| | |
| | | #define RNG_DELAY_MS 100 |
| | | |
| | | /* Default communication configuration. We use here EVK1000's default mode (mode 3). */ |
| | | static dwt_config_t config = { |
| | | static dwt_config_t config = |
| | | { |
| | | 2, /* Channel number. */ |
| | | DWT_PRF_64M, /* Pulse repetition frequency. */ |
| | | DWT_PLEN_1024, /* Preamble length. */ |
| | |
| | | static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; |
| | | static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| | | |
| | | |
| | | |
| | | /* Frames used in the ranging process. See NOTE 2 below. */ |
| | | static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; |
| | | static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; |
| | |
| | | static uint64 final_rx_ts; |
| | | |
| | | static double tof; |
| | | static double distance,dist2; |
| | | static double distance, dist2; |
| | | int16_t dist[8]; |
| | | #define ALL_MSG_COMMON_LEN 10 |
| | | /* Indexes to access some of the fields in the frames defined above. */ |
| | |
| | | * Its size is adjusted to longest frame that this example code is supposed to handle. */ |
| | | #define RX_BUF_LEN 20 |
| | | #define RX_BUF_LEN2 24 |
| | | static uint8 rx_buffer[RX_BUF_LEN+4]; |
| | | static uint8 rx_buffer[RX_BUF_LEN + 4]; |
| | | |
| | | /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ |
| | | static uint32 status_reg = 0; |
| | |
| | | * |
| | | * @return none |
| | | */ |
| | | static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts) |
| | | static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts) |
| | | { |
| | | int i; |
| | | *ts = 0; |
| | |
| | | *ts += ts_field[i] << (i * 8); |
| | | } |
| | | } |
| | | void GPIO_Toggle(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) |
| | | void GPIO_Toggle(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) |
| | | { |
| | | GPIO_WriteBit(GPIOx, GPIO_Pin, (BitAction)!GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin)); |
| | | GPIO_WriteBit(GPIOx, GPIO_Pin, (BitAction)!GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin)); |
| | | } |
| | | int fputc(int ch, FILE *f) |
| | | |
| | | { |
| | | |
| | | USART_SendData(USART1, (unsigned char) ch);// USART1 ???? USART2 ? |
| | | USART_SendData(USART1, (unsigned char) ch);// USART1 ???? USART2 ? |
| | | |
| | | while (!(USART1->SR & USART_FLAG_TXE)); |
| | | while (!(USART1->SR & USART_FLAG_TXE)); |
| | | |
| | | return (ch); |
| | | return (ch); |
| | | |
| | | |
| | | } |
| | | |
| | | void USART_putc(char c) |
| | | { |
| | | //while(!(USART2->SR & 0x00000040)); |
| | | //USART_SendData(USART2,c); |
| | | /* e.g. write a character to the USART */ |
| | | USART_SendData(USART1, c); |
| | | //while(!(USART2->SR & 0x00000040)); |
| | | //USART_SendData(USART2,c); |
| | | /* e.g. write a character to the USART */ |
| | | USART_SendData(USART1, c); |
| | | |
| | | /* Loop until the end of transmission */ |
| | | while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) ; |
| | | /* Loop until the end of transmission */ |
| | | while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) ; |
| | | } |
| | | |
| | | void USART_puts(uint8_t *s,uint8_t len) |
| | | void USART_puts(uint8_t *s, uint8_t len) |
| | | { |
| | | int i; |
| | | for(i=0; i<len; i++) |
| | | { |
| | | USART_putc(s[i]); |
| | | } |
| | | int i; |
| | | for(i = 0; i < len; i++) |
| | | { |
| | | USART_putc(s[i]); |
| | | } |
| | | } |
| | | int ld[100]; |
| | | int LP(int tmp,uint8_t channel) |
| | | int LP(int tmp, uint8_t channel) |
| | | { |
| | | int data; |
| | | data = 0.7*ld[channel]+0.3*tmp; |
| | | ld[channel]=data; |
| | | return data; |
| | | int data; |
| | | data = 0.7 * ld[channel] + 0.3 * tmp; |
| | | ld[channel] = data; |
| | | return data; |
| | | } |
| | | uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) |
| | | uint16_t Checksum_u16(uint8_t *pdata, uint32_t len) |
| | | { |
| | | uint16_t sum = 0; |
| | | uint32_t i; |
| | | for(i=0; i<len; i++) |
| | | for(i = 0; i < len; i++) |
| | | sum += pdata[i]; |
| | | sum = ~sum; |
| | | return sum; |
| | | } |
| | | void LED_blink(void) |
| | | { |
| | | uint8_t ii; |
| | | for (ii=0;ii<10;ii++) |
| | | { |
| | | GPIO_Toggle(GPIOA,LED_PIN); |
| | | deca_sleep(100); |
| | | } |
| | | uint8_t ii; |
| | | for (ii = 0; ii < 10; ii++) |
| | | { |
| | | GPIO_Toggle(GPIOA, LED_PIN); |
| | | deca_sleep(100); |
| | | } |
| | | } |
| | | extern volatile unsigned long time32_reset; |
| | | extern uint8_t Work_Mode; |
| | |
| | | char dist_str[16] = {0}; |
| | | int32_t dis; |
| | | double dID; |
| | | uint8_t TAG_ID,ANCHOR_ID, jumptime=0; |
| | | uint32_t rec_dist,hex_dist; |
| | | uint8_t TAG_ID, ANCHOR_ID, jumptime = 0; |
| | | uint32_t rec_dist, hex_dist; |
| | | uint16_t check; |
| | | int main(void) |
| | | { |
| | | RCC_ClocksTypeDef RCC_Clocks; /* Start with board specific hardware init. */ |
| | | RCC_ClocksTypeDef RCC_Clocks; /* Start with board specific hardware init. */ |
| | | peripherals_init();//åå§åå¤è®¾ |
| | | RCC_GetClocksFreq(&RCC_Clocks); |
| | | RCC_GetClocksFreq(&RCC_Clocks); |
| | | /* Display application name on LCD. */ |
| | | // lcd_display_str(APP_NAME); |
| | | // lcd_display_str(APP_NAME); |
| | | |
| | | /* Reset and initialise DW1000. |
| | | * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum |
| | |
| | | dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);//设置åéåå¼å¯æ¥æ¶ï¼å¹¶è®¾å®å»¶è¿æ¶é´ |
| | | dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //è®¾ç½®æ¥æ¶è¶
æ¶æ¶é´ |
| | | |
| | | send[0]=0x6D; //䏲壿°æ® |
| | | send[1]=0xD6; //䏲壿°æ® |
| | | send[0] = 0x6D; //䏲壿°æ® |
| | | send[1] = 0xD6; //䏲壿°æ® |
| | | |
| | | tx_poll_msg[6] = ANCHOR_ID; //UWB POLL å
æ°æ® |
| | | rx_resp_msg[6] = ANCHOR_ID; //UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[6] = ANCHOR_ID;//UWB Fianl å
æ°æ® |
| | | |
| | | rx_poll_msg[6] = ANCHOR_ID; |
| | | tx_resp_msg[6] = ANCHOR_ID; |
| | | rx_final_msg[6] = ANCHOR_ID; |
| | | |
| | | tx_poll_msg[5] = TAG_ID;//UWB POLL å
æ°æ® |
| | | rx_resp_msg[5] = TAG_ID;//UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[5] = TAG_ID;//UWB Fianl å
æ°æ® |
| | | tx_poll_msg[6] = ANCHOR_ID; //UWB POLL å
æ°æ® |
| | | rx_resp_msg[6] = ANCHOR_ID; //UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[6] = ANCHOR_ID;//UWB Fianl å
æ°æ® |
| | | |
| | | rx_poll_msg[6] = ANCHOR_ID; |
| | | tx_resp_msg[6] = ANCHOR_ID; |
| | | rx_final_msg[6] = ANCHOR_ID; |
| | | |
| | | tx_poll_msg[5] = TAG_ID;//UWB POLL å
æ°æ® |
| | | rx_resp_msg[5] = TAG_ID;//UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[5] = TAG_ID;//UWB Fianl å
æ°æ® |
| | | /* Loop forever initiating ranging exchanges. */ |
| | | LED_blink(); |
| | | if(!Work_Mode) //éæ©å鿍¡å¼ï¼TAGæ ç¾ï¼è¿æ¯æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | while (1) //å鿍¡å¼(TAGæ ç¾) |
| | | LED_blink(); |
| | | if(!Work_Mode) //éæ©å鿍¡å¼ï¼TAGæ ç¾ï¼è¿æ¯æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ |
| | | tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//å°Pollå
æ°æ®ä¼ ç»DW1000ï¼å°å¨å¼å¯åéæ¶ä¼ åºå» |
| | | dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置è¶
宽带åéæ°æ®é¿åº¦ |
| | | |
| | | /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay |
| | | * set by dwt_setrxaftertxdelay() has elapsed. */ |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//å¼å¯åéï¼åé宿åçå¾
䏿®µæ¶é´å¼å¯æ¥æ¶ï¼çå¾
æ¶é´å¨dwt_setrxaftertxdelayä¸è®¾ç½® |
| | | |
| | | /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æåæ¥æ¶æè
åçé误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the poll message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//妿æåæ¥æ¶ |
