对比新文件 |
| | |
| | | /* |
| | | * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and |
| | | * its subsidiaries and affiliates (collectly called MKSEMI). |
| | | * |
| | | * All rights reserved. |
| | | * |
| | | * Redistribution and use in source and binary forms, with or without |
| | | * modification, are permitted provided that the following conditions are met: |
| | | * |
| | | * 1. Redistributions of source code must retain the above copyright notice, |
| | | * this list of conditions and the following disclaimer. |
| | | * |
| | | * 2. Redistributions in binary form, except as embedded into an MKSEMI |
| | | * integrated circuit in a product or a software update for such product, |
| | | * must reproduce the above copyright notice, this list of conditions and |
| | | * the following disclaimer in the documentation and/or other materials |
| | | * provided with the distribution. |
| | | * |
| | | * 3. Neither the name of MKSEMI nor the names of its contributors may be used |
| | | * to endorse or promote products derived from this software without |
| | | * specific prior written permission. |
| | | * |
| | | * 4. This software, with or without modification, must only be used with a |
| | | * MKSEMI integrated circuit. |
| | | * |
| | | * 5. Any software provided in binary form under this license must not be |
| | | * reverse engineered, decompiled, modified and/or disassembled. |
| | | * |
| | | * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED |
| | | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| | | * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| | | * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY |
| | | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| | | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| | | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| | | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| | | */ |
| | | |
| | | #include "mk_adc.h" |
| | | #include "mk_clock.h" |
| | | #include "mk_reset.h" |
| | | #include "mk_trace.h" |
| | | #include "mk_misc.h" |
| | | |
| | | #if ADC_DMA_MODE_EN |
| | | static void adc_dma_callback(void *ch, uint32_t err_code); |
| | | #endif |
| | | |
| | | static struct ADC_HANDLE_T adc_handle = { |
| | | .base = ADC, |
| | | .irq = ADC_IRQn, |
| | | .dma_ch = DMA_CH1, |
| | | .callback = NULL, |
| | | }; |
| | | |
| | | int adc_open(struct ADC_CFG_T *config) |
| | | { |
| | | if (config == NULL) |
| | | { |
| | | return DRV_ERROR; |
| | | } |
| | | |
| | | // check if ADC is using by HW or not |
| | | if (adc_handle.base->STATUS & ADC_STATUS_BUSY_MSK) |
| | | { |
| | | return DRV_BUSY; |
| | | } |
| | | else |
| | | { |
| | | // enable ADC clock |
| | | clock_enable(CLOCK_ADC); |
| | | reset_module(RESET_MODULE_ADC); |
| | | } |
| | | |
| | | adc_handle.mode = config->mode; |
| | | adc_handle.int_en = config->int_en; |
| | | adc_handle.dma_en = config->dma_en; |
| | | adc_handle.base->CTRL0 = ADC_CTRL0_CONV_MODE(adc_handle.mode) | ADC_CTRL0_CLK_SEL(config->clk_sel) | ADC_CTRL0_CHNL_P(config->channel_p) | |
| | | ADC_CTRL0_CHNL_N(config->channel_n) | ADC_CTRL0_ACC_NUM(config->acc_num) | ADC_CTRL0_HIGH_PULSE_WIDTH(config->high_pulse_time) | |
