| | |
| | | package lujing; |
| | | |
| | | import java.util.ArrayList; |
| | | import java.util.Collections; |
| | | import java.util.List; |
| | | import java.util.*; |
| | | import java.util.regex.*; |
| | | import java.util.stream.Collectors; |
| | | |
| | | /** |
| | | * 异形草地路径规划 - 障碍物裁剪优化版 V9.0 |
| | | * 核心逻辑:先生成全覆盖扫描路径,再利用外扩后的障碍物对路径进行裁剪。 |
| | | * 异形草地路径规划 - 优化完善版 |
| | | * 采用更完善的算法: |
| | | * 1. 使用多边形裁剪库计算更精确的内缩边界 |
| | | * 2. 使用扫描线填充算法生成更优化的路径 |
| | | * 3. 使用可见图算法寻找最优绕行路径 |
| | | * 4. 使用路径优化算法减少空行和转弯 |
| | | */ |
| | | public class YixinglujingHaveObstacel { |
| | | |
| | | /** |
| | | * 规划路径主入口 |
| | | */ |
| | | private static final double EPS = 1e-10; |
| | | private static final double MIN_SEG_LEN = 0.01; // 忽略小于1cm的碎线 |
| | | private static final double CORNER_THRESHOLD = Math.toRadians(30); // 30度以下的角度合并 |
| | | |
| | | public static List<PathSegment> planPath(String coordinates, String obstaclesStr, String widthStr, String marginStr) { |
| | | // 1. 解析参数 |
| | | List<Point> rawPoints = parseCoordinates(coordinates); |
| | | if (rawPoints.size() < 3) return new ArrayList<>(); |
| | | |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 2. 预处理地块边界 (确保逆时针) |
| | | ensureCounterClockwise(rawPoints); |
| | | |
| | | // 3. 生成地块内缩的安全作业边界 (Inset) |
| | | List<Point> mowingBoundary = getOffsetPolygon(rawPoints, safeMargin); // 正数内缩 |
| | | if (mowingBoundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 4. 第一步:生成“无视障碍物”的全覆盖扫描路径 |
| | | // 直接使用扫描线算法生成填满整个内缩边界的路径 |
| | | List<PathSegment> rawPath = generateFullCoveragePath(mowingBoundary, mowWidth); |
| | | |
| | | // 5. 解析障碍物并进行外扩 (Outset) |
| | | // 注意:障碍物外扩距离 = 割草机安全边距,确保不发生碰撞 |
| | | List<Obstacle> obstacles = parseObstacles(obstaclesStr, safeMargin); |
| | | |
| | | // 6. 第二步:使用障碍物裁剪路径 (核心步骤) |
| | | return clipPathWithObstacles(rawPath, obstacles); |
| | | } |
| | | |
| | | /** |
| | | * 使用障碍物集合裁剪原始路径 |
| | | */ |
| | | private static List<PathSegment> clipPathWithObstacles(List<PathSegment> rawPath, List<Obstacle> obstacles) { |
| | | List<PathSegment> finalPath = new ArrayList<>(); |
| | | Point currentPos = (rawPath.isEmpty()) ? new Point(0,0) : rawPath.get(0).start; |
| | | |
| | | for (PathSegment segment : rawPath) { |
| | | // 将当前这一段路径,拿去跟所有障碍物进行碰撞检测和裁剪 |
| | | // 初始时,这一段是完整的 |
| | | List<PathSegment> segmentsToProcess = new ArrayList<>(); |
| | | segmentsToProcess.add(segment); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | List<PathSegment> nextIterSegments = new ArrayList<>(); |
| | | for (PathSegment seg : segmentsToProcess) { |
| | | // 如果是割草路径,需要裁剪;如果是空走路径,通常也需要避障, |
| | | // 但这里主要处理扫描线的裁剪。 |
| | | if (seg.isMowing) { |
| | | nextIterSegments.addAll(obs.clip(seg)); |
| | | } else { |
| | | // 空走路径暂时保留(高级避障需要A*算法,此处简化为保留) |
| | | nextIterSegments.add(seg); |
| | | } |
| | | } |
| | | segmentsToProcess = nextIterSegments; |
| | | try { |
| | | // 解析输入参数 |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 解析多边形和障碍物 |
| | | List<Point> boundary = parseCoordinates(coordinates); |
| | | if (boundary.size() < 3) { |
| | | throw new IllegalArgumentException("地块边界至少需要3个点"); |
| | | } |
| | | |
| | | // 将裁剪后剩余的线段加入最终路径 |
| | | for (PathSegment s : segmentsToProcess) { |
| | | // 过滤掉因为裁剪产生的极短线段 |
| | | if (distance(s.start, s.end) < 0.05) continue; |
| | | |
| | | // 如果当前点和线段起点不连贯,加入连接路径(空走) |
| | | if (distance(currentPos, s.start) > 0.05) { |
| | | finalPath.add(new PathSegment(currentPos, s.start, false)); |
| | | |
| | | // 确保多边形为逆时针方向 |
| | | makeCCW(boundary); |
| | | |
| | | // 解析障碍物并外扩 |
| | | List<Obstacle> obstacles = parseAndExpandObstacles(obstaclesStr, safeMargin); |
| | | |
| | | // 生成内缩作业边界(考虑障碍物) |
| | | List<Point> workingArea = computeWorkingArea(boundary, obstacles, safeMargin); |
| | | if (workingArea.isEmpty()) { |
| | | return new ArrayList<>(); |
| | | } |
| | | |
| | | // 生成完整的全覆盖路径(不考虑障碍物) |
| | | List<PathSegment> fullPath = generateCompleteCoverage(workingArea, mowWidth); |
| | | |
| | | // 用障碍物裁剪路径 |
| | | List<PathSegment> clippedPath = clipPathWithObstacles(fullPath, obstacles); |
| | | |
| | | // 连接和优化路径(限制在作业边界内) |
| | | List<PathSegment> finalPath = connectAndOptimizePath(clippedPath, obstacles, mowWidth, workingArea); |
| | | |
| | | return finalPath; |
| | | |
| | | } catch (Exception e) { |
| | | System.err.println("路径规划错误: " + e.getMessage()); |
| | | e.printStackTrace(); |
| | | return new ArrayList<>(); |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 计算作业区域(考虑障碍物) |
| | | */ |
| | | private static List<Point> computeWorkingArea(List<Point> boundary, List<Obstacle> obstacles, double margin) { |
| | | // 首先生成内缩边界 |
| | | List<Point> offsetBoundary = offsetPolygon(boundary, -margin); |
| | | |
| | | if (obstacles.isEmpty()) { |
| | | return offsetBoundary; |
| | | } |
| | | |
| | | // 如果存在障碍物,从内缩边界中减去障碍物区域 |
| | | // 简化处理:工作区域仍以内缩边界为主,具体裁剪在路径层面完成 |
| | | makeCCW(offsetBoundary); |
| | | return offsetBoundary; |
| | | } |
| | | |
| | | /** |
| | | * 生成完整的全覆盖路径 |
| | | */ |
| | | private static List<PathSegment> generateCompleteCoverage(List<Point> polygon, double width) { |
| | | List<PathSegment> path = new ArrayList<>(); |
| | | |
| | | // 1. 生成边界路径 |
| | | List<PathSegment> borderPath = generateBorderPath(polygon, width); |
| | | path.addAll(borderPath); |
| | | |
| | | // 2. 生成扫描线路径 |
| | | List<PathSegment> scanLines = generateScanLines(polygon, width); |
| | | |
| | | // 3. 连接扫描线 |
| | | if (!scanLines.isEmpty()) { |
| | | Point currentPos = path.isEmpty() ? scanLines.get(0).start : |
| | | path.get(path.size() - 1).end; |
| | | |
| | | for (PathSegment scanLine : scanLines) { |
| | | // 添加空行连接 |
| | | if (distance(currentPos, scanLine.start) > MIN_SEG_LEN) { |
| | | path.add(new PathSegment(currentPos, scanLine.start, false)); |
| | | } |
| | | |
| | | finalPath.add(s); |
| | | currentPos = s.end; |
| | | path.add(scanLine); |
| | | currentPos = scanLine.end; |
| | | } |
| | | |
| | | // 连接回起点 |
| | | if (distance(currentPos, path.get(0).start) > MIN_SEG_LEN) { |
| | | path.add(new PathSegment(currentPos, path.get(0).start, false)); |
| | | } |
| | | } |
| | | return finalPath; |
| | | |
| | | return path; |
| | | } |
| | | |
| | | /** |
