startLen) continue; // 18.new: speed optimization
                {
                    unsigned offset = cur + len;
                    if (last < offset)
                        last = offset;
                }
                {
                    unsigned len2 = len;
                    price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
                    do
                    {
                        UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
                        COptimal *opt = &p->opt[cur + len2];
                        if (price2 < opt->price)
                        {
                            opt->price = price2;
                            opt->len = (UInt32)len2;
                            opt->dist = (UInt32)repIndex;
                            opt->extra = 0;
                        }
                    } while (--len2 >= 2);
                }
                if (repIndex == 0)
                    startLen = len + 1; // 17.old
                // startLen = len + 1; // 18.new
                /* if (_maxMode) */
                {
                    // ---------- REP : LIT : REP_0 ----------
                    // numFastBytes + 1 + numFastBytes
                    unsigned len2 = len + 1;
                    unsigned limit = len2 + p->numFastBytes;
                    if (limit > numAvailFull)
                        limit = numAvailFull;
                    len2 += 2;
                    if (len2 <= limit)
                        if (data[len2 - 2] == data2[len2 - 2])
                            if (data[len2 - 1] == data2[len2 - 1])
                            {
                                unsigned state2 = kRepNextStates[state];
                                unsigned posState2 = (position + len) & p->pbMask;
                                price += GET_PRICE_LEN(&p->repLenEnc, posState, len) + GET_PRICE_0(p->isMatch[state2][posState2]) +
                                         LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]), data[len], data2[len], p->ProbPrices);
                                // state2 = kLiteralNextStates[state2];
                                state2 = kState_LitAfterRep;
                                posState2 = (posState2 + 1) & p->pbMask;
                                price += GetPrice_Rep_0(p, state2, posState2);
                                for (; len2 < limit && data[len2] == data2[len2]; len2++)
                                {
                                }
                                len2 -= len;
                                // if (len2 >= 3)
                                {
                                    {
                                        unsigned offset = cur + len + len2;
                                        if (last < offset)
                                            last = offset;
                                        // do
                                        {
                                            UInt32 price2;
                                            COptimal *opt;
                                            len2--;
                                            // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
                                            price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
                                            opt = &p->opt[offset];
                                            // offset--;
                                            if (price2 < opt->price)
                                            {
                                                opt->price = price2;
                                                opt->len = (UInt32)len2;
                                                opt->extra = (CExtra)(len + 1);
                                                opt->dist = (UInt32)repIndex;
                                            }
                                        }
                                        // while (len2 >= 3);
                                    }
                                }
                            }
                }
            }
        }
        // ---------- MATCH ----------
        /* for (unsigned len = 2; len <= newLen; len++) */
        if (newLen > numAvail)
        {
            newLen = numAvail;
            for (numPairs = 0; newLen > MATCHES[numPairs]; numPairs += 2)
                ;
            MATCHES[numPairs] = (UInt32)newLen;
            numPairs += 2;
        }
        // startLen = 2; /* speed optimization */
        if (newLen >= startLen)
        {
            UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
            UInt32 dist;
            unsigned offs, posSlot, len;
            {
                unsigned offset = cur + newLen;
                if (last < offset)
                    last = offset;
            }
            offs = 0;
            while (startLen > MATCHES[offs])
                offs += 2;
            dist = MATCHES[(size_t)offs + 1];
            // if (dist >= kNumFullDistances)
            GetPosSlot2(dist, posSlot)
                for (len = /*2*/ startLen;; len++)
            {
                UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
                {
                    COptimal *opt;
                    unsigned lenNorm = len - 2;
                    lenNorm = GetLenToPosState2(lenNorm);
                    if (dist < kNumFullDistances)
                        price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
                    else