| | | ADC_CTRL0_SETTLE_TIME(config->settle_time); |
| | | |
| | | uint32_t adc_clk = config->clk_sel ? ADC_CLK_LOW_FREQ : ADC_CLK_HIGH_FREQ; |
| | | |
| | | /* If the sampling rate setting exceeds the conversion rate threshold, the maximum sampling rate is used by default */ |
| | | uint32_t rate = (adc_clk == ADC_CLK_LOW_FREQ) ? ((config->rate < ADC_CLK_L_MAX_SAMPLE_RATE) ? config->rate : ADC_CLK_L_MAX_SAMPLE_RATE) |
| | | : (config->rate < ADC_CLK_H_MAX_SAMPLE_RATE ? config->rate : ADC_CLK_H_MAX_SAMPLE_RATE); |
| | | |
| | | /* If the sample rate is set to 0, no frequency division */ |
| | | uint16_t div = (uint16_t)((adc_clk / ((rate == 0) ? 1 : rate)) - 1); |
| | | adc_handle.base->CTRL1 = ADC_CTRL1_CONV_RATE(div); |
| | | |
| | | // TS_VS |
| | | uint32_t val = REG_READ(0x4000062C); |
| | | if (config->vref_sel == ADC_SEL_VREF_INT) |
| | | { |
| | | val &= ~(1U << 8); |
| | | val |= (1 << 9) | (7 << 5) | (1 << 4); |
| | | } |
| | | else |
| | | { |
| | | val |= (1 << 8); |
| | | /* If the external reference voltage driving capability is insufficient */ |
| | | /* It is recommended to enable this configuration */ |
| | | // val |= (9 << 1) | (1 << 4); |
| | | } |
| | | REG_WRITE(0x4000062C, val); |
| | | |
| | | if (adc_handle.dma_en) |
| | | { |
| | | // enable DMA |
| | | adc_handle.base->DMA_EN = ADC_DMA_EN_MSK; |
| | | } |
| | | else if (adc_handle.int_en) |
| | | { |
| | | NVIC_SetPriority(adc_handle.irq, IRQ_PRIORITY_NORMAL); |
| | | NVIC_ClearPendingIRQ(adc_handle.irq); |
| | | NVIC_EnableIRQ(adc_handle.irq); |
| | | } |
| | | |
| | | adc_handle.state = ADC_STATE_READY; |
| | | return DRV_OK; |
| | | } |
| | | |
| | | int adc_close(void) |
| | | { |
| | | // check if ADC is using by HW or not |
| | | if ((adc_handle.base->STATUS & ADC_STATUS_BUSY_MSK) && (adc_handle.state != ADC_STATE_BUSY)) |
| | | { |
| | | return DRV_BUSY; |
| | | } |
| | | else |
| | | { |
| | | // disable conversion |
| | | adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | |
| | | if (adc_handle.int_en) |
| | | { |
| | | NVIC_DisableIRQ(adc_handle.irq); |
| | | NVIC_ClearPendingIRQ(adc_handle.irq); |
| | | } |
| | | |
| | | // disable ADC clock |
| | | clock_disable(CLOCK_ADC); |
| | | |
| | | // update status |
| | | adc_handle.state = ADC_STATE_RESET; |
| | | return DRV_OK; |
| | | } |
| | | |
| | | int adc_switch_channel(enum ADC_P_N_SET P, enum ADC_P_N_SET N) |
| | | { |
| | | if (adc_handle.state == ADC_STATE_BUSY) |
| | | { |
| | | return DRV_BUSY; |
| | | } |
| | | |
| | | adc_handle.base->CTRL0 = (adc_handle.base->CTRL0 & ~(ADC_CTRL0_CHNL_P_MSK | ADC_CTRL0_CHNL_N_MSK)) | ADC_CTRL0_CHNL_P(P) | ADC_CTRL0_CHNL_N(N); |
| | | return DRV_OK; |
| | | } |
| | | |
| | | #if defined(__GNUC__) |
| | | #pragma GCC diagnostic push |
| | | #pragma GCC diagnostic ignored "-Wcast-qual" |
| | | #endif |
| | | |
| | | int adc_get(uint32_t *data, uint16_t number, drv_callback_t callback) |
| | | { |
| | | uint32_t lock = int_lock(); |
| | | |
| | | // update state |
| | | switch (adc_handle.state) |
| | | { |
| | | case ADC_STATE_READY: |
| | | adc_handle.state = ADC_STATE_BUSY; |
| | | break; |
| | | case ADC_STATE_BUSY: |