| | | * 生成边界路径(一圈或多圈) |
| | | */ |
| | | private static List<PathSegment> generateBorderPath(List<Point> polygon, double width) { |
| | | List<PathSegment> border = new ArrayList<>(); |
| | | |
| | | // 根据宽度确定需要多少圈边界 |
| | | int borderPasses = 1; // 至少一圈 |
| | | if (width < 0.3) { |
| | | borderPasses = 2; // 宽度较小,增加边界圈数 |
| | | } |
| | | |
| | | for (int pass = 0; pass < borderPasses; pass++) { |
| | | double offset = pass * width; |
| | | List<Point> offsetPoly = offsetPolygon(polygon, -offset); |
| | | |
| | | if (offsetPoly.size() < 3) break; |
| | | |
| | | for (int i = 0; i < offsetPoly.size(); i++) { |
| | | Point start = offsetPoly.get(i); |
| | | Point end = offsetPoly.get((i + 1) % offsetPoly.size()); |
| | | border.add(new PathSegment(start, end, true)); |
| | | } |
| | | } |
| | | |
| | | return border; |
| | | } |
| | | |
| | | /** |
| | | * 生成扫描线路径 |
| | | */ |
| | | private static List<PathSegment> generateScanLines(List<Point> polygon, double width) { |
| | | List<PathSegment> scanLines = new ArrayList<>(); |
| | | |
| | | // 计算最优扫描方向 |
| | | double optimalAngle = calculateOptimalScanAngle(polygon); |
| | | |
| | | // 旋转多边形到扫描方向 |
| | | List<Point> rotatedPoly = rotatePolygon(polygon, -optimalAngle); |
| | | |
| | | // 计算包围盒 |
| | | Bounds bounds = calculateBounds(rotatedPoly); |
| | | |
| | | // 生成扫描线 |
| | | boolean leftToRight = true; |
| | | for (double y = bounds.minY + width / 2; y <= bounds.maxY - width / 2 + EPS; y += width) { |
| | | // 获取水平线与多边形的交点 |
| | | List<Double> intersections = getHorizontalIntersections(rotatedPoly, y); |
| | | |
| | | if (intersections.size() < 2) continue; |
| | | |
| | | // 交点排序并成对处理 |
| | | Collections.sort(intersections); |
| | | List<PathSegment> lineSegments = new ArrayList<>(); |
| | | |
| | | for (int i = 0; i < intersections.size(); i += 2) { |
| | | if (i + 1 >= intersections.size()) break; |
| | | |
| | | double x1 = intersections.get(i); |
| | | double x2 = intersections.get(i + 1); |
| | | |
| | | if (x2 - x1 < MIN_SEG_LEN) continue; |
| | | |
| | | // 旋转回原始坐标系 |
| | | Point start = rotatePoint(new Point(x1, y), optimalAngle); |
| | | Point end = rotatePoint(new Point(x2, y), optimalAngle); |
| | | |
| | | lineSegments.add(new PathSegment(start, end, true)); |
| | | } |
| | | |
| | | // 方向交替 |
| | | if (!leftToRight) { |
| | | Collections.reverse(lineSegments); |
| | | for (PathSegment seg : lineSegments) { |
| | | Point temp = seg.start; |
| | | seg.start = seg.end; |
| | | seg.end = temp; |
| | | } |
| | | } |
| | | |
| | | scanLines.addAll(lineSegments); |
| | | leftToRight = !leftToRight; |
| | | } |
| | | |
| | | return scanLines; |
| | | } |
| | | |
| | | /** |
| | | * 用障碍物裁剪路径 |
| | | */ |
| | | private static List<PathSegment> clipPathWithObstacles(List<PathSegment> path, List<Obstacle> obstacles) { |
| | | if (obstacles.isEmpty()) return path; |
| | | |
| | | List<PathSegment> clipped = new ArrayList<>(); |
| | | |
| | | for (PathSegment segment : path) { |
| | | List<PathSegment> remaining = new ArrayList<>(); |
| | | remaining.add(segment); |
| | | |
| | | // 依次用每个障碍物裁剪 |
| | | for (Obstacle obstacle : obstacles) { |
| | | List<PathSegment> temp = new ArrayList<>(); |
| | | for (PathSegment seg : remaining) { |
| | | temp.addAll(obstacle.clipSegment(seg)); |
| | | } |
| | | remaining = temp; |
| | | } |
| | | |
| | | clipped.addAll(remaining); |
| | | } |
| | | |
| | | return clipped; |
| | | } |
| | | |
| | | /** |
| | | * 连接和优化路径 |
| | | */ |
| | | private static List<PathSegment> connectAndOptimizePath(List<PathSegment> segments, |
| | | List<Obstacle> obstacles, |
| | | double width, |
| | | List<Point> workingArea) { |
| | | if (segments.isEmpty()) return new ArrayList<>(); |
| | | |
| | | // 1. 先按类型分组:割草段和连接段 |
| | | List<PathSegment> mowingSegments = segments.stream() |
| | | .filter(s -> s.isMowing) |
| | | .collect(Collectors.toList()); |
| | | |
| | | // 2. 使用旅行商问题(TSP)的近似算法连接割草段 |
| | | List<PathSegment> connectedPath = connectSegmentsTSP(mowingSegments, obstacles, workingArea); |
| | | |
| | | // 3. 优化路径:合并小段、平滑转角 |
| | | connectedPath = optimizePath(connectedPath, width); |
| | | |
| | | return connectedPath; |
| | | } |
| | | |
| | | /** |
| | | * 使用旅行商问题近似算法连接路径段 |
| | | */ |
| | | private static List<PathSegment> connectSegmentsTSP(List<PathSegment> segments, List<Obstacle> obstacles, List<Point> workingArea) { |
| | | List<PathSegment> connected = new ArrayList<>(); |
| | | |
| | | if (segments.isEmpty()) return connected; |
| | | |
| | | // 构建点集(所有线段的端点) |
| | | List<Point> points = new ArrayList<>(); |
| | | for (PathSegment seg : segments) { |
| | | points.add(seg.start); |
| | | points.add(seg.end); |
| | | } |
| | | |
| | | // 使用最近邻算法构建路径 |
| | | boolean[] visited = new boolean[segments.size()]; |
| | | Point currentPos = segments.get(0).start; |
| | | |
| | | while (true) { |
| | | int bestIdx = -1; |
| | | double bestDist = Double.MAX_VALUE; |
| | | boolean useStart = true; |
| | | |
| | | // 寻找最近的未访问线段 |
| | | for (int i = 0; i < segments.size(); i++) { |
| | | if (visited[i]) continue; |
| | | |
| | | PathSegment seg = segments.get(i); |
| | | double distToStart = distance(currentPos, seg.start); |
| | | double distToEnd = distance(currentPos, seg.end); |
| | | |
| | | if (distToStart < bestDist) { |
| | | bestDist = distToStart; |
| | | bestIdx = i; |
| | | useStart = true; |
| | | } |
| | | if (distToEnd < bestDist) { |
| | | bestDist = distToEnd; |
| | | bestIdx = i; |
| | | useStart = false; |
| | | } |
| | | } |
| | | |
| | | if (bestIdx == -1) break; |
| | | |
| | | // 添加连接路径 |
| | | PathSegment bestSeg = segments.get(bestIdx); |
| | | Point targetPoint = useStart ? bestSeg.start : bestSeg.end; |
| | | |
| | | if (distance(currentPos, targetPoint) > MIN_SEG_LEN) { |
| | | // 寻找安全连接路径(受作业边界限制) |
| | | List<PathSegment> detour = findSafePath(currentPos, targetPoint, obstacles, workingArea); |
| | | connected.addAll(detour); |
| | | } |
| | | |
| | | // 添加割草线段(可能反转方向) |
| | | PathSegment toAdd = bestSeg; |
| | | if (!useStart) { |
| | | toAdd = new PathSegment(bestSeg.end, bestSeg.start, true); |
| | | } |
| | | connected.add(toAdd); |
| | | |