| | | while (1) //å鿍¡å¼(TAGæ ç¾) |
| | | { |
| | | uint32 frame_len; |
| | | /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ |
| | | tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//å°Pollå
æ°æ®ä¼ ç»DW1000ï¼å°å¨å¼å¯åéæ¶ä¼ åºå» |
| | | dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置è¶
宽带åéæ°æ®é¿åº¦ |
| | | |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥å¯å卿 å¿ä½ |
| | | /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay |
| | | * set by dwt_setrxaftertxdelay() has elapsed. */ |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//å¼å¯åéï¼åé宿åçå¾
䏿®µæ¶é´å¼å¯æ¥æ¶ï¼çå¾
æ¶é´å¨dwt_setrxaftertxdelayä¸è®¾ç½® |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //è·å¾æ¥æ¶å°çæ°æ®é¿åº¦ |
| | | /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æåæ¥æ¶æè
åçé误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the poll message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//妿æåæ¥æ¶ |
| | | { |
| | | uint32 frame_len; |
| | | |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥å¯å卿 å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //è·å¾æ¥æ¶å°çæ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0); //è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is the expected response from the companion "DS TWR responder" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9]==0x10)//å¤ææ¥æ¶å°çæ°æ®æ¯å¦æ¯responseæ°æ® |
| | | { |
| | | uint32 final_tx_time; |
| | | |
| | | |
| | | /* Retrieve poll transmission and response reception timestamp. */ |
| | | poll_tx_ts = get_tx_timestamp_u64(); //è·å¾POLLåéæ¶é´T1 |
| | | resp_rx_ts = get_rx_timestamp_u64(); //è·å¾RESPONSEæ¥æ¶æ¶é´T4 |
| | | |
| | | memcpy(&dist[TAG_ID],&rx_buffer[11],2); |
| | | |
| | | /* Compute final message transmission time. See NOTE 9 below. */ |
| | | final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®finalå
åéæ¶é´ï¼T5=T4+Treply2 |
| | | dwt_setdelayedtrxtime(final_tx_time);//设置finalå
åéæ¶é´T5 |
| | | |
| | | /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ |
| | | final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//finalå
å®é
åéæ¶é´æ¯è®¡ç®æ¶é´å ä¸åé天线delay |
| | | |
| | | /* Write all timestamps in the final message. See NOTE 10 below. */ |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//å°T1ï¼T4ï¼T5åå
¥åéæ°æ® |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); |
| | | |
| | | /* Write and send final message. See NOTE 7 below. */ |
| | | tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//å°åéæ°æ®åå
¥DW1000 |
| | | dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设å®åéæ°æ®é¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED);//设å®ä¸ºå»¶è¿åé |
| | | |
| | | if (GPIO_ReadInputDataBit(GPIOA,SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | dID=TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID=ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); |
| | | }else{ |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4],&dist[TAG_ID],2); |
| | | check=Checksum_u16(&send[2],6); |
| | | memcpy(&send[8],&check,2); |
| | | USART_puts(send,10); |
| | | } |
| | | /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ |
| | | while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//䏿æ¥è¯¢è¯çç¶æç´å°åé宿 |
| | | { }; |
| | | |
| | | /* Clear TXFRS event. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* Increment frame sequence number after transmission of the final message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | time32_reset = 0; |
| | | GPIO_Toggle(GPIOA,LED_PIN);//LEDéªç |
| | | jumptime = 0; |
| | | }else{ |
| | | jumptime =5;//妿é讯失败ï¼å°é´éæ¶é´å¢å 5msï¼é¿å¼å ä¸ºå¤æ ç¾åæ¶åéå¼èµ·çå²çªã |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | jumptime =5; |
| | | } |
| | | |
| | | /* Execute a delay between ranging exchanges. */ |
