| | |
| | | import java.util.*; |
| | | |
| | | /** |
| | | * 异形草地路径规划 - 围边+全局扫描版 V4.1 |
| | | * 优化:围边终点与弓字形起点自动对齐,实现无缝切换,确保路径不越界 |
| | | * 异形草地路径规划 - 凹多边形兼容优化版 V5.0 |
| | | * 修复:解决凹多边形扫描线跨越边界的问题,优化路径对齐 |
| | | */ |
| | | public class YixinglujingNoObstacle { |
| | | |
| | | // 用法说明(无障碍物路径规划): |
| | | // - 方法用途:根据地块边界、割草宽度与安全边距,生成覆盖全区域的割草路径。 |
| | | // - 参数: |
| | | // coordinates:地块边界坐标字符串,格式 "x1,y1;x2,y2;...",至少3个点,单位为米。 |
| | | // widthStr:割草宽度(字符串,单位米),用于确定扫描线间距。 |
| | | // marginStr:安全边距(字符串,单位米),用于将地块边界向内收缩,避免贴边作业。 |
| | | // - 返回值:List<PathSegment>,其中 PathSegment.start/end 为坐标点,isMowing 为 true 表示割草段,false 表示空走段。 |
| | | // - 失败情况:当边界点不足或内缩后区域过小,返回空列表。 |
| | | // - 使用示例: |
| | | // String boundary = "0,0;20,0;20,15;0,15"; |
| | | // String width = "0.3"; |
| | | // String margin = "0.5"; |
| | | // List<YixinglujingNoObstacle.PathSegment> path = |
| | | // YixinglujingNoObstacle.planPath(boundary, width, margin); |
| | | public static List<PathSegment> planPath(String coordinates, String widthStr, String marginStr) { |
| | | List<Point> rawPoints = parseCoordinates(coordinates); |
| | | if (rawPoints.size() < 3) return new ArrayList<>(); |
| | |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 1. 预处理:逆时针化 |
| | | // 1. 预处理:确保逆时针顺序 |
| | | ensureCounterClockwise(rawPoints); |
| | | |
| | | // 2. 生成内缩多边形 |
| | | // 2. 生成内缩多边形(安全边界) |
| | | List<Point> boundary = getInsetPolygon(rawPoints, safeMargin); |
| | | if (boundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 3. 确定最优扫描角度并找到弓字形路径的第一个作业起点 |
| | | // 3. 确定最优作业角度 |
| | | double bestAngle = findOptimalAngle(boundary); |
| | | |
| | | // 4. 获取首个作业点,用于对齐围边起点 |
| | | Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle); |
| | | |
| | | // 4. 对齐围边起点:重新排列围边坐标,使最后一个点靠近(或等于)扫描起点 |
| | | // 5. 对齐围边:使围边最后结束于靠近扫描起点的位置 |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart); |
| | | |
| | | List<PathSegment> finalPath = new ArrayList<>(); |
| | | |
| | | // 5. 【第一步】生成围边路径 |
| | | // 6. 第一阶段:围边路径 |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | Point pStart = alignedBoundary.get(i); |
| | | Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size()); |
| | | finalPath.add(new PathSegment(pStart, pEnd, true)); |
| | | } |
| | | |
| | | // 6. 【第二步】从对齐后的终点开始生成内部扫描路径 |
| | | Point lastEdgePos = alignedBoundary.get(0); // 围边闭合回到起点 |
| | | // 7. 第二阶段:生成内部扫描路径(修复凹部空越问题) |
| | | Point lastEdgePos = alignedBoundary.get(0); |
| | | List<PathSegment> scanPath = generateGlobalScanPath(boundary, mowWidth, bestAngle, lastEdgePos); |
| | | |
| | | finalPath.addAll(scanPath); |
| | | |
| | | // 8. 格式化坐标:保留两位小数 |
| | | for (PathSegment segment : finalPath) { |
| | | segment.start.x = Math.round(segment.start.x * 100.0) / 100.0; |
| | | segment.start.y = Math.round(segment.start.y * 100.0) / 100.0; |
| | | segment.end.x = Math.round(segment.end.x * 100.0) / 100.0; |
| | | segment.end.y = Math.round(segment.end.y * 100.0) / 100.0; |
| | | } |
| | | |
| | | return finalPath; |
| | | } |
| | | |
| | | /** |
| | | * 计算并获取扫描路径的第一行起点 |
| | | */ |
| | | private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) { |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | |
| | | double minY = Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) minY = Math.min(minY, p.y); |
| | | |
| | | double firstY = minY + width; |
| | | List<Double> xIntersections = getXIntersections(rotatedPoly, firstY); |
| | | |
| | | if (xIntersections.isEmpty()) return polygon.get(0); |
| | | return rotatePoint(new Point(Collections.min(xIntersections), firstY), angle); |
| | | } |
| | | |
| | | /** |
| | | * 重新排列多边形顶点,使起始点与扫描起点对接 |
| | | */ |
| | | private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) { |