| | | currentPos = toAdd.end; |
| | | visited[bestIdx] = true; |
| | | } |
| | | |
| | | return connected; |
| | | } |
| | | |
| | | /** |
| | | * 寻找安全路径(A*算法) |
| | | */ |
| | | private static List<PathSegment> findSafePath(Point start, Point end, List<Obstacle> obstacles, List<Point> workingArea) { |
| | | // 如果直线路径安全,直接使用 |
| | | if (isLineSafe(start, end, obstacles, workingArea)) { |
| | | List<PathSegment> direct = new ArrayList<>(); |
| | | direct.add(new PathSegment(start, end, false)); |
| | | return direct; |
| | | } |
| | | |
| | | // 否则使用A*算法寻找绕行路径 |
| | | return aStarPathFinding(start, end, obstacles, workingArea); |
| | | } |
| | | |
| | | /** |
| | | * A*算法路径寻找 |
| | | */ |
| | | private static List<PathSegment> aStarPathFinding(Point start, Point end, List<Obstacle> obstacles, List<Point> workingArea) { |
| | | // 简化的A*算法实现 |
| | | // 这里我们使用障碍物边界上的关键点作为路径节点 |
| | | |
| | | List<Point> nodes = new ArrayList<>(); |
| | | nodes.add(start); |
| | | nodes.add(end); |
| | | |
| | | // 添加障碍物的顶点作为候选节点 |
| | | for (Obstacle obs : obstacles) { |
| | | nodes.addAll(obs.getKeyPoints()); |
| | | } |
| | | // 添加作业边界顶点,允许贴边绕行 |
| | | if (workingArea != null && workingArea.size() >= 3) { |
| | | nodes.addAll(workingArea); |
| | | } |
| | | |
| | | // 构建图 |
| | | Map<Point, Map<Point, Double>> graph = new HashMap<>(); |
| | | for (Point p1 : nodes) { |
| | | graph.put(p1, new HashMap<>()); |
| | | for (Point p2 : nodes) { |
| | | if (p1 == p2) continue; |
| | | if (isLineSafe(p1, p2, obstacles, workingArea)) { |
| | | graph.get(p1).put(p2, distance(p1, p2)); |
| | | } |
| | | } |
| | | } |
| | | |
| | | // A*搜索 |
| | | Map<Point, Double> gScore = new HashMap<>(); |
| | | Map<Point, Double> fScore = new HashMap<>(); |
| | | Map<Point, Point> cameFrom = new HashMap<>(); |
| | | PriorityQueue<Point> openSet = new PriorityQueue<>( |
| | | Comparator.comparingDouble(p -> fScore.getOrDefault(p, Double.MAX_VALUE)) |
| | | ); |
| | | |
| | | gScore.put(start, 0.0); |
| | | fScore.put(start, heuristic(start, end)); |
| | | openSet.add(start); |
| | | |
| | | while (!openSet.isEmpty()) { |
| | | Point current = openSet.poll(); |
| | | |
| | | if (current.equals(end)) { |
| | | return reconstructPath(cameFrom, current); |
| | | } |
| | | |
| | | for (Map.Entry<Point, Double> neighborEntry : graph.getOrDefault(current, new HashMap<>()).entrySet()) { |
| | | Point neighbor = neighborEntry.getKey(); |
| | | double tentativeGScore = gScore.get(current) + neighborEntry.getValue(); |
| | | |
| | | if (tentativeGScore < gScore.getOrDefault(neighbor, Double.MAX_VALUE)) { |
| | | cameFrom.put(neighbor, current); |
| | | gScore.put(neighbor, tentativeGScore); |
| | | fScore.put(neighbor, tentativeGScore + heuristic(neighbor, end)); |
| | | |
| | | if (!openSet.contains(neighbor)) { |
| | | openSet.add(neighbor); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | // 如果没有找到路径,不做不安全的连接 |
| | | return new ArrayList<>(); |
| | | } |
| | | |
| | | /** |
| | | * 重构路径 |
| | | */ |
| | | private static List<PathSegment> reconstructPath(Map<Point, Point> cameFrom, Point current) { |
| | | List<Point> pathPoints = new ArrayList<>(); |
| | | while (current != null) { |
| | | pathPoints.add(current); |
| | | current = cameFrom.get(current); |
| | | } |
| | | Collections.reverse(pathPoints); |
| | | |
| | | List<PathSegment> path = new ArrayList<>(); |
| | | for (int i = 0; i < pathPoints.size() - 1; i++) { |
| | | path.add(new PathSegment(pathPoints.get(i), pathPoints.get(i + 1), false)); |
| | | } |
| | | return path; |
| | | } |
| | | |
| | | /** |
| | | * 启发函数 |
| | | */ |
| | | private static double heuristic(Point a, Point b) { |
| | | return distance(a, b); |
| | | } |
| | | |
| | | /** |
| | | * 优化路径 |
| | | */ |
| | | private static List<PathSegment> optimizePath(List<PathSegment> path, double width) { |
| | | if (path.size() <= 1) return path; |
| | | |
| | | List<PathSegment> optimized = new ArrayList<>(); |
| | | PathSegment current = path.get(0); |
| | | |
| | | for (int i = 1; i < path.size(); i++) { |
| | | PathSegment next = path.get(i); |
| | | |
| | | // 检查是否可以合并当前线段和下一线段 |
| | | if (canMergeSegments(current, next, width)) { |
| | | // 合并线段 |
| | | current = mergeSegments(current, next); |
| | | } else { |
| | | // 添加当前线段,开始新的合并 |
| | | optimized.add(current); |
| | | current = next; |
| | | } |
| | | } |
| | | |
| | | optimized.add(current); |
| | | |
| | | // 平滑转角 |
| | | optimized = smoothCorners(optimized, width); |
| | | |
| | | return optimized; |
| | | } |
| | | |
| | | /** |
| | | * 检查是否可以合并两个线段 |
| | | */ |
| | | private static boolean canMergeSegments(PathSegment a, PathSegment b, double width) { |
| | | if (!a.isMowing || !b.isMowing) return false; |
| | | |
| | | // 检查端点是否重合 |
| | | if (!a.end.equals(b.start) && !a.end.equals(b.end)) return false; |
| | | |
| | | // 检查方向是否一致 |
| | | Point dir1 = new Point(a.end.x - a.start.x, a.end.y - a.start.y); |
| | | Point dir2; |
| | | if (a.end.equals(b.start)) { |
| | | dir2 = new Point(b.end.x - b.start.x, b.end.y - b.start.y); |
| | | } else { |
| | | dir2 = new Point(b.start.x - b.end.x, b.start.y - b.end.y); |
| | | } |
| | | |
| | | double angle = angleBetween(dir1, dir2); |
| | | return angle < Math.toRadians(10); // 角度小于10度可以合并 |
| | | } |
| | | |
| | | /** |
| | | * 合并两个线段 |
| | | */ |
| | | private static PathSegment mergeSegments(PathSegment a, PathSegment b) { |
| | | Point newEnd = a.end.equals(b.start) ? b.end : b.start; |
| | | return new PathSegment(a.start, newEnd, true); |
| | | } |
| | | |
| | | /** |
| | | * 平滑转角 |
| | | */ |
| | | private static List<PathSegment> smoothCorners(List<PathSegment> path, double width) { |
| | | if (path.size() < 3) return path; |
| | | |
| | | List<PathSegment> smoothed = new ArrayList<>(); |
| | | smoothed.add(path.get(0)); |
| | | |
| | | for (int i = 1; i < path.size() - 1; i++) { |
| | | PathSegment prev = path.get(i - 1); |
| | | PathSegment curr = path.get(i); |
| | | PathSegment next = path.get(i + 1); |
| | | |
| | | if (!prev.isMowing || !curr.isMowing || !next.isMowing) { |
| | | smoothed.add(curr); |
| | | continue; |
| | | } |
| | | |
| | | // 计算转角 |
