| | |
| | | package lujing; |
| | | import java.util.*; |
| | | |
| | | import java.util.List; |
| | | |
| | | /** |
| | | * 有障碍物异形地块路径规划类 |
| | | * 异形草地路径规划 - 含障碍物版 |
| | | * 功能:在地块内部避开障碍物,生成连续弓字形割草路径 |
| | | */ |
| | | public class YixinglujingHaveObstacel { |
| | | |
| | | public static List<PathSegment> planPath(String coordinates, String obstaclesStr, |
| | | String widthStr, String marginStr) { |
| | | // 1. 解析参数 |
| | | List<Point> rawPoints = parseCoordinates(coordinates); |
| | | if (rawPoints.size() < 3) return new ArrayList<>(); |
| | | |
| | | double mowWidth = Double.parseDouble(widthStr); |
| | | double safeMargin = Double.parseDouble(marginStr); |
| | | |
| | | // 解析障碍物 |
| | | List<Obstacle> obstacles = parseObstacles(obstaclesStr); |
| | | |
| | | // 2. 预处理:确保边界逆时针 |
| | | ensureCounterClockwise(rawPoints); |
| | | |
| | | // 3. 生成内缩多边形(安全边界) |
| | | List<Point> boundary = getInsetPolygon(rawPoints, safeMargin); |
| | | if (boundary.size() < 3) return new ArrayList<>(); |
| | | |
| | | // 4. 外扩障碍物(安全边距) |
| | | List<Obstacle> expandedObstacles = expandObstacles(obstacles, safeMargin); |
| | | |
| | | // 5. 确定最优作业角度 |
| | | double bestAngle = findOptimalAngle(boundary); |
| | | |
| | | // 6. 获取首个作业点,用于对齐围边起点 |
| | | Point firstScanStart = getFirstScanPoint(boundary, mowWidth, bestAngle); |
| | | |
| | | // 7. 对齐围边 |
| | | List<Point> alignedBoundary = alignBoundaryStart(boundary, firstScanStart); |
| | | |
| | | // 8. 第一阶段:围边路径 |
| | | List<PathSegment> finalPath = new ArrayList<>(); |
| | | for (int i = 0; i < alignedBoundary.size(); i++) { |
| | | Point pStart = alignedBoundary.get(i); |
| | | Point pEnd = alignedBoundary.get((i + 1) % alignedBoundary.size()); |
| | | finalPath.add(new PathSegment(pStart, pEnd, true)); |
| | | } |
| | | |
| | | // 9. 第二阶段:生成内部扫描路径(考虑障碍物) |
| | | Point lastEdgePos = alignedBoundary.get(0); |
| | | List<PathSegment> scanPath = generateGlobalScanPathWithObstacles( |
| | | boundary, expandedObstacles, mowWidth, bestAngle, lastEdgePos); |
| | | |
| | | finalPath.addAll(scanPath); |
| | | |
| | | // 10. 格式化坐标:保留两位小数 |
| | | for (PathSegment segment : finalPath) { |
| | | segment.start.x = Math.round(segment.start.x * 100.0) / 100.0; |
| | | segment.start.y = Math.round(segment.start.y * 100.0) / 100.0; |
| | | segment.end.x = Math.round(segment.end.x * 100.0) / 100.0; |
| | | segment.end.y = Math.round(segment.end.y * 100.0) / 100.0; |
| | | } |
| | | |
| | | // 11. 打印输出路径坐标 |
| | | printPathCoordinates(finalPath); |
| | | |
| | | return finalPath; |
| | | } |
| | | |
| | | /** |
| | | * 生成路径 |
| | | * @param boundaryCoordsStr 地块边界坐标字符串 "x1,y1;x2,y2;..." |
| | | * @param obstacleCoordsStr 障碍物坐标字符串 |
| | | * @param mowingWidthStr 割草宽度字符串,如 "0.34" |
| | | * @param safetyMarginStr 安全边距字符串,如 "0.2" |
| | | * @return 路径坐标字符串,格式 "x1,y1;x2,y2;..." |
| | | * 生成带障碍物的扫描路径 |
| | | */ |
| | | public static String planPath(String boundaryCoordsStr, String obstacleCoordsStr, String mowingWidthStr, String safetyMarginStr) { |
| | | // TODO: 实现异形地块有障碍物路径规划算法 |
| | | // 目前使用默认方法作为临时实现 |
| | | throw new UnsupportedOperationException("YixinglujingHaveObstacel.planPath 尚未实现"); |
| | | private static List<PathSegment> generateGlobalScanPathWithObstacles( |
| | | List<Point> polygon, List<Obstacle> obstacles, |
| | | double width, double angle, Point startPos) { |
| | | |
| | | // 1. 生成原始扫描线(无障碍物) |
| | | List<PathSegment> originalSegments = generateGlobalScanPath(polygon, width, angle, startPos); |
| | | |
| | | // 2. 移除在障碍物内部的线段 |
| | | List<PathSegment> remainingSegments = new ArrayList<>(); |
| | | for (PathSegment seg : originalSegments) { |
| | | if (!seg.isMowing) { |
| | | // 空走段直接保留 |
| | | remainingSegments.add(seg); |
| | | continue; |
| | | } |
| | | |
| | | // 将割草段与所有障碍物进行裁剪 |
| | | List<PathSegment> clippedSegments = new ArrayList<>(); |
| | | clippedSegments.add(seg); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | List<PathSegment> newSegments = new ArrayList<>(); |
| | | for (PathSegment s : clippedSegments) { |
| | | newSegments.addAll(clipSegmentWithObstacle(s, obs)); |
| | | } |
| | | clippedSegments = newSegments; |
| | | } |
| | | |
| | | remainingSegments.addAll(clippedSegments); |
| | | } |
| | | |
| | | // 3. 重新连接路径段(弓字形连接,智能处理边界穿越) |
| | | return reconnectSegments(remainingSegments, polygon); |
| | | } |
| | | |