                        price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
                    opt = &p->opt[cur + len];
                    if (price < opt->price)
                    {
                        opt->price = price;
                        opt->len = (UInt32)len;
                        opt->dist = dist + LZMA_NUM_REPS;
                        opt->extra = 0;
                    }
                }
                if (len == MATCHES[offs])
                {
                    // if (p->_maxMode) {
                    // MATCH : LIT : REP_0
                    const Byte *data2 = data - dist - 1;
                    unsigned len2 = len + 1;
                    unsigned limit = len2 + p->numFastBytes;
                    if (limit > numAvailFull)
                        limit = numAvailFull;
                    len2 += 2;
                    if (len2 <= limit)
                        if (data[len2 - 2] == data2[len2 - 2])
                            if (data[len2 - 1] == data2[len2 - 1])
                            {
                                for (; len2 < limit && data[len2] == data2[len2]; len2++)
                                {
                                }
                                len2 -= len;
                                // if (len2 >= 3)
                                {
                                    unsigned state2 = kMatchNextStates[state];
                                    unsigned posState2 = (position + len) & p->pbMask;
                                    unsigned offset;
                                    price += GET_PRICE_0(p->isMatch[state2][posState2]);
                                    price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]), data[len], data2[len], p->ProbPrices);
                                    // state2 = kLiteralNextStates[state2];
                                    state2 = kState_LitAfterMatch;
                                    posState2 = (posState2 + 1) & p->pbMask;
                                    price += GetPrice_Rep_0(p, state2, posState2);
                                    offset = cur + len + len2;
                                    if (last < offset)
                                        last = offset;
                                    // do
                                    {
                                        UInt32 price2;
                                        COptimal *opt;
                                        len2--;
                                        // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
                                        price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
                                        opt = &p->opt[offset];
                                        // offset--;
                                        if (price2 < opt->price)
                                        {
                                            opt->price = price2;
                                            opt->len = (UInt32)len2;
                                            opt->extra = (CExtra)(len + 1);
                                            opt->dist = dist + LZMA_NUM_REPS;
                                        }
                                    }
                                    // while (len2 >= 3);
                                }
                            }
                    offs += 2;
                    if (offs == numPairs)
                        break;
                    dist = MATCHES[(size_t)offs + 1];
                    // if (dist >= kNumFullDistances)
                    GetPosSlot2(dist, posSlot)
                }
            }
        }
    }
    do
        p->opt[last].price = kInfinityPrice;
    while (--last);
    return Backward(p, cur);
}
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
static unsigned GetOptimumFast(CLzmaEnc *p)
{
    UInt32 numAvail, mainDist;
    unsigned mainLen, numPairs, repIndex, repLen, i;
    const Byte *data;
    if (p->additionalOffset == 0)
        mainLen = ReadMatchDistances(p, &numPairs);
    else
    {
        mainLen = p->longestMatchLen;
        numPairs = p->numPairs;
    }
    numAvail = p->numAvail;
    p->backRes = MARK_LIT;
    if (numAvail < 2)
        return 1;
    // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
    if (numAvail > LZMA_MATCH_LEN_MAX)
        numAvail = LZMA_MATCH_LEN_MAX;
    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
    repLen = repIndex = 0;
    for (i = 0; i < LZMA_NUM_REPS; i++)
    {
        unsigned len;
        const Byte *data2 = data - p->reps[i];
        if (data[0] != data2[0] || data[1] != data2[1])
            continue;
        for (len = 2; len < numAvail && data[len] == data2[len]; len++)
        {
        }
        if (len >= p->numFastBytes)
        {
            p->backRes = (UInt32)i;
            MOVE_POS(p, len - 1)
            return len;
        }
        if (len > repLen)
        {
            repIndex = i;
            repLen = len;
        }
    }
    if (mainLen >= p->numFastBytes)
    {
        p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
        MOVE_POS(p, mainLen - 1)
        return mainLen;
    }
    mainDist = 0; /* for GCC */
    if (mainLen >= 2)
    {
        mainDist = p->matches[(size_t)numPairs - 1];
        while (numPairs > 2)
        {
            UInt32 dist2;
            if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
                break;
            dist2 = p->matches[(size_t)numPairs - 3];
            if (!ChangePair(dist2, mainDist))