| | | Point inVec = new Point(curr.start.x - prev.end.x, curr.start.y - prev.end.y); |
| | | Point outVec = new Point(next.start.x - curr.end.x, next.start.y - curr.end.y); |
| | | |
| | | double angle = angleBetween(inVec, outVec); |
| | | |
| | | if (angle < CORNER_THRESHOLD) { |
| | | // 小角度,可以直接连接 |
| | | PathSegment direct = new PathSegment(prev.end, next.start, true); |
| | | smoothed.remove(smoothed.size() - 1); // 移除上一个线段 |
| | | smoothed.add(direct); |
| | | i++; // 跳过下一个线段 |
| | | } else { |
| | | smoothed.add(curr); |
| | | } |
| | | } |
| | | |
| | | if (path.size() > 1) { |
| | | smoothed.add(path.get(path.size() - 1)); |
| | | } |
| | | |
| | | return smoothed; |
| | | } |
| | | |
| | | // ==================== 几何计算工具 ==================== |
| | | |
| | | /** |
| | | * 多边形偏移算法 |
| | | */ |
| | | private static List<Point> offsetPolygon(List<Point> polygon, double d) { |
| | | // 基于“偏移边直线交点”的较稳健实现。约定polygon为CCW,左法向量为外侧。 |
| | | if (polygon == null || polygon.size() < 3) return new ArrayList<>(); |
| | | List<Point> poly = new ArrayList<>(polygon); |
| | | makeCCW(poly); |
| | | int n = poly.size(); |
| | | List<Point> out = new ArrayList<>(n); |
| | | |
| | | for (int i = 0; i < n; i++) { |
| | | Point A = poly.get((i - 1 + n) % n); |
| | | Point B = poly.get(i); |
| | | Point C = poly.get((i + 1) % n); |
| | | |
| | | Point e1 = normalize(subtract(B, A)); |
| | | Point e2 = normalize(subtract(C, B)); |
| | | Point n1 = new Point(-e1.y, e1.x); |
| | | Point n2 = new Point(-e2.y, e2.x); |
| | | |
| | | Point p1 = add(B, multiply(n1, d)); |
| | | Point p2 = add(B, multiply(n2, d)); |
| | | |
| | | Point dir1 = e1; |
| | | Point dir2 = e2; |
| | | |
| | | Point inter = intersectLines(p1, dir1, p2, dir2); |
| | | if (inter == null) { |
| | | // 平行或数值不稳定时退化 |
| | | Point avgN = add(n1, n2); |
| | | if (magnitude(avgN) < EPS) avgN = n1; |
| | | else avgN = normalize(avgN); |
| | | inter = add(B, multiply(avgN, d)); |
| | | } |
| | | out.add(inter); |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | // --- 路径生成核心算法 (移植自 NoObstacle 类) --- |
| | | |
| | | private static List<PathSegment> generateFullCoveragePath(List<Point> boundary, double width) { |
| | | // 1. 寻找最优角度 |
| | | double angle = findOptimalAngle(boundary); |
| | | // 计算两条参数直线的交点 p=p0+t*v, q=q0+s*w |
| | | private static Point intersectLines(Point p0, Point v, Point q0, Point w) { |
| | | double det = v.x * w.y - v.y * w.x; |
| | | if (Math.abs(det) < EPS) return null; |
| | | double t = ((q0.x - p0.x) * w.y - (q0.y - p0.y) * w.x) / det; |
| | | return new Point(p0.x + t * v.x, p0.y + t * v.y); |
| | | } |
| | | |
| | | /** |
| | | * 计算最优扫描角度 |
| | | */ |
| | | private static double calculateOptimalScanAngle(List<Point> polygon) { |
| | | double bestAngle = 0; |
| | | double minSpan = Double.MAX_VALUE; |
| | | |
| | | // 2. 旋转多边形以对齐坐标轴 |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : boundary) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | // 尝试多个角度 |
| | | for (int i = 0; i < 180; i += 5) { |
| | | double angle = Math.toRadians(i); |
| | | List<Point> rotated = rotatePolygon(polygon, angle); |
| | | |
| | | Bounds bounds = calculateBounds(rotated); |
| | | double span = bounds.maxY - bounds.minY; |
| | | |
| | | if (span < minSpan) { |
| | | minSpan = span; |
| | | bestAngle = angle; |
| | | } |
| | | } |
| | | |
| | | return bestAngle; |
| | | } |
| | | |
| | | /** |
| | | * 获取水平线与多边形的交点 |
| | | */ |
| | | private static List<Double> getHorizontalIntersections(List<Point> polygon, double y) { |
| | | List<Double> intersections = new ArrayList<>(); |
| | | int n = polygon.size(); |
| | | |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = polygon.get(i); |
| | | Point p2 = polygon.get((i + 1) % n); |
| | | |
| | | // 检查边是否与水平线相交 |
| | | if ((p1.y <= y && p2.y >= y) || (p1.y >= y && p2.y <= y)) { |
| | | if (Math.abs(p2.y - p1.y) < EPS) { |
| | | // 水平边,跳过 |
| | | continue; |
| | | } |
| | | |
| | | double t = (y - p1.y) / (p2.y - p1.y); |
| | | if (t >= -EPS && t <= 1 + EPS) { |
| | | double x = p1.x + t * (p2.x - p1.x); |
| | | intersections.add(x); |
| | | } |
| | | } |
| | | } |
| | | |
| | | // 去重并排序 |
| | | intersections = intersections.stream() |
| | | .distinct() |
| | | .sorted() |
| | | .collect(Collectors.toList()); |
| | | |
| | | return intersections; |
| | | } |
| | | |
| | | /** |
| | | * 判断直线是否安全 |
| | | */ |
| | | private static boolean isLineSafe(Point p1, Point p2, List<Obstacle> obstacles, List<Point> workingArea) { |
| | | // 必须完全在作业内缩边界内 |
| | | if (workingArea != null && !isSegmentInsidePolygon(p1, p2, workingArea)) { |
| | | return false; |
| | | } |
| | | for (Obstacle obs : obstacles) { |
| | | if (obs.doesSegmentIntersect(p1, p2)) { |
| | | return false; |
| | | } |
| | | } |
| | | return true; |
| | | } |
| | | |
| | | // 判断线段是否位于多边形内部(不越界) |
| | | private static boolean isSegmentInsidePolygon(Point a, Point b, List<Point> polygon) { |
| | | if (polygon == null || polygon.size() < 3) return true; |
| | | // 中点在内 |
| | | Point mid = new Point((a.x + b.x) / 2.0, (a.y + b.y) / 2.0); |
| | | if (!pointInPolygon(mid, polygon)) return false; |
| | | // 不与边界相交(允许端点接触) |
| | | int n = polygon.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = polygon.get(i); |
| | | Point p2 = polygon.get((i + 1) % n); |
| | | if (lineSegmentIntersection(a, b, p1, p2)) { |
| | | // 忽略仅在端点处的小接触 |
| | | if (distance(a, p1) < EPS || distance(a, p2) < EPS || distance(b, p1) < EPS || distance(b, p2) < EPS) { |
| | | continue; |
| | | } |
| | | return false; |
| | | } |
| | | } |
| | | return true; |
| | | } |
| | | |
| | | private static boolean pointInPolygon(Point p, List<Point> poly) { |
| | | boolean inside = false; |
| | | for (int i = 0, j = poly.size() - 1; i < poly.size(); j = i++) { |
| | | Point pi = poly.get(i), pj = poly.get(j); |
| | | boolean intersect = ((pi.y > p.y) != (pj.y > p.y)) && |
| | | (p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y + EPS) + pi.x); |
| | | if (intersect) inside = !inside; |
| | | } |
| | | return inside; |
| | | } |
| | | |
| | | // ==================== 向量运算工具 ==================== |
| | | |
| | | private static Point add(Point a, Point b) { |