| | | /** |
| | | * 将线段与障碍物进行裁剪 |
| | | * 返回不在障碍物内部的子线段 |
| | | */ |
| | | private static List<PathSegment> clipSegmentWithObstacle(PathSegment segment, Obstacle obstacle) { |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | // 检查线段是否完全在障碍物外部 |
| | | boolean startInside = obstacle.contains(segment.start); |
| | | boolean endInside = obstacle.contains(segment.end); |
| | | |
| | | if (!startInside && !endInside) { |
| | | // 线段两端都在外部,检查是否穿过障碍物 |
| | | List<Point> intersections = obstacle.getIntersections(segment); |
| | | if (intersections.isEmpty()) { |
| | | // 完全在外部 |
| | | result.add(segment); |
| | | } else { |
| | | // 穿过障碍物,分割线段 |
| | | intersections.sort(Comparator.comparingDouble(p -> |
| | | distance(segment.start, p))); |
| | | |
| | | Point prevPoint = segment.start; |
| | | for (Point inter : intersections) { |
| | | result.add(new PathSegment(prevPoint, inter, true)); |
| | | prevPoint = inter; |
| | | } |
| | | result.add(new PathSegment(prevPoint, segment.end, true)); |
| | | |
| | | // 移除在障碍物内部的段(奇数索引的段) |
| | | List<PathSegment> filtered = new ArrayList<>(); |
| | | for (int i = 0; i < result.size(); i++) { |
| | | PathSegment s = result.get(i); |
| | | Point midPoint = new Point( |
| | | (s.start.x + s.end.x) / 2, |
| | | (s.start.y + s.end.y) / 2 |
| | | ); |
| | | if (!obstacle.contains(midPoint)) { |
| | | filtered.add(s); |
| | | } |
| | | } |
| | | return filtered; |
| | | } |
| | | } else if (startInside && endInside) { |
| | | // 完全在内部,丢弃 |
| | | return result; |
| | | } else { |
| | | // 一端在内部,一端在外部 |
| | | Point outsidePoint = startInside ? segment.end : segment.start; |
| | | |
| | | List<Point> intersections = obstacle.getIntersections(segment); |
| | | if (!intersections.isEmpty()) { |
| | | // 取离外部点最近的交点 |
| | | intersections.sort(Comparator.comparingDouble(p -> |
| | | distance(outsidePoint, p))); |
| | | Point inter = intersections.get(0); |
| | | |
| | | // 只保留外部部分 |
| | | if (startInside) { |
| | | result.add(new PathSegment(inter, outsidePoint, true)); |
| | | } else { |
| | | result.add(new PathSegment(outsidePoint, inter, true)); |
| | | } |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | /** |
| | | * 重新连接路径段,形成连续弓字形路径 |
| | | * 优化:智能处理边界穿越,当换行路径穿越边界时,沿边界行走 |
| | | */ |
| | | private static List<PathSegment> reconnectSegments(List<PathSegment> segments, List<Point> boundary) { |
| | | if (segments.isEmpty()) return new ArrayList<>(); |
| | | |
| | | List<PathSegment> reconnected = new ArrayList<>(); |
| | | Point currentPos = segments.get(0).start; |
| | | |
| | | for (PathSegment seg : segments) { |
| | | if (seg.isMowing) { |
| | | // 割草段:检查是否需要添加空走段 |
| | | if (distance(currentPos, seg.start) > 0.01) { |
| | | // 使用智能连接方法生成换行路径 |
| | | List<PathSegment> connectionPath = buildSmartConnection(currentPos, seg.start, boundary); |
| | | reconnected.addAll(connectionPath); |
| | | } |
| | | reconnected.add(seg); |
| | | currentPos = seg.end; |
| | | } else { |
| | | // 空走段直接添加 |
| | | reconnected.add(seg); |
| | | currentPos = seg.end; |
| | | } |
| | | } |
| | | |
| | | return reconnected; |
| | | } |
| | | |
| | | /** |
| | | * 智能连接两点:如果直线不穿越边界则直接连接,否则使用直线+边界混合路径 |
| | | * 优化逻辑: |
| | | * 1. 如果AB线不穿越边界C,直接使用AB作为换行路线 |
| | | * 2. 如果AB线穿越了边界C,找到所有交点,将AB分成多个段 |
| | | * - 对于在边界内部的段(如DF段、GH段),沿边界行走 |
| | | * - 对于在边界外部的段,沿AB直线行走 |
| | | * 路径示例:A → D(直线) → F(沿边界) → G(直线) → H(沿边界) → B(直线) |
| | | * |
| | | * @param pointA 起点(上一段结束的终点) |
| | | * @param pointB 终点(下一段需要割草路径的起始点) |
| | | * @param boundary 安全内缩边界C |
| | | * @return 连接路径段列表(全部为isMowing=false的空走段) |
| | | */ |
| | | private static List<PathSegment> buildSmartConnection(Point pointA, Point pointB, List<Point> boundary) { |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | // 1. 检查AB直线是否穿越边界C |
| | | if (!segmentIntersectsBoundary(pointA, pointB, boundary)) { |
| | | // 不穿越边界,直接使用AB作为换行路线 |
| | | result.add(new PathSegment(pointA, pointB, false)); |
| | | return result; |
| | | } |
| | | |
| | | // 2. AB线穿越了边界C,需要找到所有交点 |
| | | List<IntersectionInfo> intersections = getAllBoundaryIntersections(pointA, pointB, boundary); |
| | | |
| | | if (intersections.isEmpty()) { |
| | | // 没有交点(不应该发生,但安全处理),使用直线 |
| | | result.add(new PathSegment(pointA, pointB, false)); |
| | | return result; |
| | | } |
| | | |
| | | // 3. 按距离起点A的距离排序交点 |