                break;
            numPairs -= 2;
            mainLen--;
            mainDist = dist2;
        }
        if (mainLen == 2 && mainDist >= 0x80)
            mainLen = 1;
    }
    if (repLen >= 2)
        if (repLen + 1 >= mainLen || (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
        {
            p->backRes = (UInt32)repIndex;
            MOVE_POS(p, repLen - 1)
            return repLen;
        }
    if (mainLen < 2 || numAvail <= 2)
        return 1;
    {
        unsigned len1 = ReadMatchDistances(p, &p->numPairs);
        p->longestMatchLen = len1;
        if (len1 >= 2)
        {
            UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
            if ((len1 >= mainLen && newDist < mainDist) || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist)) || (len1 > mainLen + 1) ||
                (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
                return 1;
        }
    }
    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
    for (i = 0; i < LZMA_NUM_REPS; i++)
    {
        unsigned len, limit;
        const Byte *data2 = data - p->reps[i];
        if (data[0] != data2[0] || data[1] != data2[1])
            continue;
        limit = mainLen - 1;
        for (len = 2;; len++)
        {
            if (len >= limit)
                return 1;
            if (data[len] != data2[len])
                break;
        }
    }
    p->backRes = mainDist + LZMA_NUM_REPS;
    if (mainLen != 2)
    {
        MOVE_POS(p, mainLen - 2)
    }
    return mainLen;
}
static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
{
    UInt32 range;
    range = p->rc.range;
    {
        UInt32 ttt, newBound;
        CLzmaProb *prob = &p->isMatch[p->state][posState];
        RC_BIT_PRE(&p->rc, prob)
        RC_BIT_1(&p->rc, prob)
        prob = &p->isRep[p->state];
        RC_BIT_PRE(&p->rc, prob)
        RC_BIT_0(&p->rc, prob)
    }
    p->state = kMatchNextStates[p->state];
    p->rc.range = range;
    LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
    range = p->rc.range;
    {
        // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
        CLzmaProb *probs = p->posSlotEncoder[0];
        unsigned m = 1;
        do
        {
            UInt32 ttt, newBound;
            RC_BIT_PRE(p, probs + m)
            RC_BIT_1(&p->rc, probs + m)
            m = (m << 1) + 1;
        } while (m < (1 << kNumPosSlotBits));
    }
    {
        // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits);    UInt32 range = p->range;
        unsigned numBits = 30 - kNumAlignBits;
        do
        {
            range >>= 1;
            p->rc.low += range;
            RC_NORM(&p->rc)
        } while (--numBits);
    }
    {
        // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
        CLzmaProb *probs = p->posAlignEncoder;
        unsigned m = 1;
        do
        {
            UInt32 ttt, newBound;
            RC_BIT_PRE(p, probs + m)
            RC_BIT_1(&p->rc, probs + m)
            m = (m << 1) + 1;
        } while (m < kAlignTableSize);
    }
    p->rc.range = range;
}
static SRes CheckErrors(CLzmaEnc *p)
{
    if (p->result != SZ_OK)
        return p->result;
    if (p->rc.res != SZ_OK)
        p->result = SZ_ERROR_WRITE;
#ifndef Z7_ST
    if (
        // p->mf_Failure ||
        (p->mtMode && ( // p->matchFinderMt.failure_LZ_LZ ||
                          p->matchFinderMt.failure_LZ_BT)))
    {
        p->result = MY_HRES_ERROR_INTERNAL_ERROR;
        // printf("\nCheckErrors p->matchFinderMt.failureLZ\n");
    }
#endif
    if (MFB.result != SZ_OK)
        p->result = SZ_ERROR_READ;
    if (p->result != SZ_OK)
        p->finished = True;
    return p->result;
}
Z7_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
{
    /* ReleaseMFStream(); */
    p->finished = True;
    if (p->writeEndMark)
        WriteEndMarker(p, nowPos & p->pbMask);
    RangeEnc_FlushData(&p->rc);
    RangeEnc_FlushStream(&p->rc);
    return CheckErrors(p);
}
Z7_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
{
    unsigned i;
    const CProbPrice *ProbPrices = p->ProbPrices;
    const CLzmaProb *probs = p->posAlignEncoder;
    // p->alignPriceCount = 0;
    for (i = 0; i < kAlignTableSize / 2; i++)
    {
        UInt32 price = 0;
        unsigned sym = i;
        unsigned m = 1;
        unsigned bit;
        UInt32 prob;
        bit = sym & 1;
        sym >>= 1;
        price += GET_PRICEa(probs[m], bit);
        m = (m << 1) + bit;
        bit = sym & 1;
        sym >>= 1;
        price += GET_PRICEa(probs[m], bit);
        m = (m << 1) + bit;
        bit = sym & 1;
        sym >>= 1;
        price += GET_PRICEa(probs[m], bit);
        m = (m << 1) + bit;
        prob = probs[m];
        p->alignPrices[i] = price + GET_PRICEa_0(prob);
        p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
        // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
    }
}
Z7_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
{
    // int y; for (y = 0; y < 100; y++) {
    UInt32 tempPrices[kNumFullDistances];
    unsigned i, lps;
    const CProbPrice *ProbPrices = p->ProbPrices;
    p->matchPriceCount = 0;
    for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
    {
        unsigned posSlot = GetPosSlot1(i);
        unsigned footerBits = (posSlot >> 1) - 1;
        unsigned base = ((2 | (posSlot & 1)) << footerBits);
        const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
        // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
        UInt32 price = 0;
        unsigned m = 1;
