| | |
| | | package lujing; |
| | | import java.util.*; |
| | | |
| | | import java.util.ArrayList; |
| | | import java.util.Collections; |
| | | import java.util.List; |
| | | |
| | | /** |
| | | * 异形草地路径规划 - 障碍物裁剪优化版 V9.0 |
| | | * 核心逻辑:先生成全覆盖扫描路径,再利用外扩后的障碍物对路径进行裁剪。 |
| | | * 异形草地路径规划 - 含障碍物版 |
| | | * 功能:在地块内部避开障碍物,生成连续弓字形割草路径 |
| | | */ |
| | | public class YixinglujingHaveObstacel { |
| | | |
| | | /** |
| | | * 规划路径主入口 |
| | | */ |
| | | public static List<PathSegment> planPath(String coordinates, String obstaclesStr, String widthStr, String marginStr) { |
| | | |
| | | public static List<PathSegment> planPath(String coordinates, String obstaclesStr, |
| | | String widthStr, String marginStr) { |
| | | // 1. 解析参数 |
| | | List<Point> rawPoints = parseCoordinates(coordinates); |
| | | if (rawPoints.size() < 3) return new ArrayList<>(); |
| | | |
| | | |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 2. 预处理地块边界 (确保逆时针) |
| | | |
| | | // 解析障碍物 |
| | | List<Obstacle> obstacles = parseObstacles(obstaclesStr); |
| | | |
| | | // 2. 预处理:确保边界逆时针 |
| | | ensureCounterClockwise(rawPoints); |
| | | |
| | | // 3. 生成地块内缩的安全作业边界 (Inset) |
| | | List<Point> mowingBoundary = getOffsetPolygon(rawPoints, safeMargin); // 正数内缩 |
| | | if (mowingBoundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 4. 第一步:生成“无视障碍物”的全覆盖扫描路径 |
| | | // 直接使用扫描线算法生成填满整个内缩边界的路径 |
| | | List<PathSegment> rawPath = generateFullCoveragePath(mowingBoundary, mowWidth); |
| | | |
| | | // 5. 解析障碍物并进行外扩 (Outset) |
| | | // 注意:障碍物外扩距离 = 割草机安全边距,确保不发生碰撞 |
| | | List<Obstacle> obstacles = parseObstacles(obstaclesStr, safeMargin); |
| | | |
| | | // 6. 第二步:使用障碍物裁剪路径 (核心步骤) |
| | | return clipPathWithObstacles(rawPath, obstacles); |
| | | } |
| | | |
| | | /** |
| | | * 使用障碍物集合裁剪原始路径 |
| | | */ |
| | | private static List<PathSegment> clipPathWithObstacles(List<PathSegment> rawPath, List<Obstacle> obstacles) { |
| | | // 3. 生成内缩多边形(安全边界) |
| | | List<Point> boundary = getInsetPolygon(rawPoints, safeMargin); |
| | | if (boundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 4. 外扩障碍物(安全边距) |
| | | List<Obstacle> expandedObstacles = expandObstacles(obstacles, safeMargin); |
| | | |
| | | // 5. 确定最优作业角度 |
| | | double bestAngle = findOptimalAngle(boundary); |
| | | |
| | | // 6. 获取首个作业点,用于对齐围边起点 |
| | | Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle); |
| | | |
| | | // 7. 对齐围边 |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart); |
| | | |
| | | // 8. 第一阶段:围边路径 |
| | | List<PathSegment> finalPath = new ArrayList<>(); |
| | | Point currentPos = (rawPath.isEmpty()) ? new Point(0,0) : rawPath.get(0).start; |
| | | |
| | | for (PathSegment segment : rawPath) { |
| | | // 将当前这一段路径,拿去跟所有障碍物进行碰撞检测和裁剪 |
| | | // 初始时,这一段是完整的 |
| | | List<PathSegment> segmentsToProcess = new ArrayList<>(); |
| | | segmentsToProcess.add(segment); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | List<PathSegment> nextIterSegments = new ArrayList<>(); |
| | | for (PathSegment seg : segmentsToProcess) { |
| | | // 如果是割草路径,需要裁剪;如果是空走路径,通常也需要避障, |
| | | // 但这里主要处理扫描线的裁剪。 |
| | | if (seg.isMowing) { |
| | | nextIterSegments.addAll(obs.clip(seg)); |
| | | } else { |
| | | // 空走路径暂时保留(高级避障需要A*算法,此处简化为保留) |
| | | nextIterSegments.add(seg); |
| | | } |
| | | } |
| | | segmentsToProcess = nextIterSegments; |
| | | } |
| | | |
| | | // 将裁剪后剩余的线段加入最终路径 |
| | | for (PathSegment s : segmentsToProcess) { |
| | | // 过滤掉因为裁剪产生的极短线段 |
| | | if (distance(s.start, s.end) < 0.05) continue; |
| | | |
| | | // 如果当前点和线段起点不连贯,加入连接路径(空走) |
| | | if (distance(currentPos, s.start) > 0.05) { |
| | | finalPath.add(new PathSegment(currentPos, s.start, false)); |
| | | } |
| | | |
| | | finalPath.add(s); |
| | | currentPos = s.end; |
| | | } |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | Point pStart = alignedBoundary.get(i); |
| | | Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size()); |
| | | finalPath.add(new PathSegment(pStart, pEnd, true)); |
| | | } |
| | | |
| | | // 9. 第二阶段:生成内部扫描路径(考虑障碍物) |
| | | Point lastEdgePos = alignedBoundary.get(0); |
| | | List<PathSegment> scanPath = generateGlobalScanPathWithObstacles( |
| | | boundary, expandedObstacles, mowWidth, bestAngle, lastEdgePos); |
| | | |
| | | finalPath.addAll(scanPath); |
| | | |
| | | // 10. 格式化坐标:保留两位小数 |
| | | for (PathSegment segment : finalPath) { |
| | | segment.start.x = Math.round(segment.start.x * 100.0) / 100.0; |
| | | segment.start.y = Math.round(segment.start.y * 100.0) / 100.0; |
| | | segment.end.x = Math.round(segment.end.x * 100.0) / 100.0; |