| | | intersections.sort(Comparator.comparingDouble(inter -> distance(pointA, inter.point))); |
| | | |
| | | // 4. 构建完整的点序列:A, I1, I2, ..., In, B(I为交点) |
| | | List<Point> pointSequence = new ArrayList<>(); |
| | | pointSequence.add(pointA); |
| | | for (IntersectionInfo inter : intersections) { |
| | | pointSequence.add(inter.point); |
| | | } |
| | | pointSequence.add(pointB); |
| | | |
| | | // 5. 处理每两个相邻点之间的段 |
| | | Point currentPos = pointA; |
| | | |
| | | for (int i = 0; i < pointSequence.size() - 1; i++) { |
| | | Point p1 = pointSequence.get(i); |
| | | Point p2 = pointSequence.get(i + 1); |
| | | |
| | | // 判断p1到p2的段(AB线段的一部分)是否在边界C内部(检查中点) |
| | | Point midPoint = new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2); |
| | | boolean segmentInsideBoundary = isPointInPolygon(midPoint, boundary); |
| | | |
| | | if (segmentInsideBoundary) { |
| | | // 段在边界内部(如DF段、GH段),需要沿边界行走 |
| | | if (i == 0) { |
| | | // 第一个段:从A到第一个交点D |
| | | // 如果段在边界内部,说明A在边界内部,需要先从A沿边界走到第一个交点 |
| | | IntersectionInfo firstInter = intersections.get(0); |
| | | SnapResult snapA = snapToBoundary(currentPos, boundary); |
| | | List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints( |
| | | snapA.onEdge, snapA.edgeIndex, |
| | | firstInter.point, firstInter.edgeIndex, |
| | | boundary); |
| | | result.addAll(boundaryPath); |
| | | currentPos = firstInter.point; |
| | | } else if (i == pointSequence.size() - 2) { |
| | | // 最后一个段:从最后一个交点H到B |
| | | // 需要沿边界从当前点(应该是最后一个交点H)到B在边界上的投影 |
| | | IntersectionInfo lastInter = intersections.get(intersections.size() - 1); |
| | | SnapResult snapB = snapToBoundary(pointB, boundary); |
| | | List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints( |
| | | currentPos, lastInter.edgeIndex, |
| | | snapB.onEdge, snapB.edgeIndex, |
| | | boundary); |
| | | result.addAll(boundaryPath); |
| | | // 如果B不在边界上,从边界投影直线到B |
| | | if (distance(snapB.onEdge, pointB) > 1e-6) { |
| | | result.add(new PathSegment(snapB.onEdge, pointB, false)); |
| | | } |
| | | currentPos = pointB; |
| | | } else { |
| | | // 中间段:两个交点之间的段(都在边界上),沿边界行走 |
| | | IntersectionInfo inter1 = intersections.get(i - 1); |
| | | IntersectionInfo inter2 = intersections.get(i); |
| | | List<PathSegment> boundaryPath = getBoundaryPathBetweenPoints( |
| | | inter1.point, inter1.edgeIndex, |
| | | inter2.point, inter2.edgeIndex, |
| | | boundary); |
| | | result.addAll(boundaryPath); |
| | | currentPos = inter2.point; |
| | | } |
| | | } else { |
| | | // 段在边界外部,可以直接沿AB直线连接(如A到D,F到G,H到B) |
| | | if (distance(p1, p2) > 1e-6) { |
| | | // 如果当前点不在p1,先连接到p1 |
| | | if (distance(currentPos, p1) > 1e-6) { |
| | | result.add(new PathSegment(currentPos, p1, false)); |
| | | } |
| | | // 从p1直线到p2 |
| | | result.add(new PathSegment(p1, p2, false)); |
| | | currentPos = p2; |
| | | } |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | /** |
| | | * 检查线段是否穿越边界(与边界边相交,不包括端点) |
| | | */ |
| | | private static boolean segmentIntersectsBoundary(Point a, Point b, List<Point> boundary) { |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | Point c = boundary.get(i); |
| | | Point d = boundary.get((i + 1) % boundary.size()); |
| | | // 忽略共享端点的相交 |
| | | if (isSamePoint(a, c) || isSamePoint(a, d) || isSamePoint(b, c) || isSamePoint(b, d)) { |
| | | continue; |
| | | } |
| | | if (segmentsIntersect(a, b, c, d)) { |
| | | return true; |
| | | } |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | /** |
| | | * 获取线段与边界的所有交点信息(包括点和对应边索引) |
| | | */ |
| | | private static List<IntersectionInfo> getAllBoundaryIntersections(Point a, Point b, List<Point> boundary) { |
| | | List<IntersectionInfo> intersections = new ArrayList<>(); |
| | | |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | Point c = boundary.get(i); |
| | | Point d = boundary.get((i + 1) % boundary.size()); |
| | | |
| | | // 忽略共享端点 |
| | | if (isSamePoint(a, c) || isSamePoint(a, d) || isSamePoint(b, c) || isSamePoint(b, d)) { |
| | | continue; |
| | | } |
| | | |
| | | Point intersection = getLineIntersection(a, b, c, d); |
| | | if (intersection != null) { |
| | | intersections.add(new IntersectionInfo(intersection, i)); |
| | | } |
| | | } |
| | | |
| | | return intersections; |
| | | } |
| | | |
| | | /** |
| | | * 获取边界上两点之间的路径(沿边界行走) |
| | | * @param start 起点(必须在边界上) |
| | | * @param startEdgeIndex 起点所在的边索引 |
| | | * @param end 终点(必须在边界上) |