        unsigned sym = i;
        unsigned offset = (unsigned)1 << footerBits;
        base += i;
        if (footerBits)
            do
            {
                unsigned bit = sym & 1;
                sym >>= 1;
                price += GET_PRICEa(probs[m], bit);
                m = (m << 1) + bit;
            } while (--footerBits);
        {
            unsigned prob = probs[m];
            tempPrices[base] = price + GET_PRICEa_0(prob);
            tempPrices[base + offset] = price + GET_PRICEa_1(prob);
        }
    }
    for (lps = 0; lps < kNumLenToPosStates; lps++)
    {
        unsigned slot;
        unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
        UInt32 *posSlotPrices = p->posSlotPrices[lps];
        const CLzmaProb *probs = p->posSlotEncoder[lps];
        for (slot = 0; slot < distTableSize2; slot++)
        {
            // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
            UInt32 price;
            unsigned bit;
            unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
            unsigned prob;
            bit = sym & 1;
            sym >>= 1;
            price = GET_PRICEa(probs[sym], bit);
            bit = sym & 1;
            sym >>= 1;
            price += GET_PRICEa(probs[sym], bit);
            bit = sym & 1;
            sym >>= 1;
            price += GET_PRICEa(probs[sym], bit);
            bit = sym & 1;
            sym >>= 1;
            price += GET_PRICEa(probs[sym], bit);
            bit = sym & 1;
            sym >>= 1;
            price += GET_PRICEa(probs[sym], bit);
            prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
            posSlotPrices[(size_t)slot * 2] = price + GET_PRICEa_0(prob);
            posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
        }
        {
            UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
            for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
            {
                posSlotPrices[(size_t)slot * 2] += delta;
                posSlotPrices[(size_t)slot * 2 + 1] += delta;
                delta += ((UInt32)1 << kNumBitPriceShiftBits);
            }
        }
        {
            UInt32 *dp = p->distancesPrices[lps];
            dp[0] = posSlotPrices[0];
            dp[1] = posSlotPrices[1];
            dp[2] = posSlotPrices[2];
            dp[3] = posSlotPrices[3];
            for (i = 4; i < kNumFullDistances; i += 2)
            {
                UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
                dp[i] = slotPrice + tempPrices[i];
                dp[i + 1] = slotPrice + tempPrices[i + 1];
            }
        }
    }
    // }
}
static void LzmaEnc_Construct(CLzmaEnc *p)
{
    RangeEnc_Construct(&p->rc);
    MatchFinder_Construct(&MFB);
#ifndef Z7_ST
    p->matchFinderMt.MatchFinder = &MFB;
    MatchFinderMt_Construct(&p->matchFinderMt);
#endif
    {
        CLzmaEncProps props;
        LzmaEncProps_Init(&props);
        LzmaEnc_SetProps((CLzmaEncHandle)(void *)p, &props);
    }
#ifndef LZMA_LOG_BSR
    LzmaEnc_FastPosInit(p->g_FastPos);
#endif
    LzmaEnc_InitPriceTables(p->ProbPrices);
    p->litProbs = NULL;
    p->saveState.litProbs = NULL;
}
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
{
    void *p;
    p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
    if (p)
        LzmaEnc_Construct((CLzmaEnc *)p);
    return p;
}
static void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
{
    ISzAlloc_Free(alloc, p->litProbs);
    ISzAlloc_Free(alloc, p->saveState.litProbs);
    p->litProbs = NULL;
    p->saveState.litProbs = NULL;
}
static void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
#ifndef Z7_ST
    MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
#endif
    MatchFinder_Free(&MFB, allocBig);
    LzmaEnc_FreeLits(p, alloc);
    RangeEnc_Free(&p->rc, alloc);
}
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    // GET_CLzmaEnc_p
    LzmaEnc_Destruct(p, alloc, allocBig);
    ISzAlloc_Free(alloc, p);
}
Z7_NO_INLINE
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
{
    UInt32 nowPos32, startPos32;
    if (p->needInit)
    {
#ifndef Z7_ST
        if (p->mtMode)
        {
            RINOK(MatchFinderMt_InitMt(&p->matchFinderMt))
        }
#endif
        p->matchFinder.Init(p->matchFinderObj);
        p->needInit = 0;
    }
    if (p->finished)
        return p->result;
    RINOK(CheckErrors(p))
    nowPos32 = (UInt32)p->nowPos64;
    startPos32 = nowPos32;
    if (p->nowPos64 == 0)
    {
        unsigned numPairs;
        Byte curByte;
        if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
            return Flush(p, nowPos32);
        ReadMatchDistances(p, &numPairs);
        RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
        // p->state = kLiteralNextStates[p->state];
        curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
        LitEnc_Encode(&p->rc, p->litProbs, curByte);
        p->additionalOffset--;
        nowPos32++;
    }
    if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
        for (;;)
        {
            UInt32 dist;
            unsigned len, posState;
            UInt32 range, ttt, newBound;
            CLzmaProb *probs;
            if (p->fastMode)
                len = GetOptimumFast(p);
            else
            {
                unsigned oci = p->optCur;
                if (p->optEnd == oci)
                    len = GetOptimum(p, nowPos32);
                else
                {
                    const COptimal *opt = &p->opt[oci];
                    len = opt->len;