| | | segment.end.y = Math.round(segment.end.y * 100.0) / 100.0; |
| | | } |
| | | |
| | | // 11. 打印输出路径坐标 |
| | | printPathCoordinates(finalPath); |
| | | |
| | | return finalPath; |
| | | } |
| | | |
| | | // --- 路径生成核心算法 (移植自 NoObstacle 类) --- |
| | | |
| | | private static List<PathSegment> generateFullCoveragePath(List<Point> boundary, double width) { |
| | | // 1. 寻找最优角度 |
| | | double angle = findOptimalAngle(boundary); |
| | | |
| | | /** |
| | | * 生成带障碍物的扫描路径 |
| | | */ |
| | | private static List<PathSegment> generateGlobalScanPathWithObstacles( |
| | | List<Point> polygon, List<Obstacle> obstacles, |
| | | double width, double angle, Point startPos) { |
| | | |
| | | // 2. 旋转多边形以对齐坐标轴 |
| | | // 1. 生成原始扫描线(无障碍物) |
| | | List<PathSegment> originalSegments = generateGlobalScanPath(polygon, width, angle, startPos); |
| | | |
| | | // 2. 移除在障碍物内部的线段 |
| | | List<PathSegment> remainingSegments = new ArrayList<>(); |
| | | for (PathSegment seg : originalSegments) { |
| | | if (!seg.isMowing) { |
| | | // 空走段直接保留 |
| | | remainingSegments.add(seg); |
| | | continue; |
| | | } |
| | | |
| | | // 将割草段与所有障碍物进行裁剪 |
| | | List<PathSegment> clippedSegments = new ArrayList<>(); |
| | | clippedSegments.add(seg); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | List<PathSegment> newSegments = new ArrayList<>(); |
| | | for (PathSegment s : clippedSegments) { |
| | | newSegments.addAll(clipSegmentWithObstacle(s, obs)); |
| | | } |
| | | clippedSegments = newSegments; |
| | | } |
| | | |
| | | remainingSegments.addAll(clippedSegments); |
| | | } |
| | | |
| | | // 3. 重新连接路径段(弓字形连接) |
| | | return reconnectSegments(remainingSegments); |
| | | } |
| | | |
| | | /** |
| | | * 将线段与障碍物进行裁剪 |
| | | * 返回不在障碍物内部的子线段 |
| | | */ |
| | | private static List<PathSegment> clipSegmentWithObstacle(PathSegment segment, Obstacle obstacle) { |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | // 检查线段是否完全在障碍物外部 |
| | | boolean startInside = obstacle.contains(segment.start); |
| | | boolean endInside = obstacle.contains(segment.end); |
| | | |
| | | if (!startInside && !endInside) { |
| | | // 线段两端都在外部,检查是否穿过障碍物 |
| | | List<Point> intersections = obstacle.getIntersections(segment); |
| | | if (intersections.isEmpty()) { |
| | | // 完全在外部 |
| | | result.add(segment); |
| | | } else { |
| | | // 穿过障碍物,分割线段 |
| | | intersections.sort(Comparator.comparingDouble(p -> |
| | | distance(segment.start, p))); |
| | | |
| | | Point prevPoint = segment.start; |
| | | for (Point inter : intersections) { |
| | | result.add(new PathSegment(prevPoint, inter, true)); |
| | | prevPoint = inter; |
| | | } |
| | | result.add(new PathSegment(prevPoint, segment.end, true)); |
| | | |
| | | // 移除在障碍物内部的段(奇数索引的段) |
| | | List<PathSegment> filtered = new ArrayList<>(); |
| | | for (int i = 0; i < result.size(); i++) { |
| | | PathSegment s = result.get(i); |
| | | Point midPoint = new Point( |
| | | (s.start.x + s.end.x) / 2, |
| | | (s.start.y + s.end.y) / 2 |
| | | ); |
| | | if (!obstacle.contains(midPoint)) { |
| | | filtered.add(s); |
| | | } |
| | | } |
| | | return filtered; |
| | | } |
| | | } else if (startInside && endInside) { |
| | | // 完全在内部,丢弃 |
| | | return result; |
| | | } else { |
| | | // 一端在内部,一端在外部 |
| | | Point insidePoint = startInside ? segment.start : segment.end; |
| | | Point outsidePoint = startInside ? segment.end : segment.start; |
| | | |
| | | List<Point> intersections = obstacle.getIntersections(segment); |
| | | if (!intersections.isEmpty()) { |
| | | // 取离外部点最近的交点 |
| | | intersections.sort(Comparator.comparingDouble(p -> |
| | | distance(outsidePoint, p))); |
| | | Point inter = intersections.get(0); |
| | | |
| | | // 只保留外部部分 |
| | | if (startInside) { |
| | | result.add(new PathSegment(inter, outsidePoint, true)); |
| | | } else { |
| | | result.add(new PathSegment(outsidePoint, inter, true)); |
| | | } |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | /** |
| | | * 重新连接路径段,形成连续弓字形路径 |
| | | */ |
| | | private static List<PathSegment> reconnectSegments(List<PathSegment> segments) { |
| | | if (segments.isEmpty()) return new ArrayList<>(); |
| | | |
| | | List<PathSegment> reconnected = new ArrayList<>(); |
| | | Point currentPos = segments.get(0).start; |
| | | |
| | | for (PathSegment seg : segments) { |
| | | if (seg.isMowing) { |
| | | // 割草段:检查是否需要添加空走段 |
| | | if (distance(currentPos, seg.start) > 0.01) { |
| | | reconnected.add(new PathSegment(currentPos, seg.start, false)); |
| | | } |
| | | reconnected.add(seg); |
| | | currentPos = seg.end; |
| | | } else { |
| | | // 空走段直接添加 |