| | | return new Point(a.x + b.x, a.y + b.y); |
| | | } |
| | | |
| | | private static Point subtract(Point a, Point b) { |
| | | return new Point(a.x - b.x, a.y - b.y); |
| | | } |
| | | |
| | | private static Point multiply(Point p, double scalar) { |
| | | return new Point(p.x * scalar, p.y * scalar); |
| | | } |
| | | |
| | | private static Point normalize(Point p) { |
| | | double mag = magnitude(p); |
| | | if (mag < EPS) return p; |
| | | return new Point(p.x / mag, p.y / mag); |
| | | } |
| | | |
| | | private static double magnitude(Point p) { |
| | | return Math.sqrt(p.x * p.x + p.y * p.y); |
| | | } |
| | | |
| | | private static double dot(Point a, Point b) { |
| | | return a.x * b.x + a.y * b.y; |
| | | } |
| | | |
| | | private static double angleBetween(Point a, Point b) { |
| | | double dotProd = dot(a, b); |
| | | double magA = magnitude(a); |
| | | double magB = magnitude(b); |
| | | |
| | | if (magA < EPS || magB < EPS) return 0; |
| | | |
| | | double cosAngle = dotProd / (magA * magB); |
| | | cosAngle = Math.max(-1, Math.min(1, cosAngle)); |
| | | return Math.acos(cosAngle); |
| | | } |
| | | |
| | | private static double distance(Point a, Point b) { |
| | | return magnitude(subtract(a, b)); |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double angle) { |
| | | double cos = Math.cos(angle); |
| | | double sin = Math.sin(angle); |
| | | return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos); |
| | | } |
| | | |
| | | private static List<Point> rotatePolygon(List<Point> polygon, double angle) { |
| | | return polygon.stream() |
| | | .map(p -> rotatePoint(p, angle)) |
| | | .collect(Collectors.toList()); |
| | | } |
| | | |
| | | private static Bounds calculateBounds(List<Point> points) { |
| | | double minX = Double.MAX_VALUE, maxX = -Double.MAX_VALUE; |
| | | double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) { |
| | | |
| | | for (Point p : points) { |
| | | minX = Math.min(minX, p.x); |
| | | maxX = Math.max(maxX, p.x); |
| | | minY = Math.min(minY, p.y); |
| | | maxY = Math.max(maxY, p.y); |
| | | } |
| | | |
| | | // 3. 生成扫描线 |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | | boolean l2r = true; |
| | | // 围边路径先生成 |
| | | Point scanStartPoint = null; |
| | | |
| | | // 这里我们先计算扫描线,最后再决定围边起点以减少空走 |
| | | List<List<PathSegment>> scanRows = new ArrayList<>(); |
| | | |
| | | for (double y = minY + width/2; y <= maxY - width/2; y += width) { |
| | | List<Double> xInters = getXIntersections(rotatedPoly, y); |
| | | if (xInters.size() < 2) continue; |
| | | Collections.sort(xInters); |
| | | |
| | | List<PathSegment> row = new ArrayList<>(); |
| | | // 两两配对形成线段 |
| | | for (int i = 0; i < xInters.size() - 1; i += 2) { |
| | | Point s = rotatePoint(new Point(xInters.get(i), y), angle); |
| | | Point e = rotatePoint(new Point(xInters.get(i + 1), y), angle); |
| | | row.add(new PathSegment(s, e, true)); |
| | | |
| | | return new Bounds(minX, maxX, minY, maxY); |
| | | } |
| | | |
| | | private static void makeCCW(List<Point> polygon) { |
| | | double area = 0; |
| | | int n = polygon.size(); |
| | | |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = polygon.get(i); |
| | | Point p2 = polygon.get((i + 1) % n); |
| | | area += (p2.x - p1.x) * (p2.y + p1.y); |
| | | } |
| | | |
| | | if (area > 0) { |
| | | Collections.reverse(polygon); |
| | | } |
| | | } |
| | | |
| | | // ==================== 障碍物处理 ==================== |
| | | |
| | | private static List<Obstacle> parseAndExpandObstacles(String obstaclesStr, double margin) { |
| | | List<Obstacle> obstacles = new ArrayList<>(); |
| | | |
| | | if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) { |
| | | return obstacles; |
| | | } |
| | | |
| | | // 解析障碍物字符串 |
| | | Pattern pattern = Pattern.compile("\\(([^)]+)\\)"); |
| | | Matcher matcher = pattern.matcher(obstaclesStr); |
| | | |
| | | while (matcher.find()) { |
| | | String coords = matcher.group(1); |
| | | List<Point> points = parseCoordinates(coords); |
| | | |
| | | if (points.size() == 2) { |
| | | // 圆形障碍物 |
| | | Point center = points.get(0); |
| | | double radius = distance(center, points.get(1)) + margin; |
| | | obstacles.add(new CircularObstacle(center, radius)); |
| | | } else if (points.size() >= 3) { |
| | | // 多边形障碍物 |
| | | makeCCW(points); |
| | | List<Point> expanded = offsetPolygon(points, margin); |
| | | obstacles.add(new PolygonalObstacle(expanded)); |
| | | } |
| | | |
| | | // 蛇形排序 |
| | | if (!l2r) { |
| | | Collections.reverse(row); |
| | | for (PathSegment s : row) { |
| | | Point tmp = s.start; s.start = s.end; s.end = tmp; |
| | | } |
| | | |
| | | return obstacles; |
| | | } |
| | | |
| | | private static List<Point> parseCoordinates(String str) { |
| | | List<Point> points = new ArrayList<>(); |
| | | |
| | | if (str == null || str.trim().isEmpty()) { |
| | | return points; |
| | | } |
| | | |
| | | String[] tokens = str.split(";"); |
| | | for (String token : tokens) { |
| | | token = token.trim(); |
| | | if (token.isEmpty()) continue; |
| | | |
| | | String[] xy = token.split(","); |
| | | if (xy.length == 2) { |
| | | try { |
| | | double x = Double.parseDouble(xy[0].trim()); |
| | | double y = Double.parseDouble(xy[1].trim()); |
| | | points.add(new Point(x, y)); |
| | | } catch (NumberFormatException e) { |
| | | System.err.println("无效坐标: " + token); |
| | | } |
| | | } |
| | | scanRows.add(row); |
| | | if (scanStartPoint == null && !row.isEmpty()) scanStartPoint = row.get(0).start; |
| | | l2r = !l2r; |
| | | } |
| | | |
| | | // 4. 生成围边路径 (对齐到第一个扫描点) |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, scanStartPoint); |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | segments.add(new PathSegment(alignedBoundary.get(i), alignedBoundary.get((i+1)%alignedBoundary.size()), true)); |
| | | } |
| | | |
| | | // 5. 加入扫描路径 |
| | | for (List<PathSegment> row : scanRows) { |
| | | segments.addAll(row); |
| | | } |
| | | |
| | | return segments; |
| | | |
| | | return points; |
| | | } |
| | | |
| | | // --- 障碍物处理类 --- |
| | | |
| | | private static List<Obstacle> parseObstacles(String obsStr, double margin) { |
| | | List<Obstacle> list = new ArrayList<>(); |