| | | * @param endEdgeIndex 终点所在的边索引 |
| | | * @param boundary 边界点列表 |
| | | * @return 沿边界的路径段列表 |
| | | */ |
| | | private static List<PathSegment> getBoundaryPathBetweenPoints( |
| | | Point start, int startEdgeIndex, |
| | | Point end, int endEdgeIndex, |
| | | List<Point> boundary) { |
| | | |
| | | List<PathSegment> result = new ArrayList<>(); |
| | | |
| | | if (startEdgeIndex == endEdgeIndex) { |
| | | // 在同一条边上,直接连接 |
| | | if (distance(start, end) > 1e-6) { |
| | | result.add(new PathSegment(start, end, false)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | int n = boundary.size(); |
| | | |
| | | // 计算顺时针路径 |
| | | List<Point> pathClockwise = new ArrayList<>(); |
| | | pathClockwise.add(start); |
| | | |
| | | int curr = startEdgeIndex; |
| | | while (curr != endEdgeIndex) { |
| | | pathClockwise.add(boundary.get((curr + 1) % n)); |
| | | curr = (curr + 1) % n; |
| | | } |
| | | pathClockwise.add(end); |
| | | |
| | | // 计算逆时针路径 |
| | | List<Point> pathCounterClockwise = new ArrayList<>(); |
| | | pathCounterClockwise.add(start); |
| | | curr = startEdgeIndex; |
| | | while (curr != endEdgeIndex) { |
| | | pathCounterClockwise.add(boundary.get(curr)); |
| | | curr = (curr - 1 + n) % n; |
| | | } |
| | | pathCounterClockwise.add(end); |
| | | |
| | | // 选择较短的路径 |
| | | List<Point> chosenPath = getPathLength(pathClockwise) < getPathLength(pathCounterClockwise) |
| | | ? pathClockwise : pathCounterClockwise; |
| | | |
| | | // 转换为路径段 |
| | | for (int i = 0; i < chosenPath.size() - 1; i++) { |
| | | if (distance(chosenPath.get(i), chosenPath.get(i + 1)) > 1e-6) { |
| | | result.add(new PathSegment(chosenPath.get(i), chosenPath.get(i + 1), false)); |
| | | } |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | /** |
| | | * 计算路径总长度 |
| | | */ |
| | | private static double getPathLength(List<Point> path) { |
| | | double len = 0; |
| | | for (int i = 0; i < path.size() - 1; i++) { |
| | | len += distance(path.get(i), path.get(i + 1)); |
| | | } |
| | | return len; |
| | | } |
| | | |
| | | /** |
| | | * 判断两个点是否相同(考虑浮点误差) |
| | | */ |
| | | private static boolean isSamePoint(Point a, Point b) { |
| | | return Math.abs(a.x - b.x) < 1e-6 && Math.abs(a.y - b.y) < 1e-6; |
| | | } |
| | | |
| | | /** |
| | | * 判断两条线段是否相交(不包括端点) |
| | | */ |
| | | private static boolean segmentsIntersect(Point a, Point b, Point c, Point d) { |
| | | return ccw(a, c, d) != ccw(b, c, d) && ccw(a, b, c) != ccw(a, b, d); |
| | | } |
| | | |
| | | /** |
| | | * 判断三点是否逆时针排列 |
| | | */ |
| | | private static boolean ccw(Point a, Point b, Point c) { |
| | | return (c.y - a.y) * (b.x - a.x) > (b.y - a.y) * (c.x - a.x); |
| | | } |
| | | |
| | | /** |
| | | * 交点信息内部类 |
| | | */ |
| | | private static class IntersectionInfo { |
| | | Point point; // 交点坐标 |
| | | int edgeIndex; // 交点所在的边界边索引 |
| | | |
| | | IntersectionInfo(Point point, int edgeIndex) { |
| | | this.point = point; |
| | | this.edgeIndex = edgeIndex; |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 边界吸附结果内部类 |
| | | */ |
| | | private static class SnapResult { |
| | | Point onEdge; // 在边界上的投影点 |
| | | int edgeIndex; // 所在的边界边索引 |
| | | |
| | | SnapResult(Point p, int idx) { |
| | | this.onEdge = p; |
| | | this.edgeIndex = idx; |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 计算点到边界最近的投影点以及所在边索引 |
| | | * @param p 要吸附的点 |
| | | * @param poly 边界多边形 |
| | | * @return 吸附结果 |
| | | */ |
| | | private static SnapResult snapToBoundary(Point p, List<Point> poly) { |
| | | double minD = Double.MAX_VALUE; |
| | | Point bestProj = p; |
| | | int bestIdx = -1; |
| | | for (int i = 0; i < poly.size(); i++) { |
| | | Point s = poly.get(i); |
| | | Point e = poly.get((i + 1) % poly.size()); |
| | | double l2 = (s.x - e.x) * (s.x - e.x) + (s.y - e.y) * (s.y - e.y); |
| | | if (l2 < 1e-10) { |
| | | double d = Math.hypot(p.x - s.x, p.y - s.y); |
| | | if (d < minD) { |
| | | minD = d; |
| | | bestProj = s; |
| | | bestIdx = i; |
| | | } |
| | | continue; |
| | | } |
| | | double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2; |
| | | t = Math.max(0, Math.min(1, t)); |
| | | Point proj = new Point(s.x + t * (e.x - s.x), s.y + t * (e.y - s.y)); |
| | | double d = Math.hypot(p.x - proj.x, p.y - proj.y); |
| | | if (d < minD) { |
| | | minD = d; |
| | | bestProj = proj; |
| | | bestIdx = i; |
| | | } |
| | | } |