| | | int_unlock(lock); |
| | | return DRV_BUSY; |
| | | case ADC_STATE_RESET: |
| | | case ADC_STATE_TIMEOUT: |
| | | case ADC_STATE_ERROR: |
| | | int_unlock(lock); |
| | | return DRV_ERROR; |
| | | } |
| | | |
| | | adc_handle.data = data; |
| | | adc_handle.number = number; |
| | | adc_handle.count = number; |
| | | adc_handle.callback = callback; |
| | | |
| | | int_unlock(lock); |
| | | |
| | | if (adc_handle.dma_en) |
| | | { |
| | | #if ADC_DMA_MODE_EN |
| | | struct DMA_CH_CFG_T adc_dma_cfg = { |
| | | .fifo_th = DMA_FIFO_TH_4, |
| | | .src_burst_size = DMA_SRC_BURST_SIZE_4, |
| | | .src_width = DMA_WIDTH_4B, |
| | | .dst_width = DMA_WIDTH_4B, |
| | | .src_addr_ctrl = DMA_ADDR_FIXED, |
| | | .dst_addr_ctrl = DMA_ADDR_INC, |
| | | .src_req_sel = DMA_REQ_ADC, |
| | | .dst_req_sel = DMA_REQ_MEM, |
| | | }; |
| | | |
| | | dma_open(adc_handle.dma_ch, &adc_dma_cfg); |
| | | dma_transfer(adc_handle.dma_ch, (uint32_t *)&adc_handle.base->DATA, data, number, adc_dma_callback); |
| | | // start conversion |
| | | adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK; |
| | | #endif |
| | | } |
| | | else if (adc_handle.int_en) |
| | | { |
| | | #if ADC_INT_MODE_EN |
| | | // enable interrupt |
| | | adc_handle.base->INTR_EN = ADC_INTR_DONE_EN_MSK | ADC_INTR_CONFLICT_EN_MSK | ADC_INTR_OVERWRITE_EN_MSK; |
| | | // start conversion |
| | | adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK; |
| | | #endif |
| | | } |
| | | else |
| | | { |
| | | #if ADC_POLL_MODE_EN |
| | | // polling |
| | | while (adc_handle.count > 0) |
| | | { |
| | | if (adc_handle.mode == ADC_MODE_SINGLE) |
| | | { |
| | | // start conversion |
| | | adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | else if ((adc_handle.mode == ADC_MODE_CONTINUE) && (adc_handle.count == adc_handle.number)) |
| | | { |
| | | // start conversion |
| | | adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | |
| | | while ((adc_handle.base->STATUS & ADC_STATUS_DONE_MSK) == 0) |
| | | { |
| | | } |
| | | |
| | | *adc_handle.data++ = adc_handle.base->DATA; |
| | | adc_handle.count--; |
| | | } |
| | | |
| | | if (adc_handle.mode == ADC_MODE_CONTINUE) |
| | | { |
| | | adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | |
| | | // update state |
| | | adc_handle.state = ADC_STATE_READY; |
| | | |
| | | if (adc_handle.callback) |
| | | { |
| | | adc_handle.callback(adc_handle.data - adc_handle.number, adc_handle.number); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | return DRV_OK; |
| | | } |
| | | |
| | | #if defined(__GNUC__) |
| | | #pragma GCC diagnostic pop |
| | | #endif |
| | | |
| | | #if ADC_DMA_MODE_EN |
| | | static void adc_dma_callback(void *ch, uint32_t err_code) |
| | | { |
| | | uint8_t ch_num = *(uint8_t *)ch; |
| | | |
| | | if (ch_num == adc_handle.dma_ch) |
| | | { |
| | | if (adc_handle.mode == ADC_MODE_CONTINUE) |
| | | { |
| | | // stop conversion |
| | | adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | if (err_code == DMA_INT_TYPE_DONE) |
| | | { |
| | | // finished - update statue |
| | | adc_handle.state = ADC_STATE_READY; |
| | | } |
| | | else |
| | | { |
| | | adc_handle.state = ADC_STATE_ERROR; |