                    p->backRes = opt->dist;
                    p->optCur = oci + 1;
                }
            }
            posState = (unsigned)nowPos32 & p->pbMask;
            range = p->rc.range;
            probs = &p->isMatch[p->state][posState];
            RC_BIT_PRE(&p->rc, probs)
            dist = p->backRes;
#ifdef SHOW_STAT2
            printf("\n pos = %6X, len = %3u  pos = %6u", nowPos32, len, dist);
#endif
            if (dist == MARK_LIT)
            {
                Byte curByte;
                const Byte *data;
                unsigned state;
                RC_BIT_0(&p->rc, probs)
                p->rc.range = range;
                data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
                probs = LIT_PROBS(nowPos32, *(data - 1));
                curByte = *data;
                state = p->state;
                p->state = kLiteralNextStates[state];
                if (IsLitState(state))
                    LitEnc_Encode(&p->rc, probs, curByte);
                else
                    LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
            }
            else
            {
                RC_BIT_1(&p->rc, probs)
                probs = &p->isRep[p->state];
                RC_BIT_PRE(&p->rc, probs)
                if (dist < LZMA_NUM_REPS)
                {
                    RC_BIT_1(&p->rc, probs)
                    probs = &p->isRepG0[p->state];
                    RC_BIT_PRE(&p->rc, probs)
                    if (dist == 0)
                    {
                        RC_BIT_0(&p->rc, probs)
                        probs = &p->isRep0Long[p->state][posState];
                        RC_BIT_PRE(&p->rc, probs)
                        if (len != 1)
                        {
                            RC_BIT_1_BASE(&p->rc, probs)
                        }
                        else
                        {
                            RC_BIT_0_BASE(&p->rc, probs)
                            p->state = kShortRepNextStates[p->state];
                        }
                    }
                    else
                    {
                        RC_BIT_1(&p->rc, probs)
                        probs = &p->isRepG1[p->state];
                        RC_BIT_PRE(&p->rc, probs)
                        if (dist == 1)
                        {
                            RC_BIT_0_BASE(&p->rc, probs)
                            dist = p->reps[1];
                        }
                        else
                        {
                            RC_BIT_1(&p->rc, probs)
                            probs = &p->isRepG2[p->state];
                            RC_BIT_PRE(&p->rc, probs)
                            if (dist == 2)
                            {
                                RC_BIT_0_BASE(&p->rc, probs)
                                dist = p->reps[2];
                            }
                            else
                            {
                                RC_BIT_1_BASE(&p->rc, probs)
                                dist = p->reps[3];
                                p->reps[3] = p->reps[2];
                            }
                            p->reps[2] = p->reps[1];
                        }
                        p->reps[1] = p->reps[0];
                        p->reps[0] = dist;
                    }
                    RC_NORM(&p->rc)
                    p->rc.range = range;
                    if (len != 1)
                    {
                        LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
                        --p->repLenEncCounter;
                        p->state = kRepNextStates[p->state];
                    }
                }
                else
                {
                    unsigned posSlot;
                    RC_BIT_0(&p->rc, probs)
                    p->rc.range = range;
                    p->state = kMatchNextStates[p->state];
                    LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
                    // --p->lenEnc.counter;
                    dist -= LZMA_NUM_REPS;
                    p->reps[3] = p->reps[2];
                    p->reps[2] = p->reps[1];
                    p->reps[1] = p->reps[0];
                    p->reps[0] = dist + 1;
                    p->matchPriceCount++;
                    GetPosSlot(dist, posSlot)
                    // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
                    {
                        UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
                        range = p->rc.range;
                        probs = p->posSlotEncoder[GetLenToPosState(len)];
                        do
                        {
                            CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
                            UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
                            sym <<= 1;
                            RC_BIT(&p->rc, prob, bit)
                        } while (sym < (1 << kNumPosSlotBits * 2));
                        p->rc.range = range;
                    }
                    if (dist >= kStartPosModelIndex)
                    {
                        unsigned footerBits = ((posSlot >> 1) - 1);
                        if (dist < kNumFullDistances)
                        {
                            unsigned base = ((2 | (posSlot & 1)) << footerBits);
                            RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
                        }
                        else
                        {