| | | if (obsStr == null || obsStr.trim().isEmpty()) return list; |
| | | |
| | | // 处理格式 (x,y;...)(x,y;...) 或 $ 分隔 |
| | | String cleanStr = obsStr.replaceAll("\\s+", ""); |
| | | String[] parts; |
| | | if (cleanStr.contains("(") && cleanStr.contains(")")) { |
| | | List<String> matches = new ArrayList<>(); |
| | | java.util.regex.Matcher m = java.util.regex.Pattern.compile("\\(([^)]+)\\)").matcher(cleanStr); |
| | | while (m.find()) matches.add(m.group(1)); |
| | | parts = matches.toArray(new String[0]); |
| | | } else { |
| | | parts = cleanStr.split("\\$"); |
| | | } |
| | | |
| | | for (String pStr : parts) { |
| | | List<Point> pts = parseCoordinates(pStr); |
| | | if (pts.isEmpty()) continue; |
| | | |
| | | if (pts.size() == 2) { |
| | | // 圆形障碍物 |
| | | double r = distance(pts.get(0), pts.get(1)); |
| | | list.add(new CircleObstacle(pts.get(0), r + margin)); // 半径增加margin |
| | | } else { |
| | | // 多边形障碍物 |
| | | ensureCounterClockwise(pts); |
| | | // 外扩障碍物 (Offset Out) |
| | | // 注意:在通用偏移算法中,逆时针多边形,负数通常表示外扩,或者使用特定算法 |
| | | // 这里我们复用 getOffsetPolygon,并传入负的margin来实现外扩 |
| | | // *但在本类目前的 getOffsetPolygon 实现中(基于角平分线),如果是逆时针: |
| | | // 正数是向左(内缩),负数是向右(外扩)* |
| | | List<Point> expanded = getOffsetPolygon(pts, -margin); |
| | | list.add(new PolyObstacle(expanded)); |
| | | } |
| | | } |
| | | return list; |
| | | } |
| | | |
| | | |
| | | // ==================== 内部类定义 ==================== |
| | | |
| | | /** |
| | | * 障碍物基类 |
| | | */ |
| | | abstract static class Obstacle { |
| | | // 返回裁剪后的线段列表(即保留在障碍物外部的线段) |
| | | abstract List<PathSegment> clip(PathSegment seg); |
| | | abstract List<PathSegment> clipSegment(PathSegment seg); |
| | | abstract boolean doesSegmentIntersect(Point p1, Point p2); |
| | | abstract boolean containsPoint(Point p); |
| | | abstract List<Point> getKeyPoints(); |
| | | } |
| | | |
| | | static class CircleObstacle extends Obstacle { |
| | | Point c; double r; |
| | | CircleObstacle(Point c, double r) { this.c = c; this.r = r; } |
| | | |
| | | /** |
| | | * 多边形障碍物 |
| | | */ |
| | | static class PolygonalObstacle extends Obstacle { |
| | | List<Point> vertices; |
| | | |
| | | PolygonalObstacle(List<Point> vertices) { |
| | | this.vertices = vertices; |
| | | } |
| | | |
| | | @Override |
| | | List<PathSegment> clip(PathSegment seg) { |
| | | // 计算直线与圆的交点 t值 (0..1) |
| | | List<PathSegment> clipSegment(PathSegment seg) { |
| | | List<Double> tValues = new ArrayList<>(); |
| | | tValues.add(0.0); |
| | | tValues.add(1.0); |
| | | |
| | | // 收集所有交点 |
| | | for (int i = 0; i < vertices.size(); i++) { |
| | | Point p1 = vertices.get(i); |
| | | Point p2 = vertices.get((i + 1) % vertices.size()); |
| | | |
| | | Double t = lineIntersection(seg.start, seg.end, p1, p2); |
| | | if (t != null) { |
| | | tValues.add(t); |
| | | } |
| | | } |
| | | |
| | | Collections.sort(tValues); |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | // 生成不在障碍物内部的线段段 |
| | | for (int i = 0; i < tValues.size() - 1; i++) { |
| | | double t1 = tValues.get(i); |
| | | double t2 = tValues.get(i + 1); |
| | | double tMid = (t1 + t2) / 2; |
| | | |
| | | Point midPoint = interpolate(seg.start, seg.end, tMid); |
| | | if (!containsPoint(midPoint)) { |
| | | Point start = interpolate(seg.start, seg.end, t1); |
| | | Point end = interpolate(seg.start, seg.end, t2); |
| | | result.add(new PathSegment(start, end, seg.isMowing)); |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | @Override |
| | | boolean doesSegmentIntersect(Point p1, Point p2) { |
| | | for (int i = 0; i < vertices.size(); i++) { |
| | | Point v1 = vertices.get(i); |
| | | Point v2 = vertices.get((i + 1) % vertices.size()); |
| | | |
| | | if (lineSegmentIntersection(p1, p2, v1, v2)) { |
| | | return true; |
| | | } |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | @Override |
| | | boolean containsPoint(Point p) { |
| | | int crossings = 0; |
| | | |
| | | for (int i = 0; i < vertices.size(); i++) { |
| | | Point v1 = vertices.get(i); |
| | | Point v2 = vertices.get((i + 1) % vertices.size()); |
| | | |
| | | if (((v1.y <= p.y && p.y < v2.y) || (v2.y <= p.y && p.y < v1.y)) && |
| | | (p.x < (v2.x - v1.x) * (p.y - v1.y) / (v2.y - v1.y) + v1.x)) { |
| | | crossings++; |
| | | } |
| | | } |
| | | |
| | | return (crossings % 2) == 1; |
| | | } |
| | | |
| | | @Override |
| | | List<Point> getKeyPoints() { |
| | | return new ArrayList<>(vertices); |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 圆形障碍物 |
| | | */ |
| | | static class CircularObstacle extends Obstacle { |
| | | Point center; |
| | | double radius; |
| | | |
| | | CircularObstacle(Point center, double radius) { |
| | | this.center = center; |
| | | this.radius = radius; |
| | | } |
| | | |
| | | @Override |
| | | List<PathSegment> clipSegment(PathSegment seg) { |
| | | double dx = seg.end.x - seg.start.x; |
| | | double dy = seg.end.y - seg.start.y; |
| | | double fx = seg.start.x - c.x; |
| | | double fy = seg.start.y - c.y; |
| | | double fx = seg.start.x - center.x; |
| | | double fy = seg.start.y - center.y; |
| | | |
| | | double A = dx*dx + dy*dy; |
| | | double B = 2*(fx*dx + fy*dy); |
| | | double C = (fx*fx + fy*fy) - r*r; |
| | | double delta = B*B - 4*A*C; |
| | | |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | if (delta < 0) { |
| | | // 无交点,全保留或全剔除 |
| | | if (!isInside(seg.start)) result.add(seg); |
| | | return result; |
| | | } |
| | | |
| | | double t1 = (-B - Math.sqrt(delta)) / (2*A); |
| | | double t2 = (-B + Math.sqrt(delta)) / (2*A); |
| | | double a = dx * dx + dy * dy; |
| | | double b = 2 * (fx * dx + fy * dy); |
| | | double c = fx * fx + fy * fy - radius * radius; |
| | | |
| | | List<Double> ts = new ArrayList<>(); |
| | | ts.add(0.0); |
| | | if (t1 > 0 && t1 < 1) ts.add(t1); |
| | | if (t2 > 0 && t2 < 1) ts.add(t2); |
| | | ts.add(1.0); |
| | | Collections.sort(ts); |
| | | |
| | | for (int i = 0; i < ts.size()-1; i++) { |
| | | double midT = (ts.get(i) + ts.get(i+1)) / 2; |
| | | Point mid = interpolate(seg.start, seg.end, midT); |
| | | if (!isInside(mid)) { |
| | | result.add(new PathSegment(interpolate(seg.start, seg.end, ts.get(i)), |
| | | interpolate(seg.start, seg.end, ts.get(i+1)), |
