| | |
| | | import java.util.List; |
| | | |
| | | /** |
| | | * 异形草地路径规划 - 避障增强版 V7.0 |
| | | * 优化:增加了多边形外扩稳定性、障碍物碰撞预判以及冗余路径消除。 |
| | | * 异形草地路径规划 - 避障增强版 V8.0 |
| | | * 修复说明: |
| | | * 1. 修正了地块内缩和障碍物外扩的正负逻辑。 |
| | | * 2. 优化了多边形偏移算法,确保逆时针点序下正值内缩,负值外扩。 |
| | | * 3. 增强了障碍物解析的健壮性。 |
| | | */ |
| | | public class YixinglujingHaveObstacel { |
| | | |
| | |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 1. 预处理地块(确保逆时针) |
| | | // 1. 预处理地块(确保逆时针顺序) |
| | | ensureCounterClockwise(rawPoints); |
| | | List<Point> boundary = getOffsetPolygon(rawPoints, -safeMargin); // 内缩 |
| | | |
| | | // 【核心修复】:对于逆时针多边形,正数是向内偏移(Inset) |
| | | List<Point> boundary = getOffsetPolygon(rawPoints, safeMargin); |
| | | if (boundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 2. 规划基础路径 (无障碍物状态) |
| | | // 2. 确定最优角度并规划基础路径 |
| | | double bestAngle = findOptimalAngle(boundary); |
| | | Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle); |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart); |
| | | |
| | | List<PathSegment> baseLines = new ArrayList<>(); |
| | | // 第一阶段:围边 |
| | | // 第一阶段:围边路径 |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | baseLines.add(new PathSegment(alignedBoundary.get(i), alignedBoundary.get((i + 1) % alignedBoundary.size()), true)); |
| | | } |
| | | // 第二阶段:内部扫描 |
| | | // 第二阶段:生成内部扫描路径 |
| | | Point lastEdgePos = alignedBoundary.get(0); |
| | | baseLines.addAll(generateGlobalScanPath(boundary, mowWidth, bestAngle, lastEdgePos)); |
| | | |
| | | // 3. 处理障碍物:解析并执行外扩 (障碍物需向外扩 margin) |
| | | // 3. 处理障碍物:解析并执行【外扩】 |
| | | // 【核心修复】:对于逆时针障碍物,负数是向外偏移(Outset) |
| | | List<Obstacle> obstacles = parseObstacles(obstaclesStr, safeMargin); |
| | | |
| | | // 4. 路径裁剪与优化连接 |
| | | return optimizeAndClipPath(baseLines, obstacles); |
| | | } |
| | | |
| | | private static List<Obstacle> parseObstacles(String obsStr, double margin) { |
| | | List<Obstacle> obstacles = new ArrayList<>(); |
| | | if (obsStr == null || obsStr.trim().isEmpty()) return obstacles; |
| | | |
| | | for (String group : obsStr.split("\\$")) { |
| | | List<Point> pts = parseCoordinates(group); |
| | | if (pts.isEmpty()) continue; |
| | | |
| | | if (pts.size() == 2) { |
| | | // 圆形障碍物:第一个点心,第二个点上一点,半径增加 margin |
| | | double r = Math.hypot(pts.get(0).x - pts.get(1).x, pts.get(0).y - pts.get(1).y); |
| | | obstacles.add(new CircleObstacle(pts.get(0), r + margin)); |
| | | } else if (pts.size() > 2) { |
| | | // 多边形障碍物:确保逆时针,然后使用负 margin 进行【外扩】 |
| | | ensureCounterClockwise(pts); |
| | | obstacles.add(new PolyObstacle(getOffsetPolygon(pts, -margin))); |
| | | } |
| | | } |
| | | return obstacles; |
| | | } |
| | | |
| | | /** |
| | | * 多边形偏移算法:基于角平分线偏移 |
| | | * 在逆时针顺序下:offset > 0 为内缩,offset < 0 为外扩 |
| | | */ |
| | | private static List<Point> getOffsetPolygon(List<Point> points, double offset) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = points.get((i - 1 + n) % n); |
| | | Point p2 = points.get(i); |
| | | Point p3 = points.get((i + 1) % n); |
| | | |
| | | double v1x = p2.x - p1.x, v1y = p2.y - p1.y; |
| | | double v2x = p3.x - p2.x, v2y = p3.y - p2.y; |
| | | double l1 = Math.hypot(v1x, v1y), l2 = Math.hypot(v2x, v2y); |