| | | return new SnapResult(bestProj, bestIdx == -1 ? 0 : bestIdx); |
| | | } |
| | | |
| | | /** |
| | | * 判断点是否在边界上(距离边界很近) |
| | | * @param p 要检查的点 |
| | | * @param boundary 边界多边形 |
| | | * @return 是否在边界上 |
| | | */ |
| | | @SuppressWarnings("unused") |
| | | private static boolean isPointOnBoundary(Point p, List<Point> boundary) { |
| | | double threshold = 1e-4; // 阈值,考虑浮点误差 |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | Point s = boundary.get(i); |
| | | Point e = boundary.get((i + 1) % boundary.size()); |
| | | double dist = distToSegment(p, s, e); |
| | | if (dist < threshold) { |
| | | return true; |
| | | } |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | /** |
| | | * 计算点到线段的距离 |
| | | * @param p 点 |
| | | * @param s 线段起点 |
| | | * @param e 线段终点 |
| | | * @return 距离 |
| | | */ |
| | | private static double distToSegment(Point p, Point s, Point e) { |
| | | double l2 = (s.x - e.x) * (s.x - e.x) + (s.y - e.y) * (s.y - e.y); |
| | | if (l2 < 1e-10) { |
| | | return Math.hypot(p.x - s.x, p.y - s.y); |
| | | } |
| | | double t = ((p.x - s.x) * (e.x - s.x) + (p.y - s.y) * (e.y - s.y)) / l2; |
| | | t = Math.max(0, Math.min(1, t)); |
| | | return Math.hypot(p.x - (s.x + t * (e.x - s.x)), p.y - (s.y + t * (e.y - s.y))); |
| | | } |
| | | |
| | | /** |
| | | * 生成原始扫描路径(无障碍物版本) |
| | | */ |
| | | private static List<PathSegment> generateGlobalScanPath( |
| | | List<Point> polygon, double width, double angle, Point currentPos) { |
| | | |
| | | List<PathSegment> segments = new ArrayList<>(); |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | |
| | | double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) { |
| | | minY = Math.min(minY, p.y); |
| | | maxY = Math.max(maxY, p.y); |
| | | } |
| | | |
| | | boolean leftToRight = true; |
| | | for (double y = minY + width/2; y <= maxY - width/2; y += width) { |
| | | List<Double> xIntersections = getXIntersections(rotatedPoly, y); |
| | | if (xIntersections.size() < 2) continue; |
| | | Collections.sort(xIntersections); |
| | | |
| | | List<PathSegment> lineSegmentsInRow = new ArrayList<>(); |
| | | for (int i = 0; i < xIntersections.size() - 1; i += 2) { |
| | | Point pS = rotatePoint(new Point(xIntersections.get(i), y), angle); |
| | | Point pE = rotatePoint(new Point(xIntersections.get(i + 1), y), angle); |
| | | lineSegmentsInRow.add(new PathSegment(pS, pE, true)); |
| | | } |
| | | |
| | | if (!leftToRight) { |
| | | Collections.reverse(lineSegmentsInRow); |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | Point temp = s.start; |
| | | s.start = s.end; |
| | | s.end = temp; |
| | | } |
| | | } |
| | | |
| | | for (PathSegment s : lineSegmentsInRow) { |
| | | if (distance(currentPos, s.start) > 0.01) { |
| | | segments.add(new PathSegment(currentPos, s.start, false)); |
| | | } |
| | | segments.add(s); |
| | | currentPos = s.end; |
| | | } |
| | | leftToRight = !leftToRight; |
| | | } |
| | | |
| | | return segments; |
| | | } |
| | | |
| | | /** |
| | | * 解析障碍物字符串 |
| | | * 格式:"(x1,y1;x2,y2)(x1,y1;x2,y2;x3,y3)" |
| | | */ |
| | | private static List<Obstacle> parseObstacles(String obstaclesStr) { |
| | | List<Obstacle> obstacles = new ArrayList<>(); |
| | | if (obstaclesStr == null || obstaclesStr.trim().isEmpty()) { |
| | | return obstacles; |
| | | } |
| | | |
| | | String trimmed = obstaclesStr.trim(); |
| | | List<String> obstacleStrs = new ArrayList<>(); |
| | | |
| | | // 分割每个障碍物(用括号分隔) |
| | | int start = trimmed.indexOf('('); |
| | | while (start != -1) { |
| | | int end = trimmed.indexOf(')', start); |
| | | if (end == -1) break; |
| | | |
| | | String obsStr = trimmed.substring(start + 1, end); |
| | | obstacleStrs.add(obsStr); |
| | | start = trimmed.indexOf('(', end); |
| | | } |
| | | |
| | | // 解析每个障碍物 |
| | | for (String obsStr : obstacleStrs) { |
| | | List<Point> points = new ArrayList<>(); |
| | | String[] pairs = obsStr.split(";"); |
| | | |
| | | for (String pair : pairs) { |
| | | String[] xy = pair.split(","); |
| | | if (xy.length == 2) { |
| | | points.add(new Point( |
| | | Double.parseDouble(xy[0].trim()), |
| | | Double.parseDouble(xy[1].trim()) |
| | | )); |
| | | } |
| | | } |
| | | |
| | | if (points.size() == 2) { |
| | | // 圆形障碍物:第一个点为圆心,第二个点为圆上一点 |
| | | Point center = points.get(0); |
| | | Point onCircle = points.get(1); |
| | | double radius = distance(center, onCircle); |