| | | int bestIdx = 0; |
| | | double minDist = Double.MAX_VALUE; |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y); |
| | | if (d < minDist) { |
| | | minDist = d; |
| | | bestIdx = i; |
| | | } |
| | | } |
| | | List<Point> aligned = new ArrayList<>(); |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | aligned.add(boundary.get((bestIdx + i) % boundary.size())); |
| | | } |
| | | return aligned; |
| | | } |
| | | |
| | | private static List<PathSegment> generateGlobalScanPath(List<Point> polygon, double width, double angle, Point currentPos) { |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | |
| | | } |
| | | |
| | | boolean leftToRight = true; |
| | | // 从 minY + width 开始,避开围边已割区域 |
| | | for (double y = minY + width; y <= maxY - width/2; y += width) { |
| | | // 步长 y 从最小到最大扫描 |
| | | for (double y = minY + width/2; y <= maxY - width/2; y += width) { |
| | | List<Double> xIntersections = getXIntersections(rotatedPoly, y); |
| | | if (xIntersections.size() < 2) continue; |
| | | Collections.sort(xIntersections); |
| | | |
| | | List<PathSegment> lineRows = new ArrayList<>(); |
| | | // 处理凹多边形:每两个点组成一个有效作业段 |
| | | List<PathSegment> lineSegmentsInRow = new ArrayList<>(); |
| | | for (int i = 0; i < xIntersections.size() - 1; i += 2) { |
| | | Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle); |
| | | Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle); |
| | | lineRows.add(new PathSegment(pS, pE, true)); |
| | | lineSegmentsInRow.add(new PathSegment(pS, pE, true)); |
| | | } |
| | | |
| | | // 根据当前S型方向排序作业段 |
| | | if (!leftToRight) { |
| | | Collections.reverse(lineRows); |
| | | for (PathSegment s : lineRows) { |
| | | Point t = s.start; s.start = s.end; s.end = t; |
| | | Collections.reverse(lineSegmentsInRow); |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | Point temp = s.start; s.start = s.end; s.end = temp; |
| | | } |
| | | } |
| | | |
| | | for (PathSegment s : lineRows) { |
| | | // 如果间距极小,视为无缝衔接 |
| | | if (Math.hypot(currentPos.x - s.start.x, currentPos.y - s.start.y) > 0.05) { |
| | | segments.add(new PathSegment(currentPos, s.start, false)); |
| | | // 将作业段连接到总路径 |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | if (Math.hypot(currentPos.x - s.start.x, currentPos.y - s.start.y) > 0.01) { |
| | | // 如果间距大于1cm,添加空走路径 |
| | | addSafeConnection(segments, currentPos, s.start, polygon); |
| | | } |
| | | segments.add(s); |
| | | currentPos = s.end; |
| | |
| | | return segments; |
| | | } |
| | | |
| | | private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) { |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | double minY = Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) minY = Math.min(minY, p.y); |
| | | |
| | | double firstY = minY + width/2; |
| | | List<Double> xInter = getXIntersections(rotatedPoly, firstY); |
| | | if (xInter.isEmpty()) return polygon.get(0); |
| | | Collections.sort(xInter); |
| | | return rotatePoint(new Point(xInter.get(0), firstY), angle); |
| | | } |
| | | |
| | | private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) { |
| | | int bestIdx = 0; |
| | | double minDist = Double.MAX_VALUE; |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y); |
| | | if (d < minDist) { minDist = d; bestIdx = i; } |
| | | } |
| | | List<Point> aligned = new ArrayList<>(); |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | aligned.add(boundary.get((bestIdx + i) % boundary.size())); |
| | | } |
| | | return aligned; |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) { |
| | | List<Double> xIntersections = new ArrayList<>(); |
| | | double tolerance = 1e-6; |
| | | |