| | | |
| | | if (l1 < 1e-6 || l2 < 1e-6) continue; |
| | | |
| | | // 获取两条边的法向量(向左偏移) |
| | | double n1x = -v1y / l1, n1y = v1x / l1; |
| | | double n2x = -v2y / l2, n2y = v2x / l2; |
| | | |
| | | // 角平分线向量 |
| | | double bx = n1x + n2x, by = n1y + n2y; |
| | | double bl = Math.hypot(bx, by); |
| | | if (bl < 1e-6) { |
| | | bx = n1x; by = n1y; |
| | | } else { |
| | | bx /= bl; by /= bl; |
| | | } |
| | | |
| | | // 计算偏移长度修正系数:1/sin(theta/2) |
| | | double cosHalf = n1x * bx + n1y * by; |
| | | double d = offset / Math.max(cosHalf, 0.1); // 避免分母过小导致无穷大 |
| | | |
| | | // 限制最大位移量,防止极尖角畸变 |
| | | d = Math.signum(offset) * Math.min(Math.abs(d), Math.abs(offset) * 5); |
| | | |
| | | result.add(new Point(p2.x + bx * d, p2.y + by * d)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static List<PathSegment> optimizeAndClipPath(List<PathSegment> originalPath, List<Obstacle> obstacles) { |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | Point currentPos = null; |
| | |
| | | List<PathSegment> clipped = new ArrayList<>(); |
| | | clipped.add(segment); |
| | | |
| | | // 用每一个障碍物依次裁剪 |
| | | for (Obstacle obs : obstacles) { |
| | | List<PathSegment> nextIter = new ArrayList<>(); |
| | | for (PathSegment s : clipped) { |
| | |
| | | } |
| | | |
| | | for (PathSegment s : clipped) { |
| | | // 优化点:消除长度几乎为0的无效线段 |
| | | // 剔除微小段 |
| | | if (Math.hypot(s.start.x - s.end.x, s.start.y - s.end.y) < 1e-4) continue; |
| | | |
| | | // 如果新段的起点与上段的终点不连贯,添加空走(非割草)路径 |
| | | if (currentPos != null && Math.hypot(currentPos.x - s.start.x, currentPos.y - s.start.y) > 0.01) { |
| | | // 添加空载路径 |
| | | result.add(new PathSegment(currentPos, s.start, false)); |
| | | } |
| | | result.add(s); |
| | |
| | | return result; |
| | | } |
| | | |
| | | // --- 障碍物模型 --- |
| | | // --- 障碍物类定义 --- |
| | | abstract static class Obstacle { |
| | | abstract boolean isInside(Point p); |
| | | abstract List<PathSegment> clipSegment(PathSegment seg); |
| | |
| | | |
| | | public PolyObstacle(List<Point> pts) { |
| | | this.points = pts; |
| | | // 预计算 AABB 边界框提升效率 |
| | | minX = minY = Double.MAX_VALUE; |
| | | maxX = maxY = -Double.MAX_VALUE; |
| | | for (Point p : pts) { |
| | |
| | | for (int i = 0; i < ts.size() - 1; i++) { |
| | | Point s = interpolate(seg.start, seg.end, ts.get(i)); |
| | | Point e = interpolate(seg.start, seg.end, ts.get(i + 1)); |
| | | // 检查中点是否在障碍物内 |
| | | if (!isInside(new Point((s.x + e.x) / 2, (s.y + e.y) / 2))) { |
| | | res.add(new PathSegment(s, e, seg.isMowing)); |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | // --- 算法工具类 --- |
| | | |
| | | private static List<Obstacle> parseObstacles(String obsStr, double margin) { |
| | | List<Obstacle> obstacles = new ArrayList<>(); |
| | | if (obsStr == null || obsStr.trim().isEmpty()) return obstacles; |
| | | for (String group : obsStr.split("\\$")) { |
| | | List<Point> pts = parseCoordinates(group); |
| | | if (pts.size() == 2) { |
| | | double r = Math.hypot(pts.get(0).x - pts.get(1).x, pts.get(0).y - pts.get(1).y); |
| | | obstacles.add(new CircleObstacle(pts.get(0), r + margin)); |
| | | } else if (pts.size() > 2) { |
| | | ensureCounterClockwise(pts); |