| | | obstacles.add(new Obstacle(center, radius)); |
| | | } else if (points.size() > 2) { |
| | | // 多边形障碍物 |
| | | obstacles.add(new Obstacle(points)); |
| | | } |
| | | } |
| | | |
| | | return obstacles; |
| | | } |
| | | |
| | | /** |
| | | * 外扩障碍物(增加安全边距) |
| | | */ |
| | | private static List<Obstacle> expandObstacles(List<Obstacle> obstacles, double margin) { |
| | | List<Obstacle> expanded = new ArrayList<>(); |
| | | |
| | | for (Obstacle obs : obstacles) { |
| | | if (obs.isCircle()) { |
| | | // 圆形:半径增加安全边距 |
| | | expanded.add(new Obstacle(obs.center, obs.radius + margin)); |
| | | } else { |
| | | // 多边形:向外偏移(与边界内缩方向相反) |
| | | List<Point> expandedPoints = getOutsetPolygon(obs.points, margin); |
| | | expanded.add(new Obstacle(expandedPoints)); |
| | | } |
| | | } |
| | | |
| | | return expanded; |
| | | } |
| | | |
| | | /** |
| | | * 多边形外扩(与内缩方向相反) |
| | | */ |
| | | private static List<Point> getOutsetPolygon(List<Point> points, double margin) { |
| | | // 这里使用简化的外扩方法:沿法线向外移动 |
| | | List<Point> outset = new ArrayList<>(); |
| | | int n = points.size(); |
| | | |
| | | for (int i = 0; i < n; i++) { |
| | | Point pPrev = points.get((i - 1 + n) % n); |
| | | Point pCurr = points.get(i); |
| | | Point pNext = points.get((i + 1) % n); |
| | | |
| | | // 计算两个边的向量 |
| | | double v1x = pCurr.x - pPrev.x, v1y = pCurr.y - pPrev.y; |
| | | double v2x = pNext.x - pCurr.x, v2y = pNext.y - pCurr.y; |
| | | |
| | | // 计算法线(确保向外) |
| | | double nx1 = -v1y, ny1 = v1x; |
| | | double nx2 = -v2y, ny2 = v2x; |
| | | |
| | | // 归一化 |
| | | double len1 = Math.hypot(nx1, ny1); |
| | | double len2 = Math.hypot(nx2, ny2); |
| | | if (len1 > 1e-6) { nx1 /= len1; ny1 /= len1; } |
| | | if (len2 > 1e-6) { nx2 /= len2; ny2 /= len2; } |
| | | |
| | | // 计算平均法线方向 |
| | | double nx = (nx1 + nx2) / 2; |
| | | double ny = (ny1 + ny2) / 2; |
| | | double len = Math.hypot(nx, ny); |
| | | if (len > 1e-6) { |
| | | nx /= len; |
| | | ny /= len; |
| | | } |
| | | |
| | | // 向外移动 |
| | | outset.add(new Point( |
| | | pCurr.x + nx * margin, |
| | | pCurr.y + ny * margin |
| | | )); |
| | | } |
| | | |
| | | return outset; |
| | | } |
| | | |
| | | /** |
| | | * 障碍物类 |
| | | */ |
| | | private static class Obstacle { |
| | | List<Point> points; // 多边形顶点(对圆形为空) |
| | | Point center; // 圆心(仅对圆形有效) |
| | | double radius; // 半径(仅对圆形有效) |
| | | boolean isCircle; |
| | | |
| | | // 多边形构造函数 |
| | | Obstacle(List<Point> points) { |
| | | this.points = new ArrayList<>(points); |
| | | this.isCircle = false; |
| | | ensureCounterClockwise(this.points); // 确保顺时针(对障碍物是内部区域) |
| | | } |
| | | |
| | | // 圆形构造函数 |
| | | Obstacle(Point center, double radius) { |
| | | this.center = new Point(center.x, center.y); |
| | | this.radius = radius; |
| | | this.isCircle = true; |
| | | this.points = new ArrayList<>(); |
| | | } |
| | | |
| | | // 判断点是否在障碍物内部 |
| | | boolean contains(Point p) { |
| | | if (isCircle) { |
| | | return distance(p, center) <= radius; |
| | | } else { |
| | | return isPointInPolygon(p, points); |
| | | } |
| | | } |
| | | |
| | | // 获取线段与障碍物的交点 |
| | | List<Point> getIntersections(PathSegment segment) { |
| | | List<Point> intersections = new ArrayList<>(); |
| | | |
| | | if (isCircle) { |
| | | // 线段与圆的交点 |
| | | double dx = segment.end.x - segment.start.x; |
| | | double dy = segment.end.y - segment.start.y; |
| | | double a = dx * dx + dy * dy; |
| | | double b = 2 * (dx * (segment.start.x - center.x) + |
| | | dy * (segment.start.y - center.y)); |
| | | double c = (segment.start.x - center.x) * (segment.start.x - center.x) + |
| | | (segment.start.y - center.y) * (segment.start.y - center.y) - |
| | | radius * radius; |
| | | |
| | | double discriminant = b * b - 4 * a * c; |
| | | if (discriminant >= 0) { |
| | | discriminant = Math.sqrt(discriminant); |
| | | for (int sign = -1; sign <= 1; sign += 2) { |
| | | double t = (-b + sign * discriminant) / (2 * a); |
| | | if (t >= 0 && t <= 1) { |
| | | intersections.add(new Point( |
| | | segment.start.x + t * dx, |
| | | segment.start.y + t * dy |
| | | )); |
| | | } |
| | | } |
| | | } |
| | | } else { |
| | | // 线段与多边形的交点 |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i); |
| | | Point p2 = points.get((i + 1) % points.size()); |
| | | |
| | | Point inter = getLineIntersection( |
| | | segment.start, segment.end, p1, p2); |