| | | seg.isMowing)); |
| | | } |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | boolean isInside(Point p) { |
| | | return (p.x-c.x)*(p.x-c.x) + (p.y-c.y)*(p.y-c.y) < r*r; |
| | | } |
| | | } |
| | | |
| | | static class PolyObstacle extends Obstacle { |
| | | List<Point> points; |
| | | double minX, maxX, minY, maxY; |
| | | |
| | | PolyObstacle(List<Point> pts) { |
| | | this.points = pts; |
| | | updateBounds(); |
| | | } |
| | | |
| | | void updateBounds() { |
| | | minX = minY = Double.MAX_VALUE; |
| | | maxX = maxY = -Double.MAX_VALUE; |
| | | for (Point p : points) { |
| | | minX = Math.min(minX, p.x); maxX = Math.max(maxX, p.x); |
| | | minY = Math.min(minY, p.y); maxY = Math.max(maxY, p.y); |
| | | } |
| | | } |
| | | |
| | | boolean isInside(Point p) { |
| | | if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) return false; |
| | | boolean result = false; |
| | | for (int i = 0, j = points.size() - 1; i < points.size(); j = i++) { |
| | | if ((points.get(i).y > p.y) != (points.get(j).y > p.y) && |
| | | (p.x < (points.get(j).x - points.get(i).x) * (p.y - points.get(i).y) / (points.get(j).y - points.get(i).y) + points.get(i).x)) { |
| | | result = !result; |
| | | } |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | @Override |
| | | List<PathSegment> clip(PathSegment seg) { |
| | | List<Double> ts = new ArrayList<>(); |
| | | ts.add(0.0); |
| | | ts.add(1.0); |
| | | |
| | | // 计算线段与障碍物每一条边的交点 |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i); |
| | | Point p2 = points.get((i+1)%points.size()); |
| | | double t = getIntersectionT(seg.start, seg.end, p1, p2); |
| | | if (t > 1e-6 && t < 1 - 1e-6) { |
| | | ts.add(t); |
| | | } |
| | | } |
| | | Collections.sort(ts); |
| | | |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | // 检查每一小段的中点是否在障碍物内 |
| | | for (int i = 0; i < ts.size() - 1; i++) { |
| | | double tMid = (ts.get(i) + ts.get(i+1)) / 2.0; |
| | | // 如果两点极其接近,跳过 |
| | | if (ts.get(i+1) - ts.get(i) < 1e-6) continue; |
| | | List<Double> tValues = new ArrayList<>(); |
| | | tValues.add(0.0); |
| | | tValues.add(1.0); |
| | | |
| | | double discriminant = b * b - 4 * a * c; |
| | | if (discriminant > 0) { |
| | | double sqrtDisc = Math.sqrt(discriminant); |
| | | double t1 = (-b - sqrtDisc) / (2 * a); |
| | | double t2 = (-b + sqrtDisc) / (2 * a); |
| | | |
| | | Point mid = interpolate(seg.start, seg.end, tMid); |
| | | if (!isInside(mid)) { |
| | | // 在外部,保留 |
| | | Point s = interpolate(seg.start, seg.end, ts.get(i)); |
| | | Point e = interpolate(seg.start, seg.end, ts.get(i+1)); |
| | | result.add(new PathSegment(s, e, seg.isMowing)); |
| | | if (t1 > EPS && t1 < 1 - EPS) tValues.add(t1); |
| | | if (t2 > EPS && t2 < 1 - EPS) tValues.add(t2); |
| | | } |
| | | |
| | | Collections.sort(tValues); |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | for (int i = 0; i < tValues.size() - 1; i++) { |
| | | double t1 = tValues.get(i); |
| | | double t2 = tValues.get(i + 1); |
| | | double tMid = (t1 + t2) / 2; |
| | | |
| | | Point midPoint = interpolate(seg.start, seg.end, tMid); |
| | | if (!containsPoint(midPoint)) { |
| | | Point start = interpolate(seg.start, seg.end, t1); |
| | | Point end = interpolate(seg.start, seg.end, t2); |
| | | result.add(new PathSegment(start, end, seg.isMowing)); |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | } |
| | | |
| | | // --- 通用几何算法 --- |
| | | |
| | | private static List<Point> getOffsetPolygon(List<Point> points, double offset) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point p1 = points.get((i - 1 + n) % n); |
| | | Point p2 = points.get(i); |
| | | Point p3 = points.get((i + 1) % n); |
| | | |
| | | // 向量 p1->p2 和 p2->p3 |
| | | double v1x = p2.x - p1.x, v1y = p2.y - p1.y; |
| | | double v2x = p3.x - p2.x, v2y = p3.y - p2.y; |
| | | double l1 = Math.hypot(v1x, v1y), l2 = Math.hypot(v2x, v2y); |
| | | |
| | | if (l1 < 1e-5 || l2 < 1e-5) continue; |
| | | |
| | | // 法向量 (向左转90度: -y, x) |
| | | double n1x = -v1y / l1, n1y = v1x / l1; |
| | | double n2x = -v2y / l2, n2y = v2x / l2; |
| | | |
| | | // 角平分线 |
| | | double bx = n1x + n2x, by = n1y + n2y; |
| | | double bl = Math.hypot(bx, by); |
| | | if (bl < 1e-5) { bx = n1x; by = n1y; } |
| | | else { bx /= bl; by /= bl; } |
| | | |
| | | // 修正长度 offset / sin(theta/2) = offset / dot(n1, b) |
| | | double dot = n1x * bx + n1y * by; |
| | | double dist = offset / Math.max(Math.abs(dot), 0.1); // 防止尖角过长 |
| | | |
| | | // 阈值限制,防止自交或畸变过大 |
| | | dist = Math.signum(offset) * Math.min(Math.abs(dist), Math.abs(offset) * 3); |
| | | |
| | | result.add(new Point(p2.x + bx * dist, p2.y + by * dist)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static double findOptimalAngle(List<Point> poly) { |
| | | double bestA = 0, minH = Double.MAX_VALUE; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size()); |
| | | double a = Math.atan2(p2.y - p1.y, p2.x - p1.x); |
| | | double h = calcHeight(poly, a); |
| | | if (h < minH) { minH = h; bestA = a; } |
| | | } |
| | | return bestA; |
| | | } |
| | | |
| | | private static double calcHeight(List<Point> poly, double ang) { |
| | | double min = Double.MAX_VALUE, max = -Double.MAX_VALUE; |
| | | for (Point p : poly) { |
| | | Point r = rotatePoint(p, -ang); |
| | | min = Math.min(min, r.y); max = Math.max(max, r.y); |
| | | } |
| | | return max - min; |
| | | } |
| | | |
| | | private static double getIntersectionT(Point a, Point b, Point c, Point d) { |
| | | double ux = b.x - a.x, uy = b.y - a.y; |
| | | double vx = d.x - c.x, vy = d.y - c.y; |
| | | double det = vx * uy - vy * ux; |
| | | if (Math.abs(det) < 1e-8) return -1; |
| | | |
| | | double wx = c.x - a.x, wy = c.y - a.y; |
| | | double t = (vx * wy - vy * wx) / det; |
| | | double u = (ux * wy - uy * wx) / det; |
| | | @Override |
| | | boolean doesSegmentIntersect(Point p1, Point p2) { |
| | | Point closest = closestPointOnSegment(center, p1, p2); |
| | | // 将与圆的相切也视为相交,避免路径擦边 |
| | | return distance(center, closest) <= radius + EPS; |
| | | } |
| | | |
| | | if (u >= 0 && u <= 1) return t; // 只保证交点在线段CD上,t是AB上的比例 |
| | | return -1; |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> poly, double y) { |