| | | for (int i = 0; i < rotatedPoly.size(); i++) { |
| | | Point p1 = rotatedPoly.get(i); |
| | | Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size()); |
| | | if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) { |
| | | |
| | | // 跳过水平边(避免与扫描线重合时的特殊情况) |
| | | if (Math.abs(p1.y - p2.y) < tolerance) { |
| | | continue; |
| | | } |
| | | |
| | | // 检查是否相交(使用严格不等式避免顶点重复) |
| | | if ((p1.y < y && p2.y >= y) || (p2.y < y && p1.y >= y)) { |
| | | double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y); |
| | | xIntersections.add(x); |
| | | // 简单去重:检查是否已存在相近的点 |
| | | boolean isDuplicate = false; |
| | | for (double existingX : xIntersections) { |
| | | if (Math.abs(x - existingX) < tolerance) { |
| | | isDuplicate = true; |
| | | break; |
| | | } |
| | | } |
| | | if (!isDuplicate) { |
| | | xIntersections.add(x); |
| | | } |
| | | } |
| | | } |
| | | return xIntersections; |
| | |
| | | return maxY - minY; |
| | | } |
| | | |
| | | private static List<Point> getInsetPolygon(List<Point> points, double margin) { |
| | | public static List<Point> getInsetPolygon(List<Point> points, double margin) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point pPrev = points.get((i - 1 + n) % n); |
| | | Point pCurr = points.get(i); |
| | | Point pNext = points.get((i + 1) % n); |
| | | |
| | | double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y; |
| | | double l1 = Math.hypot(d1x, d1y); |
| | | double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y; |
| | | double l2 = Math.hypot(d2x, d2y); |
| | | |
| | | if (l1 < 1e-6 || l2 < 1e-6) continue; |
| | | |
| | | // 单位法向量 |
| | | double n1x = -d1y / l1, n1y = d1x / l1; |
| | | double n2x = -d2y / l2, n2y = d2x / l2; |
| | | |
| | | // 角平分线方向 |
| | | double bisectorX = n1x + n2x, bisectorY = n1y + n2y; |
| | | double bLen = Math.hypot(bisectorX, bisectorY); |
| | | if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; } |
| | | else { bisectorX /= bLen; bisectorY /= bLen; } |
| | | |
| | | double cosHalfAngle = n1x * bisectorX + n1y * bisectorY; |
| | | double dist = margin / Math.max(cosHalfAngle, 0.1); |
| | | double dist = margin / Math.max(cosHalfAngle, 0.1); |
| | | |
| | | // 限制最大位移量,防止极尖角畸变 |
| | | dist = Math.min(dist, margin * 5); |
| | | |
| | | result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static void addSafeConnection(List<PathSegment> segments, Point start, Point end, List<Point> polygon) { |
| | | if (isSegmentSafe(start, end, polygon)) { |
| | | segments.add(new PathSegment(start, end, false)); |
| | | } else { |
| | | List<Point> path = getBoundaryPath(start, end, polygon); |
| | | for (int i = 0; i < path.size() - 1; i++) { |
| | | segments.add(new PathSegment(path.get(i), path.get(i+1), false)); |
| | | } |
| | | } |
| | | } |
| | | |
| | | private static boolean isSegmentSafe(Point p1, Point p2, List<Point> polygon) { |
| | | Point mid = new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2); |
| | | if (!isPointInPolygon(mid, polygon)) return false; |
| | | |
| | | for (int i = 0; i < polygon.size(); i++) { |
| | | Point a = polygon.get(i); |
| | | Point b = polygon.get((i + 1) % polygon.size()); |
| | | if (isSamePoint(p1, a) || isSamePoint(p1, b) || isSamePoint(p2, a) || isSamePoint(p2, b)) continue; |
| | | if (segmentsIntersect(p1, p2, a, b)) return false; |
| | | } |
| | | return true; |
| | | } |
| | | |
| | | private static boolean isSamePoint(Point a, Point b) { |
| | | return Math.abs(a.x - b.x) < 1e-4 && Math.abs(a.y - b.y) < 1e-4; |
| | | } |
| | | |
| | | private static boolean segmentsIntersect(Point a, Point b, Point c, Point d) { |
| | | return ccw(a, c, d) != ccw(b, c, d) && ccw(a, b, c) != ccw(a, b, d); |