| | | reconnected.add(seg); |
| | | currentPos = seg.end; |
| | | } |
| | | } |
| | | |
| | | return reconnected; |
| | | } |
| | | |
| | | /** |
| | | * 生成原始扫描路径(无障碍物版本) |
| | | */ |
| | | private static List<PathSegment> generateGlobalScanPath( |
| | | List<Point> polygon, double width, double angle, Point currentPos) { |
| | | |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : boundary) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | |
| | | double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) { |
| | | minY = Math.min(minY, p.y); |
| | | maxY = Math.max(maxY, p.y); |
| | | } |
| | | |
| | | // 3. 生成扫描线 |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | | boolean l2r = true; |
| | | // 围边路径先生成 |
| | | Point scanStartPoint = null; |
| | | |
| | | // 这里我们先计算扫描线,最后再决定围边起点以减少空走 |
| | | List<List<PathSegment>> scanRows = new ArrayList<>(); |
| | | |
| | | |
| | | boolean leftToRight = true; |
| | | for (double y = minY + width/2; y <= maxY - width/2; y += width) { |
| | | List<Double> xInters = getXIntersections(rotatedPoly, y); |
| | | if (xInters.size() < 2) continue; |
| | | Collections.sort(xInters); |
| | | |
| | | List<PathSegment> row = new ArrayList<>(); |
| | | // 两两配对形成线段 |
| | | for (int i = 0; i < xInters.size() - 1; i += 2) { |
| | | Point s = rotatePoint(new Point(xInters.get(i), y), angle); |
| | | Point e = rotatePoint(new Point(xInters.get(i + 1), y), angle); |
| | | row.add(new PathSegment(s, e, true)); |
| | | List<Double> xIntersections = getXIntersections(rotatedPoly, y); |
| | | if (xIntersections.size() < 2) continue; |
| | | Collections.sort(xIntersections); |
| | | |
| | | List<PathSegment> lineSegmentsInRow = new ArrayList<>(); |
| | | for (int i = 0; i < xIntersections.size() - 1; i += 2) { |
| | | Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle); |
| | | Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle); |
| | | lineSegmentsInRow.add(new PathSegment(pS, pE, true)); |
| | | } |
| | | |
| | | // 蛇形排序 |
| | | if (!l2r) { |
| | | Collections.reverse(row); |
| | | for (PathSegment s : row) { |
| | | Point tmp = s.start; s.start = s.end; s.end = tmp; |
| | | |
| | | if (!leftToRight) { |
| | | Collections.reverse(lineSegmentsInRow); |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | Point temp = s.start; |
| | | s.start = s.end; |
| | | s.end = temp; |
| | | } |
| | | } |
| | | scanRows.add(row); |
| | | if (scanStartPoint == null && !row.isEmpty()) scanStartPoint = row.get(0).start; |
| | | l2r = !l2r; |
| | | |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | if (distance(currentPos, s.start) > 0.01) { |
| | | segments.add(new PathSegment(currentPos, s.start, false)); |
| | | } |
| | | segments.add(s); |
| | | currentPos = s.end; |
| | | } |
| | | leftToRight = !leftToRight; |
| | | } |
| | | |
| | | // 4. 生成围边路径 (对齐到第一个扫描点) |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, scanStartPoint); |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | segments.add(new PathSegment(alignedBoundary.get(i), alignedBoundary.get((i+1)%alignedBoundary.size()), true)); |
| | | } |
| | | |
| | | // 5. 加入扫描路径 |
| | | for (List<PathSegment> row : scanRows) { |
| | | segments.addAll(row); |
| | | } |
| | | |
| | | |
| | | return segments; |
| | | } |
| | | |
| | | // --- 障碍物处理类 --- |
| | | |
| | | private static List<Obstacle> parseObstacles(String obsStr, double margin) { |
| | | List<Obstacle> list = new ArrayList<>(); |
| | | if (obsStr == null || obsStr.trim().isEmpty()) return list; |
| | | |
| | | // 处理格式 (x,y;...)(x,y;...) 或 $ 分隔 |
| | | String cleanStr = obsStr.replaceAll("\\s+", ""); |
| | | String[] parts; |
| | | if (cleanStr.contains("(") && cleanStr.contains(")")) { |
| | | List<String> matches = new ArrayList<>(); |
| | | java.util.regex.Matcher m = java.util.regex.Pattern.compile("\\(([^)]+)\\)").matcher(cleanStr); |
| | | while (m.find()) matches.add(m.group(1)); |
| | | parts = matches.toArray(new String[0]); |
| | | } else { |
| | | parts = cleanStr.split("\\$"); |
| | | |
| | | /** |
| | | * 解析障碍物字符串 |
| | | * 格式:"(x1,y1;x2,y2)(x1,y1;x2,y2;x3,y3)" |
| | | */ |
| | | private static List<Obstacle> parseObstacles(String obstaclesStr) { |
| | | List<Obstacle> obstacles = new ArrayList<>(); |
| | | if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) { |
| | | return obstacles; |
| | | } |
| | | |
| | | for (String pStr : parts) { |
| | | List<Point> pts = parseCoordinates(pStr); |
| | | if (pts.isEmpty()) continue; |
| | | |
| | | if (pts.size() == 2) { |
| | | // 圆形障碍物 |