| | | deca_sleep(RNG_DELAY_MS+jumptime);//ä¼ç åºå®æ¶é´ |
| | | } |
| | | }else{ |
| | | while (1)//æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | /* Clear reception timeout to start next ranging process. */ |
| | | dwt_setrxtimeout(0);//è®¾å®æ¥æ¶è¶
æ¶æ¶é´ï¼0使²¡æè¶
æ¶æ¶é´ |
| | | |
| | | /* Activate reception immediately. */ |
| | | dwt_rxenable(0);//æå¼æ¥æ¶ |
| | | |
| | | /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æåæ¥æ¶ |
| | | { |
| | | |
| | | |
| | | /* Clear good RX frame event in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//è·å¾æ¥æ¶æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is a poll sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | TAG_ID = rx_buffer[5]; |
| | | rx_poll_msg[5] = TAG_ID;//ä¸ºå¤æ ç¾é讯æå¡ï¼é²æ¢ä¸æ¬¡éè®¯ä¸æ¥æ¶å°ä¸åIDæ ç¾çæ°æ® |
| | | tx_resp_msg[5] = TAG_ID; |
| | | rx_final_msg[5] = TAG_ID; |
| | | if (rx_buffer[9]==0x21)//夿æ¯å¦æ¯pollå
æ°æ® |
| | | { |
| | | uint32 resp_tx_time; |
| | | |
| | | /* Retrieve poll reception timestamp. */ |
| | | poll_rx_ts = get_rx_timestamp_u64();//è·å¾Pollå
æ¥æ¶æ¶é´T2 |
| | | |
| | | /* Set send time for response. See NOTE 8 below. */ |
| | | resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®Responseåéæ¶é´T3ã |
| | | dwt_setdelayedtrxtime(resp_tx_time);//设置Responseåéæ¶é´T3 |
| | | |
| | | /* Set expected delay and timeout for final message reception. */ |
| | | dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置åé宿åå¼å¯æ¥æ¶å»¶è¿æ¶é´ |
| | | dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//æ¥æ¶è¶
æ¶æ¶é´ |
| | | |
| | | /* Write and send the response message. See NOTE 9 below.*/ |
| | | memcpy(&tx_resp_msg[11],&dist[TAG_ID],2); |
| | | tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//åå
¥åéæ°æ® |
| | | dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设å®åéé¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//å»¶è¿åéï¼çå¾
æ¥æ¶ |
| | | |
| | | /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. |
| | | * See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the response message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æ¥æ¶æå |
| | | /* Check that the frame is the expected response from the companion "DS TWR responder" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9] == 0x10) //å¤ææ¥æ¶å°çæ°æ®æ¯å¦æ¯responseæ°æ® |
| | | { |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | uint32 final_tx_time; |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | /* Retrieve poll transmission and response reception timestamp. */ |
| | | poll_tx_ts = get_tx_timestamp_u64(); //è·å¾POLLåéæ¶é´T1 |
| | | resp_rx_ts = get_rx_timestamp_u64(); //è·å¾RESPONSEæ¥æ¶æ¶é´T4 |
| | | |
| | | /* Check that the frame is a final message sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9]==0x23)//夿æ¯å¦ä¸ºFianlå
|
| | | memcpy(&dist[TAG_ID], &rx_buffer[11], 2); |
| | | |
| | | /* Compute final message transmission time. See NOTE 9 below. */ |
| | | final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®finalå
åéæ¶é´ï¼T5=T4+Treply2 |
| | | dwt_setdelayedtrxtime(final_tx_time);//设置finalå
åéæ¶é´T5 |
| | | |
| | | /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ |
| | | final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//finalå
å®é
åéæ¶é´æ¯è®¡ç®æ¶é´å ä¸åé天线delay |
| | | |
| | | /* Write all timestamps in the final message. See NOTE 10 below. */ |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//å°T1ï¼T4ï¼T5åå
¥åéæ°æ® |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); |
| | | |
| | | /* Write and send final message. See NOTE 7 below. */ |
| | | tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//å°åéæ°æ®åå
¥DW1000 |
| | | dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设å®åéæ°æ®é¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED);//设å®ä¸ºå»¶è¿åé |
| | | |