| | | // 多边形外扩:offset 为正 |
| | | obstacles.add(new PolyObstacle(getOffsetPolygon(pts, margin))); |
| | | } |
| | | } |
| | | return obstacles; |
| | | } |
| | | |
| | | /** |
| | | * 优化后的多边形外扩/内缩算法 |
| | | * @param offset 正数为外扩,负数为内缩 |
| | | */ |
| | | private static List<Point> getOffsetPolygon(List<Point> points, double offset) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = points.get((i - 1 + n) % n), p2 = points.get(i), p3 = points.get((i + 1) % n); |
| | | |
| | | double v1x = p2.x - p1.x, v1y = p2.y - p1.y; |
| | | double v2x = p3.x - p2.x, v2y = p3.y - p2.y; |
| | | double l1 = Math.hypot(v1x, v1y), l2 = Math.hypot(v2x, v2y); |
| | | |
| | | if (l1 < 1e-6 || l2 < 1e-6) continue; |
| | | |
| | | // 法向量 |
| | | double n1x = -v1y / l1, n1y = v1x / l1; |
| | | double n2x = -v2y / l2, n2y = v2x / l2; |
| | | |
| | | // 角平分线 |
| | | double bx = n1x + n2x, by = n1y + n2y; |
| | | double bl = Math.hypot(bx, by); |
| | | if (bl < 1e-6) { bx = n1x; by = n1y; } else { bx /= bl; by /= bl; } |
| | | |
| | | // 修正距离 |
| | | double sinHalf = n1x * bx + n1y * by; |
| | | double d = offset / Math.max(sinHalf, 0.1); |
| | | result.add(new Point(p2.x + bx * d, p2.y + by * d)); |
| | | } |
| | | return result; |
| | | } |
| | | // --- 内部算法与数学支持 --- |
| | | |
| | | private static List<PathSegment> generateGlobalScanPath(List<Point> polygon, double width, double angle, Point currentPos) { |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | |
| | | return segments; |
| | | } |
| | | |
| | | // --- 基础数学函数 --- |
| | | private static double getIntersectionT(Point a, Point b, Point c, Point d) { |
| | | double ux = b.x - a.x, uy = b.y - a.y, vx = d.x - c.x, vy = d.y - c.y; |
| | | double det = vx * uy - vy * ux; |
| | |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double ang) { |
| | | return new Point(p.x * Math.cos(ang) - p.y * Math.sin(ang), p.x * Math.sin(ang) + p.y * Math.cos(ang)); |
| | | double cos = Math.cos(ang), sin = Math.sin(ang); |
| | | return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos); |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> poly, double y) { |
| | |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size()); |
| | | double a = Math.atan2(p2.y - p1.y, p2.x - p1.x); |
| | | double h = 0, miY = Double.MAX_VALUE, maY = -Double.MAX_VALUE; |
| | | double miY = Double.MAX_VALUE, maY = -Double.MAX_VALUE; |
| | | for (Point p : poly) { |
| | | Point r = rotatePoint(p, -a); |
| | | miY = Math.min(miY, r.y); maY = Math.max(maY, r.y); |
| | | } |
| | | h = maY - miY; |
| | | if (h < minH) { minH = h; bestA = a; } |
| | | if (maY - miY < minH) { minH = maY - miY; bestA = a; } |
| | | } |
| | | return bestA; |
| | | } |
| | | |
| | | private static void ensureCounterClockwise(List<Point> pts) { |
| | | double s = 0; |
| | | for (int i = 0; i < pts.size(); i++) s += (pts.get((i + 1) % pts.size()).x - pts.get(i).x) * (pts.get((i + 1) % pts.size()).y + pts.get(i).y); |
| | | for (int i = 0; i < pts.size(); i++) { |
| | | Point p1 = pts.get(i), p2 = pts.get((i + 1) % pts.size()); |
| | | s += (p2.x - p1.x) * (p2.y + p1.y); |
| | | } |
| | | if (s > 0) Collections.reverse(pts); |
| | | } |
| | | |