| | | double r = distance(pts.get(0), pts.get(1)); |
| | | list.add(new CircleObstacle(pts.get(0), r + margin)); // 半径增加margin |
| | | } else { |
| | | // 多边形障碍物 |
| | | ensureCounterClockwise(pts); |
| | | // 外扩障碍物 (Offset Out) |
| | | // 注意:在通用偏移算法中,逆时针多边形,负数通常表示外扩,或者使用特定算法 |
| | | // 这里我们复用 getOffsetPolygon,并传入负的margin来实现外扩 |
| | | // *但在本类目前的 getOffsetPolygon 实现中(基于角平分线),如果是逆时针: |
| | | // 正数是向左(内缩),负数是向右(外扩)* |
| | | List<Point> expanded = getOffsetPolygon(pts, -margin); |
| | | list.add(new PolyObstacle(expanded)); |
| | | } |
| | | } |
| | | return list; |
| | | } |
| | | |
| | | abstract static class Obstacle { |
| | | // 返回裁剪后的线段列表(即保留在障碍物外部的线段) |
| | | abstract List<PathSegment> clip(PathSegment seg); |
| | | } |
| | | |
| | | static class CircleObstacle extends Obstacle { |
| | | Point c; double r; |
| | | CircleObstacle(Point c, double r) { this.c = c; this.r = r; } |
| | | |
| | | @Override |
| | | List<PathSegment> clip(PathSegment seg) { |
| | | // 计算直线与圆的交点 t值 (0..1) |
| | | double dx = seg.end.x - seg.start.x; |
| | | double dy = seg.end.y - seg.start.y; |
| | | double fx = seg.start.x - c.x; |
| | | double fy = seg.start.y - c.y; |
| | | String trimmed = obstaclesStr.trim(); |
| | | List<String> obstacleStrs = new ArrayList<>(); |
| | | |
| | | // 分割每个障碍物(用括号分隔) |
| | | int start = trimmed.indexOf('('); |
| | | while (start != -1) { |
| | | int end = trimmed.indexOf(')', start); |
| | | if (end == -1) break; |
| | | |
| | | double A = dx*dx + dy*dy; |
| | | double B = 2*(fx*dx + fy*dy); |
| | | double C = (fx*fx + fy*fy) - r*r; |
| | | double delta = B*B - 4*A*C; |
| | | |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | if (delta < 0) { |
| | | // 无交点,全保留或全剔除 |
| | | if (!isInside(seg.start)) result.add(seg); |
| | | return result; |
| | | } |
| | | |
| | | double t1 = (-B - Math.sqrt(delta)) / (2*A); |
| | | double t2 = (-B + Math.sqrt(delta)) / (2*A); |
| | | String obsStr = trimmed.substring(start + 1, end); |
| | | obstacleStrs.add(obsStr); |
| | | start = trimmed.indexOf('(', end); |
| | | } |
| | | |
| | | // 解析每个障碍物 |
| | | for (String obsStr : obstacleStrs) { |
| | | List<Point> points = new ArrayList<>(); |
| | | String[] pairs = obsStr.split(";"); |
| | | |
| | | List<Double> ts = new ArrayList<>(); |
| | | ts.add(0.0); |
| | | if (t1 > 0 && t1 < 1) ts.add(t1); |
| | | if (t2 > 0 && t2 < 1) ts.add(t2); |
| | | ts.add(1.0); |
| | | Collections.sort(ts); |
| | | |
| | | for (int i = 0; i < ts.size()-1; i++) { |
| | | double midT = (ts.get(i) + ts.get(i+1)) / 2; |
| | | Point mid = interpolate(seg.start, seg.end, midT); |
| | | if (!isInside(mid)) { |
| | | result.add(new PathSegment(interpolate(seg.start, seg.end, ts.get(i)), |
| | | interpolate(seg.start, seg.end, ts.get(i+1)), |
| | | seg.isMowing)); |
| | | for (String pair : pairs) { |
| | | String[] xy = pair.split(","); |
| | | if (xy.length == 2) { |
| | | points.add(new Point( |
| | | Double.parseDouble(xy[0].trim()), |
| | | Double.parseDouble(xy[1].trim()) |
| | | )); |
| | | } |
| | | } |
| | | return result; |
| | | |
| | | if (points.size() == 2) { |
| | | // 圆形障碍物:第一个点为圆心,第二个点为圆上一点 |
| | | Point center = points.get(0); |
| | | Point onCircle = points.get(1); |
| | | double radius = distance(center, onCircle); |
| | | obstacles.add(new Obstacle(center, radius)); |
| | | } else if (points.size() > 2) { |
| | | // 多边形障碍物 |
| | | obstacles.add(new Obstacle(points)); |
| | | } |
| | | } |
| | | |
| | | boolean isInside(Point p) { |
| | | return (p.x-c.x)*(p.x-c.x) + (p.y-c.y)*(p.y-c.y) < r*r; |
| | | } |
| | | |
| | | return obstacles; |
| | | } |
| | | |
| | | static class PolyObstacle extends Obstacle { |
| | | List<Point> points; |
| | | double minX, maxX, minY, maxY; |
| | | |
| | | PolyObstacle(List<Point> pts) { |
| | | this.points = pts; |
| | | updateBounds(); |
| | | } |
| | | |
| | | void updateBounds() { |
| | | minX = minY = Double.MAX_VALUE; |
| | | maxX = maxY = -Double.MAX_VALUE; |
| | | for (Point p : points) { |
| | | minX = Math.min(minX, p.x); maxX = Math.max(maxX, p.x); |
| | | minY = Math.min(minY, p.y); maxY = Math.max(maxY, p.y); |
| | | |
| | | /** |
| | | * 外扩障碍物(增加安全边距) |
| | | */ |
| | | private static List<Obstacle> expandObstacles(List<Obstacle> obstacles, double margin) { |
| | | List<Obstacle> expanded = new ArrayList<>(); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | if (obs.isCircle()) { |
| | | // 圆形:半径增加安全边距 |
| | | expanded.add(new Obstacle(obs.center, obs.radius + margin)); |
| | | } else { |
| | | // 多边形:向外偏移(与边界内缩方向相反) |
| | | List<Point> expandedPoints = getOutsetPolygon(obs.points, margin); |