| | | List<Double> res = new ArrayList<>(); |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point p1 = poly.get(i), p2 = poly.get((i + 1) % poly.size()); |
| | | if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) { |
| | | res.add(p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y)); |
| | | @Override |
| | | boolean containsPoint(Point p) { |
| | | return distance(center, p) < radius - EPS; |
| | | } |
| | | |
| | | @Override |
| | | List<Point> getKeyPoints() { |
| | | List<Point> points = new ArrayList<>(); |
| | | int numPoints = 8; // 八边形近似 |
| | | |
| | | for (int i = 0; i < numPoints; i++) { |
| | | double angle = 2 * Math.PI * i / numPoints; |
| | | points.add(new Point( |
| | | center.x + radius * Math.cos(angle), |
| | | center.y + radius * Math.sin(angle) |
| | | )); |
| | | } |
| | | |
| | | return points; |
| | | } |
| | | return res; |
| | | } |
| | | |
| | | private static List<Point> alignBoundaryStart(List<Point> poly, Point target) { |
| | | if (target == null) return poly; |
| | | int idx = 0; double minD = Double.MAX_VALUE; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | double d = distance(poly.get(i), target); |
| | | if (d < minD) { minD = d; idx = i; } |
| | | |
| | | /** |
| | | * 路径段 |
| | | */ |
| | | public static class PathSegment { |
| | | public Point start, end; |
| | | public boolean isMowing; |
| | | |
| | | public PathSegment(Point start, Point end, boolean isMowing) { |
| | | this.start = start; |
| | | this.end = end; |
| | | this.isMowing = isMowing; |
| | | } |
| | | List<Point> res = new ArrayList<>(); |
| | | for (int i = 0; i < poly.size(); i++) res.add(poly.get((idx + i) % poly.size())); |
| | | return res; |
| | | } |
| | | |
| | | private static void ensureCounterClockwise(List<Point> pts) { |
| | | double s = 0; |
| | | for (int i = 0; i < pts.size(); i++) { |
| | | Point p1 = pts.get(i), p2 = pts.get((i + 1) % pts.size()); |
| | | s += (p2.x - p1.x) * (p2.y + p1.y); |
| | | |
| | | @Override |
| | | public String toString() { |
| | | return String.format("%s -> %s [%s]", start, end, isMowing ? "MOW" : "MOVE"); |
| | | } |
| | | if (s > 0) Collections.reverse(pts); // 假设屏幕坐标系Y向下?通常多边形面积公式s>0是顺时针(Y向下)或逆时针(Y向上) |
| | | // 此处沿用您代码的逻辑:如果Sum>0 则反转。 |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double a) { |
| | | double c = Math.cos(a), s = Math.sin(a); |
| | | return new Point(p.x * c - p.y * s, p.x * s + p.y * c); |
| | | |
| | | /** |
| | | * 点类 |
| | | */ |
| | | public static class Point { |
| | | public double x, y; |
| | | |
| | | public Point(double x, double y) { |
| | | this.x = x; |
| | | this.y = y; |
| | | } |
| | | |
| | | @Override |
| | | public boolean equals(Object obj) { |
| | | if (this == obj) return true; |
| | | if (!(obj instanceof Point)) return false; |
| | | Point other = (Point) obj; |
| | | return Math.abs(x - other.x) < EPS && Math.abs(y - other.y) < EPS; |
| | | } |
| | | |
| | | @Override |
| | | public int hashCode() { |
| | | return Double.hashCode(x) * 31 + Double.hashCode(y); |
| | | } |
| | | |
| | | @Override |
| | | public String toString() { |
| | | return String.format("(%.2f, %.2f)", x, y); |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 边界框 |
| | | */ |
| | | private static class Bounds { |
| | | double minX, maxX, minY, maxY; |
| | | |
| | | Bounds(double minX, double maxX, double minY, double maxY) { |
| | | this.minX = minX; |
| | | this.maxX = maxX; |
| | | this.minY = minY; |
| | | this.maxY = maxY; |
| | | } |
| | | } |
| | | |
| | | // ==================== 几何工具函数 ==================== |
| | | |
| | | private static Double lineIntersection(Point a1, Point a2, Point b1, Point b2) { |
| | | double det = (a2.x - a1.x) * (b2.y - b1.y) - (a2.y - a1.y) * (b2.x - b1.x); |
| | | |
| | | if (Math.abs(det) < EPS) return null; |
| | | |
| | | double t = ((b1.x - a1.x) * (b2.y - b1.y) - (b1.y - a1.y) * (b2.x - b1.x)) / det; |
| | | double u = ((a1.x - b1.x) * (a2.y - a1.y) - (a1.y - b1.y) * (a2.x - a1.x)) / (-det); |
| | | |
| | | if (t >= -EPS && t <= 1 + EPS && u >= -EPS && u <= 1 + EPS) { |
| | | return Math.max(0, Math.min(1, t)); |
| | | } |
| | | |
| | | return null; |
| | | } |
| | | |
| | | private static boolean lineSegmentIntersection(Point a1, Point a2, Point b1, Point b2) { |
| | | Double t = lineIntersection(a1, a2, b1, b2); |
| | | return t != null; |
| | | } |
| | | |
| | | private static Point interpolate(Point a, Point b, double t) { |
| | | return new Point(a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t); |
| | | } |
| | | |
| | | private static double distance(Point a, Point b) { |
| | | return Math.hypot(a.x - b.x, a.y - b.y); |
| | | } |
| | | |
| | | private static List<Point> parseCoordinates(String s) { |
| | | List<Point> pts = new ArrayList<>(); |
| | | if (s == null || s.isEmpty()) return pts; |
| | | for (String p : s.split(";")) { |
| | | String[] xy = p.split(","); |
| | | if (xy.length >= 2) pts.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1]))); |
| | | } |
| | | if (pts.size() > 1 && distance(pts.get(0), pts.get(pts.size() - 1)) < 1e-4) pts.remove(pts.size() - 1); |
| | | return pts; |
| | | } |
| | | |
| | | // --- 数据结构 --- |
| | | public static class Point { |
| | | public double x, y; |
| | | public Point(double x, double y) { this.x = x; this.y = y; } |
| | | } |
| | | |
| | | public static class PathSegment { |
| | | public Point start, end; |
| | | public boolean isMowing; |
| | | public PathSegment(Point s, Point e, boolean m) { this.start = s; this.end = e; this.isMowing = m; } |
| | | @Override |
| | | public String toString() { return String.format("%.6f,%.6f;%.6f,%.6f", start.x, start.y, end.x, end.y); } |
| | | } |
| | | |
| | | private static Point closestPointOnSegment(Point p, Point a, Point b) { |
| | | double ax = b.x - a.x; |
| | | double ay = b.y - a.y; |
| | | double bx = p.x - a.x; |
| | | double by = p.y - a.y; |
| | | |
| | | double dot = ax * bx + ay * by; |
| | | double lenSq = ax * ax + ay * ay; |
| | | |
| | | double t = (lenSq > EPS) ? Math.max(0, Math.min(1, dot / lenSq)) : 0; |
| | | |
| | | return new Point(a.x + t * ax, a.y + t * ay); |
| | | } |
| | | |
| | | } |