                            UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
                            range = p->rc.range;
                            // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
                            /*
                            do
                            {
                              range >>= 1;
                              p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
                              RC_NORM(&p->rc)
                            }
                            while (footerBits > kNumAlignBits);
                            */
                            do
                            {
                                range >>= 1;
                                p->rc.low += range & (0 - (pos2 >> 31));
                                pos2 += pos2;
                                RC_NORM(&p->rc)
                            } while (pos2 != 0xF0000000);
                            // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
                            {
                                unsigned m = 1;
                                unsigned bit;
                                bit = dist & 1;
                                dist >>= 1;
                                RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit;
                                bit = dist & 1;
                                dist >>= 1;
                                RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit;
                                bit = dist & 1;
                                dist >>= 1;
                                RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit;
                                bit = dist & 1;
                                RC_BIT(&p->rc, p->posAlignEncoder + m, bit)
                                p->rc.range = range;
                                // p->alignPriceCount++;
                            }
                        }
                    }
                }
            }
            nowPos32 += (UInt32)len;
            p->additionalOffset -= len;
            if (p->additionalOffset == 0)
            {
                UInt32 processed;
                if (!p->fastMode)
                {
                    /*
                    if (p->alignPriceCount >= 16) // kAlignTableSize
                      FillAlignPrices(p);
                    if (p->matchPriceCount >= 128)
                      FillDistancesPrices(p);
                    if (p->lenEnc.counter <= 0)
                      LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
                    */
                    if (p->matchPriceCount >= 64)
                    {
                        FillAlignPrices(p);
                        // { int y; for (y = 0; y < 100; y++) {
                        FillDistancesPrices(p);
                        // }}
                        LenPriceEnc_UpdateTables(&p->lenEnc, (unsigned)1 << p->pb, &p->lenProbs, p->ProbPrices);
                    }
                    if (p->repLenEncCounter <= 0)
                    {
                        p->repLenEncCounter = REP_LEN_COUNT;
                        LenPriceEnc_UpdateTables(&p->repLenEnc, (unsigned)1 << p->pb, &p->repLenProbs, p->ProbPrices);
                    }
                }
                if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
                    break;
                processed = nowPos32 - startPos32;
                if (maxPackSize)
                {
                    if (processed + kNumOpts + 300 >= maxUnpackSize || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
                        break;
                }
                else if (processed >= (1 << 17))
                {
                    p->nowPos64 += nowPos32 - startPos32;
                    return CheckErrors(p);
                }
            }
        }
    p->nowPos64 += nowPos32 - startPos32;
    return Flush(p, nowPos32);
}
#define kBigHashDicLimit ((UInt32)1 << 24)
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    UInt32 beforeSize = kNumOpts;
    UInt32 dictSize;
    if (!RangeEnc_Alloc(&p->rc, alloc))
        return SZ_ERROR_MEM;
#ifndef Z7_ST
    p->mtMode = (p->multiThread && !p->fastMode && (MFB.btMode != 0));
#endif
    {
        unsigned lclp = p->lc + p->lp;
        if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
        {
            LzmaEnc_FreeLits(p, alloc);
            p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
            p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
            if (!p->litProbs || !p->saveState.litProbs)
            {
                LzmaEnc_FreeLits(p, alloc);
                return SZ_ERROR_MEM;
            }
            p->lclp = lclp;
        }
    }
    MFB.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
    dictSize = p->dictSize;
    if (dictSize == ((UInt32)2 << 30) || dictSize == ((UInt32)3 << 30))
    {
        /* 21.03 : here we reduce the dictionary for 2 reasons:
           1) we don't want 32-bit back_distance matches in decoder for 2 GB dictionary.
           2) we want to elimate useless last MatchFinder_Normalize3() for corner cases,
              where data size is aligned for 1 GB: 5/6/8 GB.
              That reducing must be >= 1 for such corner cases. */
        dictSize -= 1;
    }
    if (beforeSize + dictSize < keepWindowSize)
        beforeSize = keepWindowSize - dictSize;
        /* in worst case we can look ahead for
              max(LZMA_MATCH_LEN_MAX, numFastBytes + 1 + numFastBytes) bytes.