| | | expanded.add(new Obstacle(expandedPoints)); |
| | | } |
| | | } |
| | | |
| | | boolean isInside(Point p) { |
| | | if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) return false; |
| | | boolean result = false; |
| | | for (int i = 0, j = points.size() - 1; i < points.size(); j = i++) { |
| | | if ((points.get(i).y > p.y) != (points.get(j).y > p.y) && |
| | | (p.x < (points.get(j).x - points.get(i).x) * (p.y - points.get(i).y) / (points.get(j).y - points.get(i).y) + points.get(i).x)) { |
| | | result = !result; |
| | | } |
| | | |
| | | return expanded; |
| | | } |
| | | |
| | | /** |
| | | * 多边形外扩(与内缩方向相反) |
| | | */ |
| | | private static List<Point> getOutsetPolygon(List<Point> points, double margin) { |
| | | // 这里使用简化的外扩方法:沿法线向外移动 |
| | | List<Point> outset = new ArrayList<>(); |
| | | int n = points.size(); |
| | | |
| | | for (int i = 0; i < n; i++) { |
| | | Point pPrev = points.get((i - 1 + n) % n); |
| | | Point pCurr = points.get(i); |
| | | Point pNext = points.get((i + 1) % n); |
| | | |
| | | // 计算两个边的向量 |
| | | double v1x = pCurr.x - pPrev.x, v1y = pCurr.y - pPrev.y; |
| | | double v2x = pNext.x - pCurr.x, v2y = pNext.y - pCurr.y; |
| | | |
| | | // 计算法线(确保向外) |
| | | double nx1 = -v1y, ny1 = v1x; |
| | | double nx2 = -v2y, ny2 = v2x; |
| | | |
| | | // 归一化 |
| | | double len1 = Math.hypot(nx1, ny1); |
| | | double len2 = Math.hypot(nx2, ny2); |
| | | if (len1 > 1e-6) { nx1 /= len1; ny1 /= len1; } |
| | | if (len2 > 1e-6) { nx2 /= len2; ny2 /= len2; } |
| | | |
| | | // 计算平均法线方向 |
| | | double nx = (nx1 + nx2) / 2; |
| | | double ny = (ny1 + ny2) / 2; |
| | | double len = Math.hypot(nx, ny); |
| | | if (len > 1e-6) { |
| | | nx /= len; |
| | | ny /= len; |
| | | } |
| | | return result; |
| | | |
| | | // 向外移动 |
| | | outset.add(new Point( |
| | | pCurr.x + nx * margin, |
| | | pCurr.y + ny * margin |
| | | )); |
| | | } |
| | | |
| | | @Override |
| | | List<PathSegment> clip(PathSegment seg) { |
| | | List<Double> ts = new ArrayList<>(); |
| | | ts.add(0.0); |
| | | ts.add(1.0); |
| | | |
| | | // 计算线段与障碍物每一条边的交点 |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i); |
| | | Point p2 = points.get((i+1)%points.size()); |
| | | double t = getIntersectionT(seg.start, seg.end, p1, p2); |
| | | if (t > 1e-6 && t < 1 - 1e-6) { |
| | | ts.add(t); |
| | | } |
| | | |
| | | return outset; |
| | | } |
| | | |
| | | /** |
| | | * 障碍物类 |
| | | */ |
| | | private static class Obstacle { |
| | | List<Point> points; // 多边形顶点(对圆形为空) |
| | | Point center; // 圆心(仅对圆形有效) |
| | | double radius; // 半径(仅对圆形有效) |
| | | boolean isCircle; |
| | | |
| | | // 多边形构造函数 |
| | | Obstacle(List<Point> points) { |
| | | this.points = new ArrayList<>(points); |
| | | this.isCircle = false; |
| | | ensureCounterClockwise(this.points); // 确保顺时针(对障碍物是内部区域) |
| | | } |
| | | |
| | | // 圆形构造函数 |
| | | Obstacle(Point center, double radius) { |
| | | this.center = new Point(center.x, center.y); |
| | | this.radius = radius; |
| | | this.isCircle = true; |
| | | this.points = new ArrayList<>(); |
| | | } |
| | | |
| | | // 判断点是否在障碍物内部 |
| | | boolean contains(Point p) { |
| | | if (isCircle) { |
| | | return distance(p, center) <= radius; |
| | | } else { |
| | | return isPointInPolygon(p, points); |
| | | } |
| | | Collections.sort(ts); |
| | | |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | // 检查每一小段的中点是否在障碍物内 |
| | | for (int i = 0; i < ts.size() - 1; i++) { |
| | | double tMid = (ts.get(i) + ts.get(i+1)) / 2.0; |
| | | // 如果两点极其接近,跳过 |
| | | if (ts.get(i+1) - ts.get(i) < 1e-6) continue; |
| | | } |
| | | |
| | | // 获取线段与障碍物的交点 |
| | | List<Point> getIntersections(PathSegment segment) { |
| | | List<Point> intersections = new ArrayList<>(); |
| | | |
| | | if (isCircle) { |
| | | // 线段与圆的交点 |
| | | double dx = segment.end.x - segment.start.x; |
| | | double dy = segment.end.y - segment.start.y; |
| | | double a = dx * dx + dy * dy; |
| | | double b = 2 * (dx * (segment.start.x - center.x) + |
| | | dy * (segment.start.y - center.y)); |
| | | double c = (segment.start.x - center.x) * (segment.start.x - center.x) + |
| | | (segment.start.y - center.y) * (segment.start.y - center.y) - |
| | | radius * radius; |
| | | |
| | | Point mid = interpolate(seg.start, seg.end, tMid); |
| | | if (!isInside(mid)) { |
| | | // 在外部,保留 |
| | | Point s = interpolate(seg.start, seg.end, ts.get(i)); |
| | | Point e = interpolate(seg.start, seg.end, ts.get(i+1)); |
| | | result.add(new PathSegment(s, e, seg.isMowing)); |
| | | double discriminant = b * b - 4 * a * c; |