| | | if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | uint32 poll_tx_ts, resp_rx_ts, final_tx_ts; |
| | | uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; |
| | | double Ra, Rb, Da, Db; |
| | | int64 tof_dtu; |
| | | |
| | | /* Retrieve response transmission and final reception timestamps. */ |
| | | resp_tx_ts = get_tx_timestamp_u64();//è·å¾responseåéæ¶é´T3 |
| | | final_rx_ts = get_rx_timestamp_u64();//è·å¾finalæ¥æ¶æ¶é´T6 |
| | | |
| | | /* Get timestamps embedded in the final message. */ |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//仿¥æ¶æ°æ®ä¸è¯»åT1ï¼T4ï¼T5 |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); |
| | | |
| | | /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ |
| | | poll_rx_ts_32 = (uint32)poll_rx_ts;//使ç¨32使°æ®è®¡ç® |
| | | resp_tx_ts_32 = (uint32)resp_tx_ts; |
| | | final_rx_ts_32 = (uint32)final_rx_ts; |
| | | Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 |
| | | Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 |
| | | Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 |
| | | Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 |
| | | tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计ç®å
¬å¼ |
| | | |
| | | tof = tof_dtu * DWT_TIME_UNITS; |
| | | distance = tof * SPEED_OF_LIGHT;//è·ç¦»=å
é*é£è¡æ¶é´ |
| | | dist2 = distance - dwt_getrangebias(config.chan,(float)distance, config.prf);//è·ç¦»åå»ç«æ£ç³»æ° |
| | | |
| | | dis = dist2*100;//dis 为åä½ä¸ºcmçè·ç¦» |
| | | dist[TAG_ID] = LP(dis,TAG_ID);//LP 为ä½é滤波å¨ï¼è®©æ°æ®æ´ç¨³å® |
| | | time32_reset = 0; |
| | | GPIO_Toggle(GPIOA,LED_PIN); |
| | | if (GPIO_ReadInputDataBit(GPIOA,SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | dID=TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID=ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | dID = TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID = ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); |
| | | }else{ |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4],&dist[TAG_ID],2); |
| | | check=Checksum_u16(&send[2],6); |
| | | memcpy(&send[8],&check,2); |
| | | USART_puts(send,10); |
| | | } |
| | | |
| | | } |
| | | else |
| | | { |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4], &dist[TAG_ID], 2); |
| | | check = Checksum_u16(&send[2], 6); |
| | | memcpy(&send[8], &check, 2); |
| | | USART_puts(send, 10); |
| | | } |
| | | /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ |
| | | while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//䏿æ¥è¯¢è¯çç¶æç´å°åé宿 |
| | | { }; |
| | | |
| | | /* Clear TXFRS event. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* Increment frame sequence number after transmission of the final message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | time32_reset = 0; |
| | | GPIO_Toggle(GPIOA, LED_PIN); //LEDéªç |
| | | jumptime = 0; |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | jumptime = 5; //妿é讯失败ï¼å°é´éæ¶é´å¢å 5msï¼é¿å¼å ä¸ºå¤æ ç¾åæ¶åéå¼èµ·çå²çªã |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | jumptime = 5; |
| | | } |
| | | |
| | | /* Execute a delay between ranging exchanges. */ |
| | | deca_sleep(RNG_DELAY_MS + jumptime); //ä¼ç åºå®æ¶é´ |
| | | } |
| | | } |
| | | |
| | | |
| | | } |
| | | else |
| | | { |
| | | while (1)//æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | /* Clear reception timeout to start next ranging process. */ |
| | | dwt_setrxtimeout(0);//è®¾å®æ¥æ¶è¶
æ¶æ¶é´ï¼0使²¡æè¶
æ¶æ¶é´ |
| | | |
| | | /* Activate reception immediately. */ |
| | | dwt_rxenable(0);//æå¼æ¥æ¶ |
| | | |
| | | /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æåæ¥æ¶ |
| | | { |
| | | |
| | | |
| | | /* Clear good RX frame event in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//è·å¾æ¥æ¶æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is a poll sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | TAG_ID = rx_buffer[5]; |