| | | } |
| | | |
| | | if (adc_handle.callback) |
| | | { |
| | | adc_handle.callback(adc_handle.data, adc_handle.number); |
| | | } |
| | | } |
| | | else |
| | | { |
| | | ASSERT(0, "Unexpected dma channel\r\n"); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | void ADC_IRQHandler(void) |
| | | { |
| | | #if ADC_INT_MODE_EN |
| | | uint32_t int_stat = adc_handle.base->INTR_STATUS; |
| | | |
| | | if (int_stat & ADC_INTR_STATUS_CONFLICT_MSK) |
| | | { |
| | | adc_handle.state = ADC_STATE_ERROR; |
| | | adc_handle.base->INTR_CLR = ADC_INTR_CONFLICT_CLR_MSK; |
| | | } |
| | | else if (int_stat & ADC_INTR_STATUS_OVERWRITE_MSK) |
| | | { |
| | | adc_handle.state = ADC_STATE_ERROR; |
| | | adc_handle.base->INTR_CLR = ADC_INTR_OVERWRITE_CLR_MSK; |
| | | } |
| | | else if (int_stat & ADC_INTR_STATUS_DONE_MSK) |
| | | { |
| | | if (adc_handle.count) |
| | | { |
| | | *adc_handle.data++ = adc_handle.base->DATA; |
| | | adc_handle.count--; |
| | | } |
| | | |
| | | if (adc_handle.count) |
| | | { |
| | | // continue |
| | | if (adc_handle.mode == ADC_MODE_SINGLE) |
| | | { |
| | | adc_handle.base->CTRL2 = ADC_CTRL2_CONV_EN_MSK; |
| | | } |
| | | } |
| | | else |
| | | { |
| | | // done |
| | | if (adc_handle.mode == ADC_MODE_CONTINUE) |
| | | { |
| | | // stop conversion |
| | | adc_handle.base->CTRL2 &= ~ADC_CTRL2_CONV_EN_MSK; |
| | | adc_handle.base->INTR_CLR = ADC_INTR_DONE_CLR_MSK; |
| | | // clear pending interrupt |
| | | NVIC_ClearPendingIRQ(adc_handle.irq); |
| | | } |
| | | |
| | | // finished - update status |
| | | adc_handle.state = ADC_STATE_READY; |
| | | if (adc_handle.callback) |
| | | { |
| | | adc_handle.callback(adc_handle.data - adc_handle.number, adc_handle.number); |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | ASSERT(0, "Unexpected ADC interrupt\r\n"); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | int16_t adc_code_to_mv(int16_t adc_val, int16_t vref_mv) |
| | | { |
| | | int16_t val = adc_val; |
| | | if (adc_val >= 0x800) |
| | | { |
| | | val = adc_val - 0x1000; |
| | | } |
| | | |
| | | float vol = val * vref_mv / (2048); |
| | | |
| | | return (int16_t)vol; |
| | | } |
| | | |
| | | /* BATTM (battery monitor == voltage sensor) */ |
| | | |
| | | void battery_monitor_open(void) |
| | | { |
| | | // enable ADC |
| | | struct ADC_CFG_T vs_adc_cfg; |
| | | vs_adc_cfg.mode = ADC_MODE_CONTINUE; /* Selected single conversion mode */ |
| | | vs_adc_cfg.clk_sel = ADC_CLK_HIGH; /* Selected 62.4M high speed clock */ |
| | | vs_adc_cfg.vref_sel = ADC_SEL_VREF_INT; /* Using internal reference voltage (1.2V)*/ |
| | | vs_adc_cfg.rate = 1000; /* ADC works at high frequency system clock, the maximum sampling rate is 2M */ |
| | | vs_adc_cfg.channel_p = 7; /* ADC positive channel --> VDD/4 */ |
| | | vs_adc_cfg.channel_n = 2; /* ADC negative channel --> GND */ |
| | | vs_adc_cfg.int_en = false; |
| | | vs_adc_cfg.dma_en = false; /* DMA support only in continue mode */ |
| | | vs_adc_cfg.acc_num = 0; |
| | | vs_adc_cfg.high_pulse_time = 4; |
| | | vs_adc_cfg.settle_time = 1; |
| | | |
| | | adc_open(&vs_adc_cfg); |
| | | |
| | | // enable BATTM |
| | | adc_handle.base->CTRL1 |= ADC_CTRL1_VS_EN_MSK; |