| | | if (discriminant >= 0) { |
| | | discriminant = Math.sqrt(discriminant); |
| | | for (int sign = -1; sign <= 1; sign += 2) { |
| | | double t = (-b + sign * discriminant) / (2 * a); |
| | | if (t >= 0 && t <= 1) { |
| | | intersections.add(new Point( |
| | | segment.start.x + t * dx, |
| | | segment.start.y + t * dy |
| | | )); |
| | | } |
| | | } |
| | | } |
| | | } else { |
| | | // 线段与多边形的交点 |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i); |
| | | Point p2 = points.get((i + 1) % points.size()); |
| | | |
| | | Point inter = getLineIntersection( |
| | | segment.start, segment.end, p1, p2); |
| | | if (inter != null) { |
| | | intersections.add(inter); |
| | | } |
| | | } |
| | | } |
| | | return result; |
| | | |
| | | return intersections; |
| | | } |
| | | |
| | | boolean isCircle() { |
| | | return isCircle; |
| | | } |
| | | } |
| | | |
| | | // --- 通用几何算法 --- |
| | | |
| | | private static List<Point> getOffsetPolygon(List<Point> points, double offset) { |
| | | |
| | | /** |
| | | * 判断点是否在多边形内部(射线法) |
| | | */ |
| | | private static boolean isPointInPolygon(Point p, List<Point> polygon) { |
| | | boolean inside = false; |
| | | for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) { |
| | | Point pi = polygon.get(i); |
| | | Point pj = polygon.get(j); |
| | | |
| | | if (((pi.y > p.y) != (pj.y > p.y)) && |
| | | (p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y) + pi.x)) { |
| | | inside = !inside; |
| | | } |
| | | } |
| | | return inside; |
| | | } |
| | | |
| | | /** |
| | | * 计算两条线段的交点 |
| | | */ |
| | | private static Point getLineIntersection(Point p1, Point p2, Point p3, Point p4) { |
| | | double denom = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x); |
| | | if (Math.abs(denom) < 1e-6) return null; // 平行 |
| | | |
| | | double t = ((p1.x - p3.x) * (p3.y - p4.y) - (p1.y - p3.y) * (p3.x - p4.x)) / denom; |
| | | double u = -((p1.x - p2.x) * (p1.y - p3.y) - (p1.y - p2.y) * (p1.x - p3.x)) / denom; |
| | | |
| | | if (t >= 0 && t <= 1 && u >= 0 && u <= 1) { |
| | | return new Point( |
| | | p1.x + t * (p2.x - p1.x), |
| | | p1.y + t * (p2.y - p1.y) |
| | | ); |
| | | } |
| | | return null; |
| | | } |
| | | |
| | | /** |
| | | * 计算两点距离 |
| | | */ |
| | | private static double distance(Point p1, Point p2) { |
| | | return Math.hypot(p1.x - p2.x, p1.y - p2.y); |
| | | } |
| | | |
| | | // ============ 以下是从A代码复用的方法 ============ |
| | | |
| | | private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) { |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | double minY = Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) minY = Math.min(minY, p.y); |
| | | |
| | | double firstY = minY + width/2; |
| | | List<Double> xInter = getXIntersections(rotatedPoly, firstY); |
| | | if (xInter.isEmpty()) return polygon.get(0); |
| | | Collections.sort(xInter); |
| | | return rotatePoint(new Point(xInter.get(0), firstY), angle); |
| | | } |
| | | |
| | | private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) { |
| | | int bestIdx = 0; |
| | | double minDist = Double.MAX_VALUE; |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y); |
| | | if (d < minDist) { minDist = d; bestIdx = i; } |
| | | } |
| | | List<Point> aligned = new ArrayList<>(); |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | aligned.add(boundary.get((bestIdx + i) % boundary.size())); |
| | | } |
| | | return aligned; |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) { |
| | | List<Double> xIntersections = new ArrayList<>(); |
| | | for (int i = 0; i < rotatedPoly.size(); i++) { |
| | | Point p1 = rotatedPoly.get(i); |
| | | Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size()); |
| | | if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) { |
| | | double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y); |
| | | xIntersections.add(x); |
| | | } |
| | | } |
| | | return xIntersections; |
| | | } |
| | | |
| | | private static double findOptimalAngle(List<Point> polygon) { |
| | | double bestAngle = 0; |
| | | double minHeight = Double.MAX_VALUE; |
| | | for (int i = 0; i < polygon.size(); i++) { |
| | | Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size()); |
| | | double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x); |
| | | double h = calculateHeightAtAngle(polygon, angle); |
| | | if (h < minHeight) { minHeight = h; bestAngle = angle; } |
| | | } |
| | | return bestAngle; |
| | | } |
| | | |
| | | private static double calculateHeightAtAngle(List<Point> poly, double angle) { |