           we send larger value for (keepAfter) to MantchFinder_Create():
              (numFastBytes + LZMA_MATCH_LEN_MAX + 1)
        */
#ifndef Z7_ST
    if (p->mtMode)
    {
        RINOK(MatchFinderMt_Create(&p->matchFinderMt, dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX + 1 /* 18.04 */
                                   ,
                                   allocBig))
        p->matchFinderObj = &p->matchFinderMt;
        MFB.bigHash = (Byte)(MFB.hashMask >= 0xFFFFFF ? 1 : 0);
        MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
    }
    else
#endif
    {
        if (!MatchFinder_Create(&MFB, dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX + 1 /* 21.03 */
                                ,
                                allocBig))
            return SZ_ERROR_MEM;
        p->matchFinderObj = &MFB;
        MatchFinder_CreateVTable(&MFB, &p->matchFinder);
    }
    return SZ_OK;
}
static void LzmaEnc_Init(CLzmaEnc *p)
{
    unsigned i;
    p->state = 0;
    p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
    RangeEnc_Init(&p->rc);
    for (i = 0; i < (1 << kNumAlignBits); i++)
        p->posAlignEncoder[i] = kProbInitValue;
    for (i = 0; i < kNumStates; i++)
    {
        unsigned j;
        for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
        {
            p->isMatch[i][j] = kProbInitValue;
            p->isRep0Long[i][j] = kProbInitValue;
        }
        p->isRep[i] = kProbInitValue;
        p->isRepG0[i] = kProbInitValue;
        p->isRepG1[i] = kProbInitValue;
        p->isRepG2[i] = kProbInitValue;
    }
    {
        for (i = 0; i < kNumLenToPosStates; i++)
        {
            CLzmaProb *probs = p->posSlotEncoder[i];
            unsigned j;
            for (j = 0; j < (1 << kNumPosSlotBits); j++)
                probs[j] = kProbInitValue;
        }
    }
    {
        for (i = 0; i < kNumFullDistances; i++)
            p->posEncoders[i] = kProbInitValue;
    }
    {
        UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
        UInt32 k;
        CLzmaProb *probs = p->litProbs;
        for (k = 0; k < num; k++)
            probs[k] = kProbInitValue;
    }
    LenEnc_Init(&p->lenProbs);
    LenEnc_Init(&p->repLenProbs);
    p->optEnd = 0;
    p->optCur = 0;
    {
        for (i = 0; i < kNumOpts; i++)
            p->opt[i].price = kInfinityPrice;
    }
    p->additionalOffset = 0;
    p->pbMask = ((unsigned)1 << p->pb) - 1;
    p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
    // p->mf_Failure = False;
}
static void LzmaEnc_InitPrices(CLzmaEnc *p)
{
    if (!p->fastMode)
    {
        FillDistancesPrices(p);
        FillAlignPrices(p);
    }
    p->lenEnc.tableSize = p->repLenEnc.tableSize = p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
    p->repLenEncCounter = REP_LEN_COUNT;
    LenPriceEnc_UpdateTables(&p->lenEnc, (unsigned)1 << p->pb, &p->lenProbs, p->ProbPrices);
    LenPriceEnc_UpdateTables(&p->repLenEnc, (unsigned)1 << p->pb, &p->repLenProbs, p->ProbPrices);
}
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    unsigned i;
    for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
        if (p->dictSize <= ((UInt32)1 << i))
            break;
    p->distTableSize = i * 2;
    p->finished = False;
    p->result = SZ_OK;
    p->nowPos64 = 0;
    p->needInit = 1;
    RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig))
    LzmaEnc_Init(p);
    LzmaEnc_InitPrices(p);
    return SZ_OK;
}
static SRes LzmaEnc_Prepare(CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    // GET_CLzmaEnc_p
    MatchFinder_SET_STREAM(&MFB, inStream) p->rc.outStream = outStream;
    return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    // GET_CLzmaEnc_p
    MatchFinder_SET_STREAM(&MFB, inStream) return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    // GET_CLzmaEnc_p
    MatchFinder_SET_DIRECT_INPUT_BUF(&MFB, src, srcLen) LzmaEnc_SetDataSize(p, srcLen);
    return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
void LzmaEnc_Finish(CLzmaEncHandle p)
{
#ifndef Z7_ST
    // GET_CLzmaEnc_p
    if (p->mtMode)
        MatchFinderMt_ReleaseStream(&p->matchFinderMt);
#else
    UNUSED_VAR(p)
#endif
}
typedef struct
{
    ISeqOutStream vt;
    Byte *data;
    size_t rem;
    BoolInt overflow;
} CLzmaEnc_SeqOutStreamBuf;
static size_t SeqOutStreamBuf_Write(ISeqOutStreamPtr pp, const void *data, size_t size)
{
    Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLzmaEnc_SeqOutStreamBuf) if (p->rem < size)
    {
        size = p->rem;
        p->overflow = True;
    }
    if (size != 0)
    {
        memcpy(p->data, data, size);
        p->rem -= size;
        p->data += size;
    }
    return size;
}
/*
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle p)
{
  GET_const_CLzmaEnc_p
  return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
}
*/
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p)
{
    // GET_const_CLzmaEnc_p