| | | if (inter != null) { |
| | | intersections.add(inter); |
| | | } |
| | | } |
| | | } |
| | | |
| | | return intersections; |
| | | } |
| | | |
| | | boolean isCircle() { |
| | | return isCircle; |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 判断点是否在多边形内部(射线法) |
| | | */ |
| | | private static boolean isPointInPolygon(Point p, List<Point> polygon) { |
| | | boolean inside = false; |
| | | for (int i = 0, j = polygon.size() - 1; i < polygon.size(); j = i++) { |
| | | Point pi = polygon.get(i); |
| | | Point pj = polygon.get(j); |
| | | |
| | | if (((pi.y > p.y) != (pj.y > p.y)) && |
| | | (p.x < (pj.x - pi.x) * (p.y - pi.y) / (pj.y - pi.y) + pi.x)) { |
| | | inside = !inside; |
| | | } |
| | | } |
| | | return inside; |
| | | } |
| | | |
| | | /** |
| | | * 计算两条线段的交点 |
| | | */ |
| | | private static Point getLineIntersection(Point p1, Point p2, Point p3, Point p4) { |
| | | double denom = (p1.x - p2.x) * (p3.y - p4.y) - (p1.y - p2.y) * (p3.x - p4.x); |
| | | if (Math.abs(denom) < 1e-6) return null; // 平行 |
| | | |
| | | double t = ((p1.x - p3.x) * (p3.y - p4.y) - (p1.y - p3.y) * (p3.x - p4.x)) / denom; |
| | | double u = -((p1.x - p2.x) * (p1.y - p3.y) - (p1.y - p2.y) * (p1.x - p3.x)) / denom; |
| | | |
| | | if (t >= 0 && t <= 1 && u >= 0 && u <= 1) { |
| | | return new Point( |
| | | p1.x + t * (p2.x - p1.x), |
| | | p1.y + t * (p2.y - p1.y) |
| | | ); |
| | | } |
| | | return null; |
| | | } |
| | | |
| | | /** |
| | | * 计算两点距离 |
| | | */ |
| | | private static double distance(Point p1, Point p2) { |
| | | return Math.hypot(p1.x - p2.x, p1.y - p2.y); |
| | | } |
| | | |
| | | // ============ 以下是从A代码复用的方法 ============ |
| | | |
| | | private static Point getFirstScanPoint(List<Point> polygon, double width, double angle) { |
| | | List<Point> rotatedPoly = new ArrayList<>(); |
| | | for (Point p : polygon) rotatedPoly.add(rotatePoint(p, -angle)); |
| | | double minY = Double.MAX_VALUE; |
| | | for (Point p : rotatedPoly) minY = Math.min(minY, p.y); |
| | | |
| | | double firstY = minY + width/2; |
| | | List<Double> xInter = getXIntersections(rotatedPoly, firstY); |
| | | if (xInter.isEmpty()) return polygon.get(0); |
| | | Collections.sort(xInter); |
| | | return rotatePoint(new Point(xInter.get(0), firstY), angle); |
| | | } |
| | | |
| | | private static List<Point> alignBoundaryStart(List<Point> boundary, Point targetStart) { |
| | | int bestIdx = 0; |
| | | double minDist = Double.MAX_VALUE; |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | double d = Math.hypot(boundary.get(i).x - targetStart.x, boundary.get(i).y - targetStart.y); |
| | | if (d < minDist) { minDist = d; bestIdx = i; } |
| | | } |
| | | List<Point> aligned = new ArrayList<>(); |
| | | for (int i = 0; i < boundary.size(); i++) { |
| | | aligned.add(boundary.get((bestIdx + i) % boundary.size())); |
| | | } |
| | | return aligned; |
| | | } |
| | | |
| | | private static List<Double> getXIntersections(List<Point> rotatedPoly, double y) { |
| | | List<Double> xIntersections = new ArrayList<>(); |
| | | for (int i = 0; i < rotatedPoly.size(); i++) { |
| | | Point p1 = rotatedPoly.get(i); |
| | | Point p2 = rotatedPoly.get((i + 1) % rotatedPoly.size()); |
| | | if ((p1.y <= y && p2.y > y) || (p2.y <= y && p1.y > y)) { |
| | | double x = p1.x + (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y); |
| | | xIntersections.add(x); |
| | | } |
| | | } |
| | | return xIntersections; |
| | | } |
| | | |
| | | private static double findOptimalAngle(List<Point> polygon) { |
| | | double bestAngle = 0; |
| | | double minHeight = Double.MAX_VALUE; |
| | | for (int i = 0; i < polygon.size(); i++) { |
| | | Point p1 = polygon.get(i), p2 = polygon.get((i + 1) % polygon.size()); |
| | | double angle = Math.atan2(p2.y - p1.y, p2.x - p1.x); |
| | | double h = calculateHeightAtAngle(polygon, angle); |
| | | if (h < minHeight) { minHeight = h; bestAngle = angle; } |
| | | } |
| | | return bestAngle; |
| | | } |
| | | |
| | | private static double calculateHeightAtAngle(List<Point> poly, double angle) { |
| | | double minY = Double.MAX_VALUE, maxY = -Double.MAX_VALUE; |
| | | for (Point p : poly) { |
| | | Point rp = rotatePoint(p, -angle); |
| | | minY = Math.min(minY, rp.y); maxY = Math.max(maxY, rp.y); |
| | | } |
| | | return maxY - minY; |
| | | } |
| | | |