| | | double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE; |
| | | for (Point p : poly) { |
| | | Point rp = rotatePoint(p, -angle); |
| | | minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y); |
| | | } |
| | | return maxY - minY; |
| | | } |
| | | |
| | | private static List<Point> getInsetPolygon(List<Point> points, double margin) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = points.get((i - 1 + n) % n); |
| | | Point p2 = points.get(i); |
| | | Point p3 = points.get((i + 1) % n); |
| | | Point pPrev = points.get((i - 1 + n) % n); |
| | | Point pCurr = points.get(i); |
| | | Point pNext = points.get((i + 1) % n); |
| | | |
| | | double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y; |
| | | double l1 = Math.hypot(d1x, d1y); |
| | | double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y; |
| | | double l2 = Math.hypot(d2x, d2y); |
| | | |
| | | if (l1 < 1e-6 || l2 < 1e-6) continue; |
| | | |
| | | double n1x = -d1y / l1, n1y = d1x / l1; |
| | | double n2x = -d2y / l2, n2y = d2x / l2; |
| | | |
| | | double bisectorX = n1x + n2x, bisectorY = n1y + n2y; |
| | | double bLen = Math.hypot(bisectorX, bisectorY); |
| | | if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; } |
| | | else { bisectorX /= bLen; bisectorY /= bLen; } |
| | | |
| | | double cosHalfAngle = n1x * bisectorX + n1y * bisectorY; |
| | | double dist = margin / Math.max(cosHalfAngle, 0.1); |
| | | |
| | | // 向量 p1->p2 和 p2->p3 |
| | | double v1x = p2.x - p1.x, v1y = p2.y - p1.y; |
| | | double v2x = p3.x - p2.x, v2y = p3.y - p2.y; |
| | | double l1 = Math.hypot(v1x, v1y), l2 = Math.hypot(v2x, v2y); |
| | | |
| | | if (l1 < 1e-5 || l2 < 1e-5) continue; |
| | | dist = Math.min(dist, margin * 5); |
| | | |
| | | // 法向量 (向左转90度: -y, x) |
| | | double n1x = -v1y / l1, n1y = v1x / l1; |
| | | double n2x = -v2y / l2, n2y = v2x / l2; |
| | | |
| | | // 角平分线 |
| | | double bx = n1x + n2x, by = n1y + n2y; |
| | | double bl = Math.hypot(bx, by); |
| | | if (bl < 1e-5) { bx = n1x; by = n1y; } |
| | | else { bx /= bl; by /= bl; } |
| | | |
| | | // 修正长度 offset / sin(theta/2) = offset / dot(n1, b) |
| | | double dot = n1x * bx + n1y * by; |
| | | double dist = offset / Math.max(Math.abs(dot), 0.1); // 防止尖角过长 |
| | | |
| | | // 阈值限制,防止自交或畸变过大 |
| | | dist = Math.signum(offset) * Math.min(Math.abs(dist), Math.abs(offset) * 3); |
| | | |
| | | result.add(new Point(p2.x + bx * dist, p2.y + by * dist)); |
| | | result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static double findOptimalAngle(List<Point> poly) { |
| | | double bestA = 0, minH = Double.MAX_VALUE; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size()); |
| | | double a = Math.atan2(p2.y - p1.y, p2.x - p1.x); |
| | | double h = calcHeight(poly, a); |
| | | if (h < minH) { minH = h; bestA = a; } |
| | | } |
| | | return bestA; |
| | | } |
| | | |
| | | private static double calcHeight(List<Point> poly, double ang) { |
| | | double min = Double.MAX_VALUE, max = -Double.MAX_VALUE; |
| | | for (Point p : poly) { |
| | | Point r = rotatePoint(p, -ang); |
| | | min = Math.min(min, r.y); max = Math.max(max, r.y); |
| | | } |
| | | return max - min; |
| | | } |
| | | |
| | | private static double getIntersectionT(Point a, Point b, Point c, Point d) { |
| | | double ux = b.x - a.x, uy = b.y - a.y; |
| | | double vx = d.x - c.x, vy = d.y - c.y; |
| | | double det = vx * uy - vy * ux; |
| | | if (Math.abs(det) < 1e-8) return -1; |
| | | |
| | | double wx = c.x - a.x, wy = c.y - a.y; |
| | | double t = (vx * wy - vy * wx) / det; |
| | | double u = (ux * wy - uy * wx) / det; |
| | | |
| | | if (u >= 0 && u <= 1) return t; // 只保证交点在线段CD上,t是AB上的比例 |
| | | return -1; |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> poly, double y) { |
| | | List<Double> res = new ArrayList<>(); |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size()); |
| | | if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) { |
| | | res.add(p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y)); |
| | | } |
| | | } |
| | | return res; |
| | | } |
| | | |
| | | private static List<Point> alignBoundaryStart(List<Point> poly, Point target) { |
| | | if (target == null) return poly; |
| | | int idx = 0; double minD = Double.MAX_VALUE; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | double d = distance(poly.get(i), target); |
| | | if (d < minD) { minD = d; idx = i; } |
| | | } |
| | | List<Point> res = new ArrayList<>(); |
| | | for (int i = 0; i < poly.size(); i++) res.add(poly.get((idx + i) % poly.size())); |
| | | return res; |
| | | } |
| | | |