| | | rx_poll_msg[5] = TAG_ID;//ä¸ºå¤æ ç¾é讯æå¡ï¼é²æ¢ä¸æ¬¡éè®¯ä¸æ¥æ¶å°ä¸åIDæ ç¾çæ°æ® |
| | | tx_resp_msg[5] = TAG_ID; |
| | | rx_final_msg[5] = TAG_ID; |
| | | if (rx_buffer[9] == 0x21) //夿æ¯å¦æ¯pollå
æ°æ® |
| | | { |
| | | uint32 resp_tx_time; |
| | | |
| | | /* Retrieve poll reception timestamp. */ |
| | | poll_rx_ts = get_rx_timestamp_u64();//è·å¾Pollå
æ¥æ¶æ¶é´T2 |
| | | |
| | | /* Set send time for response. See NOTE 8 below. */ |
| | | resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®Responseåéæ¶é´T3ã |
| | | dwt_setdelayedtrxtime(resp_tx_time);//设置Responseåéæ¶é´T3 |
| | | |
| | | /* Set expected delay and timeout for final message reception. */ |
| | | dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置åé宿åå¼å¯æ¥æ¶å»¶è¿æ¶é´ |
| | | dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//æ¥æ¶è¶
æ¶æ¶é´ |
| | | |
| | | /* Write and send the response message. See NOTE 9 below.*/ |
| | | memcpy(&tx_resp_msg[11], &dist[TAG_ID], 2); |
| | | tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//åå
¥åéæ°æ® |
| | | dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设å®åéé¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//å»¶è¿åéï¼çå¾
æ¥æ¶ |
| | | |
| | | /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. |
| | | * See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the response message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æ¥æ¶æå |
| | | { |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is a final message sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9] == 0x23) //夿æ¯å¦ä¸ºFianlå
|
| | | { |
| | | uint32 poll_tx_ts, resp_rx_ts, final_tx_ts; |
| | | uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; |
| | | double Ra, Rb, Da, Db; |
| | | int64 tof_dtu; |
| | | |
| | | /* Retrieve response transmission and final reception timestamps. */ |
| | | resp_tx_ts = get_tx_timestamp_u64();//è·å¾responseåéæ¶é´T3 |
| | | final_rx_ts = get_rx_timestamp_u64();//è·å¾finalæ¥æ¶æ¶é´T6 |
| | | |
| | | /* Get timestamps embedded in the final message. */ |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//仿¥æ¶æ°æ®ä¸è¯»åT1ï¼T4ï¼T5 |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); |
| | | |
| | | /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ |
| | | poll_rx_ts_32 = (uint32)poll_rx_ts;//使ç¨32使°æ®è®¡ç® |
| | | resp_tx_ts_32 = (uint32)resp_tx_ts; |
| | | final_rx_ts_32 = (uint32)final_rx_ts; |
| | | Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 |
| | | Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 |
| | | Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 |
| | | Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 |
| | | tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计ç®å
¬å¼ |
| | | |
| | | tof = tof_dtu * DWT_TIME_UNITS; |
| | | distance = tof * SPEED_OF_LIGHT;//è·ç¦»=å
é*é£è¡æ¶é´ |
| | | dist2 = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //è·ç¦»åå»ç«æ£ç³»æ° |
| | | |
| | | dis = dist2 * 100; //dis 为åä½ä¸ºcmçè·ç¦» |
| | | dist[TAG_ID] = LP(dis, TAG_ID); //LP 为ä½é滤波å¨ï¼è®©æ°æ®æ´ç¨³å® |
| | | time32_reset = 0; |
| | | GPIO_Toggle(GPIOA, LED_PIN); |
| | | if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | dID = TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID = ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); |
| | | } |
| | | else |
| | | { |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4], &dist[TAG_ID], 2); |
| | | check = Checksum_u16(&send[2], 6); |
| | | memcpy(&send[8], &check, 2); |
| | | USART_puts(send, 10); |
| | | } |
| | | |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | } |
| | | } |
| | | |
| | | |
| | | } |
| | | } |
| | | |
| | | /*! ------------------------------------------------------------------------------------------------------------------ |