| | | } |
| | | |
| | | private static boolean ccw(Point a, Point b, Point c) { |
| | | return (c.y - a.y) * (b.x - a.x) > (b.y - a.y) * (c.x - a.x); |
| | | } |
| | | |
| | | private static boolean isPointInPolygon(Point p, List<Point> polygon) { |
| | | boolean result = false; |
| | | for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) { |
| | | if ((polygon.get(i).y > p.y) != (polygon.get(j).y > p.y) && |
| | | (p.x < (polygon.get(j).x - polygon.get(i).x) * (p.y - polygon.get(i).y) / (polygon.get(j).y - polygon.get(i).y) + polygon.get(i).x)) { |
| | | result = !result; |
| | | } |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static List<Point> getBoundaryPath(Point start, Point end, List<Point> polygon) { |
| | | int idx1 = getEdgeIndex(start, polygon); |
| | | int idx2 = getEdgeIndex(end, polygon); |
| | | |
| | | if (idx1 == -1 || idx2 == -1 || idx1 == idx2) { |
| | | return Arrays.asList(start, end); |
| | | } |
| | | |
| | | List<Point> path1 = new ArrayList<>(); |
| | | path1.add(start); |
| | | int curr = idx1; |
| | | while (curr != idx2) { |
| | | path1.add(polygon.get((curr + 1) % polygon.size())); |
| | | curr = (curr + 1) % polygon.size(); |
| | | } |
| | | path1.add(end); |
| | | |
| | | List<Point> pathRev = new ArrayList<>(); |
| | | pathRev.add(start); |
| | | curr = idx1; |
| | | while (curr != idx2) { |
| | | pathRev.add(polygon.get(curr)); |
| | | curr = (curr - 1 + polygon.size()) % polygon.size(); |
| | | } |
| | | pathRev.add(polygon.get((idx2 + 1) % polygon.size())); |
| | | pathRev.add(end); |
| | | |
| | | return getPathLength(path1) < getPathLength(pathRev) ? path1 : pathRev; |
| | | } |
| | | |
| | | private static double getPathLength(List<Point> path) { |
| | | double len = 0; |
| | | for (int i = 0; i < path.size() - 1; i++) { |
| | | len += Math.hypot(path.get(i).x - path.get(i+1).x, path.get(i).y - path.get(i+1).y); |
| | | } |
| | | return len; |
| | | } |
| | | |
| | | private static int getEdgeIndex(Point p, List<Point> poly) { |
| | | int bestIdx = -1; |
| | | double minD = Double.MAX_VALUE; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i); |
| | | Point p2 = poly.get((i + 1) % poly.size()); |
| | | double d = distToSegment(p, p1, p2); |
| | | if (d < minD) { |
| | | minD = d; |
| | | bestIdx = i; |
| | | } |
| | | } |
| | | // 只要找到最近的边即可,放宽阈值以应对浮点误差和旋转变形 |
| | | // 如果距离过大(例如超过1米),可能确实不在边界上,但在路径规划上下文中, |
| | | // 这些点是由扫描线生成的,理论上一定在边界上,所以强制吸附是安全的。 |
| | | return minD < 1.0 ? bestIdx : -1; |
| | | } |
| | | |
| | | private static double distToSegment(Point p, Point s, Point e) { |
| | | double l2 = (s.x - e.x)*(s.x - e.x) + (s.y - e.y)*(s.y - e.y); |
| | | if (l2 == 0) return Math.hypot(p.x - s.x, p.y - s.y); |
| | | double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2; |
| | | t = Math.max(0, Math.min(1, t)); |
| | | return Math.hypot(p.x - (s.x + t * (e.x - s.x)), p.y - (s.y + t * (e.y - s.y))); |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double angle) { |
| | | double cos = Math.cos(angle), sin = Math.sin(angle); |
| | | return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos); |
| | | } |
| | | |
| | | private static void ensureCounterClockwise(List<Point> points) { |
| | | public static void ensureCounterClockwise(List<Point> points) { |
| | | double sum = 0; |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i), p2 = points.get((i + 1) % points.size()); |
| | |
| | | |
| | | public static class PathSegment { |
| | | public Point start, end; |
| | | public boolean isMowing; |
| | | public boolean isMowing; // true: 割草中, false: 空载移动 |
| | | public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; } |
| | | } |
| | | } |