    return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
}
// (desiredPackSize == 0) is not allowed
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit, Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
{
    // GET_CLzmaEnc_p
    UInt64 nowPos64;
    SRes res;
    CLzmaEnc_SeqOutStreamBuf outStream;
    outStream.vt.Write = SeqOutStreamBuf_Write;
    outStream.data = dest;
    outStream.rem = *destLen;
    outStream.overflow = False;
    p->writeEndMark = False;
    p->finished = False;
    p->result = SZ_OK;
    if (reInit)
        LzmaEnc_Init(p);
    LzmaEnc_InitPrices(p);
    RangeEnc_Init(&p->rc);
    p->rc.outStream = &outStream.vt;
    nowPos64 = p->nowPos64;
    res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
    *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
    *destLen -= outStream.rem;
    if (outStream.overflow)
        return SZ_ERROR_OUTPUT_EOF;
    return res;
}
Z7_NO_INLINE
static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgressPtr progress)
{
    SRes res = SZ_OK;
#ifndef Z7_ST
    Byte allocaDummy[0x300];
    allocaDummy[0] = 0;
    allocaDummy[1] = allocaDummy[0];
#endif
    for (;;)
    {
        res = LzmaEnc_CodeOneBlock(p, 0, 0);
        if (res != SZ_OK || p->finished)
            break;
        if (progress)
        {
            res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
            if (res != SZ_OK)
            {
                res = SZ_ERROR_PROGRESS;
                break;
            }
        }
    }
    LzmaEnc_Finish((CLzmaEncHandle)(void *)p);
    /*
    if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&MFB))
      res = SZ_ERROR_FAIL;
    }
    */
    return res;
}
SRes LzmaEnc_Encode(
    CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
    // GET_CLzmaEnc_p
    RINOK(LzmaEnc_Prepare(p, outStream, inStream, alloc, allocBig))
    return LzmaEnc_Encode2(p, progress);
}
SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *props, SizeT *size)
{
    if (*size < LZMA_PROPS_SIZE)
        return SZ_ERROR_PARAM;
    *size = LZMA_PROPS_SIZE;
    {
        // GET_CLzmaEnc_p
        const UInt32 dictSize = p->dictSize;
        UInt32 v;
        props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
        // we write aligned dictionary value to properties for lzma decoder
        if (dictSize >= ((UInt32)1 << 21))
        {
            const UInt32 kDictMask = ((UInt32)1 << 20) - 1;
            v = (dictSize + kDictMask) & ~kDictMask;
            if (v < dictSize)
                v = dictSize;
        }
        else
        {
            unsigned i = 11 * 2;
            do
            {
                v = (UInt32)(2 + (i & 1)) << (i >> 1);
                i++;
            } while (v < dictSize);
        }
        SetUi32(props + 1, v) return SZ_OK;
    }
}
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle p)
{
    // GET_CLzmaEnc_p
    return (unsigned)p->writeEndMark;
}
SRes LzmaEnc_MemEncode(CLzmaEncHandle p,
                       Byte *dest,
                       SizeT *destLen,
                       const Byte *src,
                       SizeT srcLen,
                       int writeEndMark,
                       ICompressProgressPtr progress,
                       ISzAllocPtr alloc,
                       ISzAllocPtr allocBig)
{
    SRes res;
    // GET_CLzmaEnc_p
    CLzmaEnc_SeqOutStreamBuf outStream;
    outStream.vt.Write = SeqOutStreamBuf_Write;
    outStream.data = dest;
    outStream.rem = *destLen;
    outStream.overflow = False;
    p->writeEndMark = writeEndMark;
    p->rc.outStream = &outStream.vt;
    res = LzmaEnc_MemPrepare(p, src, srcLen, 0, alloc, allocBig);
    if (res == SZ_OK)
    {
        res = LzmaEnc_Encode2(p, progress);
        if (res == SZ_OK && p->nowPos64 != srcLen)
            res = SZ_ERROR_FAIL;
    }
    *destLen -= (SizeT)outStream.rem;
    if (outStream.overflow)
        return SZ_ERROR_OUTPUT_EOF;
    return res;
}
SRes LzmaEncode(Byte *dest,
                SizeT *destLen,
                const Byte *src,
                SizeT srcLen,
                const CLzmaEncProps *props,
                Byte *propsEncoded,
                SizeT *propsSize,
                int writeEndMark,
                ICompressProgressPtr progress,
                ISzAllocPtr alloc,
                ISzAllocPtr allocBig)
{
    CLzmaEncHandle p = LzmaEnc_Create(alloc);
    SRes res;
    if (!p)
        return SZ_ERROR_MEM;
    res = LzmaEnc_SetProps(p, props);
    if (res == SZ_OK)
    {
        res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
        if (res == SZ_OK)
            res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, writeEndMark, progress, alloc, allocBig);
    }
    LzmaEnc_Destroy(p, alloc, allocBig);
    return res;
}
/*
#ifndef Z7_ST
void LzmaEnc_GetLzThreads(CLzmaEncHandle p, HANDLE lz_threads[2])
{
  GET_const_CLzmaEnc_p
  lz_threads[0] = p->matchFinderMt.hashSync.thread;
  lz_threads[1] = p->matchFinderMt.btSync.thread;
}
#endif
*/