| | | private static List<Point> getInsetPolygon(List<Point> points, double margin) { |
| | | List<Point> result = new ArrayList<>(); |
| | | int n = points.size(); |
| | | for (int i = 0; i < n; i++) { |
| | | Point pPrev = points.get((i - 1 + n) % n); |
| | | Point pCurr = points.get(i); |
| | | Point pNext = points.get((i + 1) % n); |
| | | |
| | | double d1x = pCurr.x - pPrev.x, d1y = pCurr.y - pPrev.y; |
| | | double l1 = Math.hypot(d1x, d1y); |
| | | double d2x = pNext.x - pCurr.x, d2y = pNext.y - pCurr.y; |
| | | double l2 = Math.hypot(d2x, d2y); |
| | | |
| | | if (l1 < 1e-6 || l2 < 1e-6) continue; |
| | | |
| | | double n1x = -d1y / l1, n1y = d1x / l1; |
| | | double n2x = -d2y / l2, n2y = d2x / l2; |
| | | |
| | | double bisectorX = n1x + n2x, bisectorY = n1y + n2y; |
| | | double bLen = Math.hypot(bisectorX, bisectorY); |
| | | if (bLen < 1e-6) { bisectorX = n1x; bisectorY = n1y; } |
| | | else { bisectorX /= bLen; bisectorY /= bLen; } |
| | | |
| | | double cosHalfAngle = n1x * bisectorX + n1y * bisectorY; |
| | | double dist = margin / Math.max(cosHalfAngle, 0.1); |
| | | |
| | | dist = Math.min(dist, margin * 5); |
| | | |
| | | result.add(new Point(pCurr.x + bisectorX * dist, pCurr.y + bisectorY * dist)); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | private static Point rotatePoint(Point p, double angle) { |
| | | double cos = Math.cos(angle), sin = Math.sin(angle); |
| | | return new Point(p.x * cos - p.y * sin, p.x * sin + p.y * cos); |
| | | } |
| | | |
| | | private static void ensureCounterClockwise(List<Point> points) { |
| | | double sum = 0; |
| | | for (int i = 0; i < points.size(); i++) { |
| | | Point p1 = points.get(i), p2 = points.get((i + 1) % points.size()); |
| | | sum += (p2.x - p1.x) * (p2.y + p1.y); |
| | | } |
| | | if (sum > 0) Collections.reverse(points); |
| | | } |
| | | |
| | | private static List<Point> parseCoordinates(String coordinates) { |
| | | List<Point> points = new ArrayList<>(); |
| | | String[] pairs = coordinates.split(";"); |
| | | for (String pair : pairs) { |
| | | String[] xy = pair.split(","); |
| | | if (xy.length == 2) points.add(new Point(Double.parseDouble(xy[0]), Double.parseDouble(xy[1]))); |
| | | } |
| | | if (points.size() > 1 && points.get(0).equals(points.get(points.size()-1))) points.remove(points.size()-1); |
| | | return points; |
| | | } |
| | | |
| | | /** |
| | | * 打印输出路径坐标到控制台 |
| | | */ |
| | | private static void printPathCoordinates(List<PathSegment> path) { |
| | | if (path == null || path.isEmpty()) { |
| | | System.out.println("路径为空"); |
| | | return; |
| | | } |
| | | |
| | | System.out.println("========== 路径坐标输出 =========="); |
| | | System.out.println("总路径段数: " + path.size()); |
| | | System.out.println(); |
| | | System.out.println("路径坐标序列 (格式: x,y;x,y;...):"); |
| | | |
| | | StringBuilder sb = new StringBuilder(); |
| | | for (int i = 0; i < path.size(); i++) { |
| | | PathSegment segment = path.get(i); |
| | | if (i == 0) { |
| | | // 第一个段的起点 |
| | | sb.append(String.format("%.2f,%.2f", segment.start.x, segment.start.y)); |
| | | } |
| | | // 每个段的终点 |
| | | sb.append(";"); |
| | | sb.append(String.format("%.2f,%.2f", segment.end.x, segment.end.y)); |
| | | } |
| | | |
| | | System.out.println(sb.toString()); |
| | | System.out.println(); |
| | | System.out.println("详细路径信息:"); |
| | | for (int i = 0; i < path.size(); i++) { |
| | | PathSegment segment = path.get(i); |
| | | String type = segment.isMowing ? "割草" : "空走"; |
| | | System.out.println(String.format("段 %d [%s]: (%.2f,%.2f) -> (%.2f,%.2f)", |
| | | i + 1, type, segment.start.x, segment.start.y, segment.end.x, segment.end.y)); |
| | | } |
| | | System.out.println("=================================="); |
| | | } |
| | | |
| | | public static class Point { |
| | | public double x, y; |
| | | public Point(double x, double y) { this.x = x; this.y = y; } |
| | | @Override |
| | | public boolean equals(Object o) { |
| | | if (!(o instanceof Point)) return false; |
| | | Point p = (Point) o; |
| | | return Math.abs(x - p.x) < 1e-4 && Math.abs(y - p.y) < 1e-4; |
| | | } |
| | | } |
| | | |
| | | public static class PathSegment { |
| | | public Point start, end; |
| | | public boolean isMowing; |
| | | public PathSegment(Point s, Point e, boolean m) { |
| | | this.start = s; |
| | | this.end = e; |
| | | this.isMowing = m; |
| | | } |
| | | } |
| | | } |
| | | |