| | | } |
| | | |
| | | void battery_monitor_close(void) |
| | | { |
| | | // disable BATTM |
| | | adc_handle.base->CTRL1 &= ~ADC_CTRL1_VS_EN_MSK; |
| | | adc_close(); |
| | | } |
| | | |
| | | static void adc_continue_callback(void *data, uint32_t number) |
| | | { |
| | | |
| | | LOG_INFO(TRACE_MODULE_APP, "Chip adc callback %d degree\r\n", data); |
| | | } |
| | | int16_t battery_monitor_get(void) |
| | | { |
| | | #define NUM_SAMPLES (3) |
| | | |
| | | uint32_t sample[NUM_SAMPLES]; |
| | | adc_get(&sample[0], NUM_SAMPLES, adc_continue_callback); |
| | | |
| | | int32_t sum = 0; |
| | | for (int i = 0; i < NUM_SAMPLES; i++) |
| | | { |
| | | sum += adc_code_to_mv((int16_t)sample[i], ADC_INTERNAL_VREF_MV); |
| | | } |
| | | |
| | | return (int16_t)(4 * sum / NUM_SAMPLES); |
| | | } |
| | | |
| | | /* TEMP (temperature sensor)*/ |
| | | |
| | | void temp_sensor_open(void) |
| | | { |
| | | // enable ADC |
| | | struct ADC_CFG_T ts_adc_cfg; |
| | | ts_adc_cfg.mode = ADC_MODE_SINGLE; /* Selected single conversion mode */ |
| | | ts_adc_cfg.clk_sel = ADC_CLK_HIGH; /* Selected 62.4M high speed clock */ |
| | | ts_adc_cfg.vref_sel = ADC_SEL_VREF_INT; /* Using internal reference voltage (1.2V)*/ |
| | | ts_adc_cfg.rate = 1000; /* ADC works at high frequency system clock, the maximum sampling rate is 2M */ |
| | | ts_adc_cfg.channel_p = 3; /* ADC positive channel --> Vref */ |
| | | ts_adc_cfg.channel_n = 4; /* ADC negative channel --> Temp sensor */ |
| | | ts_adc_cfg.int_en = false; |
| | | ts_adc_cfg.dma_en = false; /* DMA support only in continue mode */ |
| | | ts_adc_cfg.acc_num = 0; |
| | | ts_adc_cfg.high_pulse_time = 4; |
| | | ts_adc_cfg.settle_time = 1; |
| | | |
| | | adc_open(&ts_adc_cfg); |
| | | |
| | | // enable TEMP |
| | | adc_handle.base->CTRL1 |= ADC_CTRL1_TS_EN_MSK; |
| | | |
| | | delay_us(100); |
| | | } |
| | | |
| | | void temp_sensor_close(void) |
| | | { |
| | | // disable TEMP |
| | | adc_handle.base->CTRL1 &= ~ADC_CTRL1_TS_EN_MSK; |
| | | adc_close(); |
| | | } |
| | | |
| | | int8_t temp_sensor_get(int16_t *p_adc_value) |
| | | { |
| | | #define NUM_SAMPLES (3) |
| | | |
| | | uint32_t sample[NUM_SAMPLES]; |
| | | adc_get(&sample[0], NUM_SAMPLES, NULL); |
| | | |
| | | uint32_t reg_value = REG_READ(0x40000300); |
| | | int16_t temp_ref_code = reg_value & 0xfff; |
| | | int8_t temp_ref_val = (int8_t)((reg_value >> 12) & 0xFF); |
| | | float temp_ref_val_f = temp_ref_val == 0 ? 25 : (float)(temp_ref_val >> 2) + (float)(temp_ref_val & 0x03) * 0.25f; |
| | | |
| | | int32_t sum = 0; |
| | | for (int i = 0; i < NUM_SAMPLES; i++) |
| | | { |
| | | sum += sample[i]; |
| | | } |
| | | |
| | | int16_t temp_code = (int16_t)(sum / NUM_SAMPLES); |
| | | int8_t temp_val = 0; |
| | | |
| | | if ((temp_ref_code > 600) && (temp_ref_code < 1400)) |
| | | { |
| | | temp_val = (int8_t)(ADC_TEMP_K_FACTOR * (temp_code - temp_ref_code) + 0.5 + temp_ref_val_f); |
| | | } |
| | | else |
| | | { |
| | | // y = 0.3449x - 299.92 |
| | | temp_val = (int8_t)(ADC_TEMP_K_FACTOR * temp_code - 299.42); |
| | | } |
| | | |
| | | if (p_adc_value) |
| | | *p_adc_value = temp_code; |
| | | |
| | | return temp_val; |
| | | } |