| | | private static void ensureCounterClockwise(List<Point> pts) { |
| | | double s = 0; |
| | | for (int i = 0; i < pts.size(); i++) { |
| | | Point p1 = pts.get(i), p2 = pts.get((i + 1) % pts.size()); |
| | | s += (p2.x - p1.x) * (p2.y + p1.y); |
| | | } |
| | | if (s > 0) Collections.reverse(pts); // 假设屏幕坐标系Y向下?通常多边形面积公式s>0是顺时针(Y向下)或逆时针(Y向上) |
| | | // 此处沿用您代码的逻辑:如果Sum>0 则反转。 |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double a) { |
| | | double c = Math.cos(a), s = Math.sin(a); |
| | | return new Point(p.x * c - p.y * s, p.x * s + p.y * c); |
| | | |
| | | private static Point rotatePoint(Point p, double angle) { |
| | | double cos = Math.cos(angle), sin = Math.sin(angle); |
| | | return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos); |
| | | } |
| | | |
| | | private static Point interpolate(Point a, Point b, double t) { |
| | | return new Point(a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t); |
| | | } |
| | | |
| | | private static double distance(Point a, Point b) { |
| | | return Math.hypot(a.x - b.x, a.y - b.y); |
| | | } |
| | | |
| | | private static List<Point> parseCoordinates(String s) { |
| | | List<Point> pts = new ArrayList<>(); |
| | | if (s == null || s.isEmpty()) return pts; |
| | | for (String p : s.split(";")) { |
| | | String[] xy = p.split(","); |
| | | if (xy.length >= 2) pts.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1]))); |
| | | private static void ensureCounterClockwise(List<Point> points) { |
| | | double sum = 0; |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i), p2 = points.get((i + 1) % points.size()); |
| | | sum += (p2.x - p1.x) * (p2.y + p1.y); |
| | | } |
| | | if (pts.size() > 1 && distance(pts.get(0), pts.get(pts.size() - 1)) < 1e-4) pts.remove(pts.size() - 1); |
| | | return pts; |
| | | if (sum > 0) Collections.reverse(points); |
| | | } |
| | | |
| | | // --- 数据结构 --- |
| | | |
| | | private static List<Point> parseCoordinates(String coordinates) { |
| | | List<Point> points = new ArrayList<>(); |
| | | String[] pairs = coordinates.split(";"); |
| | | for (String pair : pairs) { |
| | | String[] xy = pair.split(","); |
| | | if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1]))); |
| | | } |
| | | if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1); |
| | | return points; |
| | | } |
| | | |
| | | /** |
| | | * 打印输出路径坐标到控制台 |
| | | */ |
| | | private static void printPathCoordinates(List<PathSegment> path) { |
| | | if (path == null || path.isEmpty()) { |
| | | System.out.println("路径为空"); |
| | | return; |
| | | } |
| | | |
| | | System.out.println("========== 路径坐标输出 =========="); |
| | | System.out.println("总路径段数: " + path.size()); |
| | | System.out.println(); |
| | | System.out.println("路径坐标序列 (格式: x,y;x,y;...):"); |
| | | |
| | | StringBuilder sb = new StringBuilder(); |
| | | for (int i = 0; i < path.size(); i++) { |
| | | PathSegment segment = path.get(i); |
| | | if (i == 0) { |
| | | // 第一个段的起点 |
| | | sb.append(String.format("%.2f,%.2f", segment.start.x, segment.start.y)); |
| | | } |
| | | // 每个段的终点 |
| | | sb.append(";"); |
| | | sb.append(String.format("%.2f,%.2f", segment.end.x, segment.end.y)); |
| | | } |
| | | |
| | | System.out.println(sb.toString()); |
| | | System.out.println(); |
| | | System.out.println("详细路径信息:"); |
| | | for (int i = 0; i < path.size(); i++) { |
| | | PathSegment segment = path.get(i); |
| | | String type = segment.isMowing ? "割草" : "空走"; |
| | | System.out.println(String.format("段 %d [%s]: (%.2f,%.2f) -> (%.2f,%.2f)", |
| | | i + 1, type, segment.start.x, segment.start.y, segment.end.x, segment.end.y)); |
| | | } |
| | | System.out.println("=================================="); |
| | | } |
| | | |
| | | public static class Point { |
| | | public double x, y; |
| | | public Point(double x, double y) { this.x = x; this.y = y; } |
| | | @Override |
| | | public boolean equals(Object o) { |
| | | if (!(o instanceof Point)) return false; |
| | | Point p = (Point) o; |
| | | return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4; |
| | | } |
| | | } |
| | | |
| | | |
| | | public static class PathSegment { |
| | | public Point start, end; |
| | | public boolean isMowing; |
| | | public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; } |
| | | @Override |
| | | public String toString() { return String.format("%.6f,%.6f;%.6f,%.6f", start.x, start.y, end.x, end.y); } |
| | | public PathSegment(Point s, Point e, boolean m) { |
| | | this.start = s; |
| | | this.end = e; |
| | | this.isMowing = m; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |