| | |
| | | /*! ---------------------------------------------------------------------------- |
| | | * @file main.c |
| | | * @brief Double-sided two-way ranging (DS TWR) initiator example code |
| | | * |
| | | * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" |
| | | * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example |
| | | * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to |
| | | * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX |
| | | * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air |
| | | * and, thus, the estimated distance between the two devices. |
| | | * |
| | | * @attention |
| | | * |
| | | * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland. |
| | | * |
| | | * All rights reserved. |
| | | * |
| | | * @author Decawave |
| | | */ |
| | | #include <string.h> |
| | | #include <stdio.h> |
| | | #include "deca_device_api.h" |
| | | #include "deca_regs.h" |
| | | |
| | | #include "Rcc_Nvic_Systick.h" |
| | | #include "Usart.h" |
| | | #include "Spi.h" |
| | | #include "dw_driver.h" |
| | | #include "led.h" |
| | | #include "beep.h" |
| | | #include "dw_driver.h" |
| | | #include "dw_app.h" |
| | | #include "stm32f10x_it.h" |
| | | #include "serial_at_cmd_app.h" |
| | | #include "global_param.h" |
| | | |
| | | /* Example application name and version to display on LCD screen. */ |
| | | #define APP_NAME "DS TWR INIT v1.1" |
| | | #define WORK_MODE_TAG |
| | | //#define WORK_MODE_ANCHOR |
| | | |
| | | /* Inter-ranging delay period, in milliseconds. */ |
| | | #define RNG_DELAY_MS 100 |
| | | |
| | | /* Default communication configuration. We use here EVK1000's default mode (mode 3). */ |
| | | static dwt_config_t config = |
| | | void Device_Init(void) |
| | | { |
| | | 2, /* Channel number. */ |
| | | DWT_PRF_64M, /* Pulse repetition frequency. */ |
| | | DWT_PLEN_1024, /* Preamble length. */ |
| | | DWT_PAC32, /* Preamble acquisition chunk size. Used in RX only. */ |
| | | 9, /* TX preamble code. Used in TX only. */ |
| | | 9, /* RX preamble code. Used in RX only. */ |
| | | 1, /* Use non-standard SFD (Boolean) */ |
| | | DWT_BR_110K, /* Data rate. */ |
| | | DWT_PHRMODE_STD, /* PHY header mode. */ |
| | | (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ |
| | | }; |
| | | /* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */ |
| | | #define TX_ANT_DLY 0 |
| | | #define RX_ANT_DLY 32899 |
| | | static uint8 rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; |
| | | static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; |
| | | static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| | | // Rcc_Init(); |
| | | SystemInit(); |
| | | Nvic_Init(); |
| | | Systick_Init(); |
| | | #ifdef WORK_MODE_TAG |
| | | RTC_Configuration(); |
| | | #endif |
| | | Led_Init(); |
| | | Beep_Init(); |
| | | DW_GPIO_Init(); |
| | | Uart1_Init(); |
| | | Spi_Init(); |
| | | |
| | | |
| | | GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); |
| | | } |
| | | |
| | | |
| | | /* Frames used in the ranging process. See NOTE 2 below. */ |
| | | static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; |
| | | static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; |
| | | static uint8 tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| | | /* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */ |
| | | typedef signed long long int64; |
| | | typedef unsigned long long uint64; |
| | | static uint64 poll_rx_ts; |
| | | static uint64 resp_tx_ts; |
| | | static uint64 final_rx_ts; |
| | | |
| | | static double tof; |
| | | static double distance, dist2; |
| | | int16_t dist[8]; |
| | | #define ALL_MSG_COMMON_LEN 10 |
| | | /* Indexes to access some of the fields in the frames defined above. */ |
| | | #define ALL_MSG_SN_IDX 2 |
| | | #define FINAL_MSG_POLL_TX_TS_IDX 10 |
| | | #define FINAL_MSG_RESP_RX_TS_IDX 14 |
| | | #define FINAL_MSG_FINAL_TX_TS_IDX 18 |
| | | #define FINAL_MSG_TS_LEN 4 |
| | | /* Frame sequence number, incremented after each transmission. */ |
| | | static uint32 frame_seq_nb = 0; |
| | | |
| | | /* Buffer to store received response message. |
| | | * Its size is adjusted to longest frame that this example code is supposed to handle. */ |
| | | #define RX_BUF_LEN 20 |
| | | #define RX_BUF_LEN2 24 |
| | | static uint8 rx_buffer[RX_BUF_LEN + 4]; |
| | | |
| | | /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ |
| | | static uint32 status_reg = 0; |
| | | |
| | | /* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor. |
| | | * 1 uus = 512 / 499.2 ç¥ and 1 ç¥ = 499.2 * 128 dtu. */ |
| | | #define UUS_TO_DWT_TIME 65536 |
| | | |
| | | /* Delay between frames, in UWB microseconds. See NOTE 4 below. */ |
| | | /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ |
| | | #define POLL_TX_TO_RESP_RX_DLY_UUS 150 |
| | | /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the |
| | | * frame length of approximately 2.66 ms with above configuration. */ |
| | | #define RESP_RX_TO_FINAL_TX_DLY_UUS 4100 |
| | | /* Receive response timeout. See NOTE 5 below. */ |
| | | #define RESP_RX_TIMEOUT_UUS 14700 |
| | | |
| | | #define POLL_RX_TO_RESP_TX_DLY_UUS 3600 |
| | | /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ |
| | | #define RESP_TX_TO_FINAL_RX_DLY_UUS 500 |
| | | /* Receive final timeout. See NOTE 5 below. */ |
| | | #define FINAL_RX_TIMEOUT_UUS 4300 |
| | | #define SPEED_OF_LIGHT 299702547 |
| | | /* Time-stamps of frames transmission/reception, expressed in device time units. |
| | | * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */ |
| | | typedef unsigned long long uint64; |
| | | static uint64 poll_tx_ts; |
| | | static uint64 resp_rx_ts; |
| | | static uint64 final_tx_ts; |
| | | |
| | | /* Declaration of static functions. */ |
| | | static uint64 get_tx_timestamp_u64(void); |
| | | static uint64 get_rx_timestamp_u64(void); |
| | | static void final_msg_set_ts(uint8 *ts_field, uint64 ts); |
| | | void Program_Init(void) |
| | | {uint16_t i; |
| | | Usart1ParseDataCallback = UsartParseDataHandler; |
| | | parameter_init(); |
| | | for(i=0;i<255;i++) |
| | | { |
| | | g_Tagdist[i]=0xffff; |
| | | } |
| | | } |
| | | |
| | | /*! ------------------------------------------------------------------------------------------------------------------ |
| | | * @fn main() |
| | |
| | | * |
| | | * @return none |
| | | */ |
| | | static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts) |
| | | { |
| | | int i; |
| | | *ts = 0; |
| | | for (i = 0; i < FINAL_MSG_TS_LEN; i++) |
| | | { |
| | | *ts += ts_field[i] << (i * 8); |
| | | } |
| | | } |
| | | //void GPIO_Toggle(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) |
| | | //{ |
| | | // GPIO_WriteBit(GPIOx, GPIO_Pin, (BitAction)!GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin)); |
| | | //} |
| | | int fputc(int ch, FILE *f) |
| | | |
| | | { |
| | | |
| | | USART_SendData(USART1, (unsigned char) ch);// USART1 ???? USART2 ? |
| | | |
| | | while (!(USART1->SR & USART_FLAG_TXE)); |
| | | |
| | | return (ch); |
| | | |
| | | |
| | | } |
| | | |
| | | void USART_putc(char c) |
| | | { |
| | | //while(!(USART2->SR & 0x00000040)); |
| | | //USART_SendData(USART2,c); |
| | | /* e.g. write a character to the USART */ |
| | | USART_SendData(USART1, c); |
| | | |
| | | /* Loop until the end of transmission */ |
| | | while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) ; |
| | | } |
| | | |
| | | void USART_puts(uint8_t *s, uint8_t len) |
| | | { |
| | | int i; |
| | | for(i = 0; i < len; i++) |
| | | { |
| | | USART_putc(s[i]); |
| | | } |
| | | } |
| | | int ld[100]; |
| | | int LP(int tmp, uint8_t channel) |
| | | { |
| | | int data; |
| | | data = 0.7 * ld[channel] + 0.3 * tmp; |
| | | ld[channel] = data; |
| | | return data; |
| | | } |
| | | uint16_t Checksum_u16(uint8_t *pdata, uint32_t len) |
| | | { |
| | | uint16_t sum = 0; |
| | | uint32_t i; |
| | | for(i = 0; i < len; i++) |
| | | sum += pdata[i]; |
| | | sum = ~sum; |
| | | return sum; |
| | | } |
| | | void LED_blink(void) |
| | | { |
| | | uint8_t ii; |
| | | for (ii = 0; ii < 10; ii++) |
| | | { |
| | | GPIO_Toggle(GPIOA, LED_PIN); |
| | | deca_sleep(100); |
| | | } |
| | | } |
| | | //extern volatile unsigned long time32_reset; |
| | | extern uint8_t Work_Mode; |
| | | uint32 frame_len; |
| | | uint8_t send[9]; |
| | | char dist_str[16] = {0}; |
| | | int32_t dis; |
| | | double dID; |
| | | uint8_t TAG_ID, ANCHOR_ID, jumptime = 0; |
| | | uint32_t rec_dist, hex_dist; |
| | | uint16_t check; |
| | | |
| | | void Device_Init(void) |
| | | { |
| | | Rcc_Init(); |
| | | Nvic_Init(); |
| | | Systick_Init(); |
| | | Led_Init(); |
| | | DW_GPIO_Init(); |
| | | Usart_Init(); |
| | | Spi_Init(); |
| | | |
| | | GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); |
| | | |
| | | } |
| | | |
| | | int main(void) |
| | | { |
| | | |
| | | |
| | | Device_Init(); |
| | | // RCC_ClocksTypeDef RCC_Clocks; /* Start with board specific hardware init. */ |
| | | // peripherals_init();//åå§åå¤è®¾ |
| | | // RCC_GetClocksFreq(&RCC_Clocks); |
| | | /* Display application name on LCD. */ |
| | | // lcd_display_str(APP_NAME); |
| | | Program_Init(); |
| | | Dw1000_Init(); |
| | | |
| | | /* Reset and initialise DW1000. |
| | | * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum |
| | | * performance. */ |
| | | Reset_DW1000();//éå¯DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ |
| | | // spi_set_rate_low();//éä½SPIé¢ç |
| | | dwt_initialise(DWT_LOADUCODE);//åå§åDW1000 |
| | | // spi_set_rate_high();//åå¤SPIé¢ç |
| | | Spi_ChangePrescaler(SPIx_PRESCALER_FAST); //è®¾ç½®ä¸ºå¿«éæ¨¡å¼ |
| | | |
| | | /* Configure DW1000. See NOTE 6 below. */ |
| | | dwt_configure(&config);//é
ç½®DW1000 |
| | | |
| | | /* Apply default antenna delay value. See NOTE 1 below. */ |
| | | dwt_setrxantennadelay(RX_ANT_DLY); //è®¾ç½®æ¥æ¶å¤©çº¿å»¶è¿ |
| | | dwt_settxantennadelay(TX_ANT_DLY); //设置åå°å¤©çº¿å»¶è¿ |
| | | |
| | | /* Set expected response's delay and timeout. See NOTE 4 and 5 below. |
| | | * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ |
| | | dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);//设置åéåå¼å¯æ¥æ¶ï¼å¹¶è®¾å®å»¶è¿æ¶é´ |
| | | dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //è®¾ç½®æ¥æ¶è¶
æ¶æ¶é´ |
| | | |
| | | send[0] = 0x6D; //䏲壿°æ® |
| | | send[1] = 0xD6; //䏲壿°æ® |
| | | |
| | | tx_poll_msg[6] = ANCHOR_ID; //UWB POLL å
æ°æ® |
| | | rx_resp_msg[6] = ANCHOR_ID; //UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[6] = ANCHOR_ID;//UWB Fianl å
æ°æ® |
| | | |
| | | rx_poll_msg[6] = ANCHOR_ID; |
| | | tx_resp_msg[6] = ANCHOR_ID; |
| | | rx_final_msg[6] = ANCHOR_ID; |
| | | |
| | | tx_poll_msg[5] = TAG_ID;//UWB POLL å
æ°æ® |
| | | rx_resp_msg[5] = TAG_ID;//UWB RESPONSE å
æ°æ® |
| | | tx_final_msg[5] = TAG_ID;//UWB Fianl å
æ°æ® |
| | | #ifdef WORK_MODE_TAG |
| | | tag_sleep_configuraion(); |
| | | #endif |
| | | Dw1000_App_Init(); |
| | | /* Loop forever initiating ranging exchanges. */ |
| | | LED_blink(); |
| | | if(!Work_Mode) //éæ©å鿍¡å¼ï¼TAGæ ç¾ï¼è¿æ¯æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | while (1) //å鿍¡å¼(TAGæ ç¾) |
| | | { |
| | | /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ |
| | | tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//å°Pollå
æ°æ®ä¼ ç»DW1000ï¼å°å¨å¼å¯åéæ¶ä¼ åºå» |
| | | dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置è¶
宽带åéæ°æ®é¿åº¦ |
| | | while(1) |
| | | { |
| | | #ifdef WORK_MODE_TAG |
| | | if(g_start_send_flag) |
| | | { |
| | | g_start_send_flag = 0; |
| | | Tag_App(); |
| | | } |
| | | // UART_CheckReceive(); |
| | | RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
| | | PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI); |
| | | #else |
| | | Anchor_App(); |
| | | #endif |
| | | |
| | | /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay |
| | | * set by dwt_setrxaftertxdelay() has elapsed. */ |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//å¼å¯åéï¼åé宿åçå¾
䏿®µæ¶é´å¼å¯æ¥æ¶ï¼çå¾
æ¶é´å¨dwt_setrxaftertxdelayä¸è®¾ç½® |
| | | |
| | | /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æåæ¥æ¶æè
åçé误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the poll message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//妿æåæ¥æ¶ |
| | | { |
| | | uint32 frame_len; |
| | | |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥å¯å卿 å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //è·å¾æ¥æ¶å°çæ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0); //è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is the expected response from the companion "DS TWR responder" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9] == 0x10) //å¤ææ¥æ¶å°çæ°æ®æ¯å¦æ¯responseæ°æ® |
| | | { |
| | | uint32 final_tx_time; |
| | | |
| | | |
| | | /* Retrieve poll transmission and response reception timestamp. */ |
| | | poll_tx_ts = get_tx_timestamp_u64(); //è·å¾POLLåéæ¶é´T1 |
| | | resp_rx_ts = get_rx_timestamp_u64(); //è·å¾RESPONSEæ¥æ¶æ¶é´T4 |
| | | |
| | | memcpy(&dist[TAG_ID], &rx_buffer[11], 2); |
| | | |
| | | /* Compute final message transmission time. See NOTE 9 below. */ |
| | | final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®finalå
åéæ¶é´ï¼T5=T4+Treply2 |
| | | dwt_setdelayedtrxtime(final_tx_time);//设置finalå
åéæ¶é´T5 |
| | | |
| | | /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ |
| | | final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//finalå
å®é
åéæ¶é´æ¯è®¡ç®æ¶é´å ä¸åé天线delay |
| | | |
| | | /* Write all timestamps in the final message. See NOTE 10 below. */ |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//å°T1ï¼T4ï¼T5åå
¥åéæ°æ® |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); |
| | | final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); |
| | | |
| | | /* Write and send final message. See NOTE 7 below. */ |
| | | tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//å°åéæ°æ®åå
¥DW1000 |
| | | dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设å®åéæ°æ®é¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED);//设å®ä¸ºå»¶è¿åé |
| | | |
| | | if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | dID = TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID = ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); |
| | | } |
| | | else |
| | | { |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4], &dist[TAG_ID], 2); |
| | | check = Checksum_u16(&send[2], 6); |
| | | memcpy(&send[8], &check, 2); |
| | | USART_puts(send, 10); |
| | | } |
| | | /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ |
| | | while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//䏿æ¥è¯¢è¯çç¶æç´å°åé宿 |
| | | { }; |
| | | |
| | | /* Clear TXFRS event. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* Increment frame sequence number after transmission of the final message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | // time32_reset = 0; |
| | | GPIO_Toggle(GPIOA, LED_PIN); //LEDéªç |
| | | jumptime = 0; |
| | | } |
| | | else |
| | | { |
| | | jumptime = 5; //妿é讯失败ï¼å°é´éæ¶é´å¢å 5msï¼é¿å¼å ä¸ºå¤æ ç¾åæ¶åéå¼èµ·çå²çªã |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | jumptime = 5; |
| | | } |
| | | |
| | | /* Execute a delay between ranging exchanges. */ |
| | | deca_sleep(RNG_DELAY_MS + jumptime); //ä¼ç åºå®æ¶é´ |
| | | } |
| | | } |
| | | else |
| | | { |
| | | while (1)//æ¥æ¶æ¨¡å¼(ANCHORåºç«) |
| | | { |
| | | /* Clear reception timeout to start next ranging process. */ |
| | | dwt_setrxtimeout(0);//è®¾å®æ¥æ¶è¶
æ¶æ¶é´ï¼0使²¡æè¶
æ¶æ¶é´ |
| | | |
| | | /* Activate reception immediately. */ |
| | | dwt_rxenable(0);//æå¼æ¥æ¶ |
| | | |
| | | /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æåæ¥æ¶ |
| | | { |
| | | |
| | | |
| | | /* Clear good RX frame event in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//è·å¾æ¥æ¶æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is a poll sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | TAG_ID = rx_buffer[5]; |
| | | rx_poll_msg[5] = TAG_ID;//ä¸ºå¤æ ç¾é讯æå¡ï¼é²æ¢ä¸æ¬¡éè®¯ä¸æ¥æ¶å°ä¸åIDæ ç¾çæ°æ® |
| | | tx_resp_msg[5] = TAG_ID; |
| | | rx_final_msg[5] = TAG_ID; |
| | | if (rx_buffer[9] == 0x21) //夿æ¯å¦æ¯pollå
æ°æ® |
| | | { |
| | | uint32 resp_tx_time; |
| | | |
| | | /* Retrieve poll reception timestamp. */ |
| | | poll_rx_ts = get_rx_timestamp_u64();//è·å¾Pollå
æ¥æ¶æ¶é´T2 |
| | | |
| | | /* Set send time for response. See NOTE 8 below. */ |
| | | resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计ç®Responseåéæ¶é´T3ã |
| | | dwt_setdelayedtrxtime(resp_tx_time);//设置Responseåéæ¶é´T3 |
| | | |
| | | /* Set expected delay and timeout for final message reception. */ |
| | | dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置åé宿åå¼å¯æ¥æ¶å»¶è¿æ¶é´ |
| | | dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//æ¥æ¶è¶
æ¶æ¶é´ |
| | | |
| | | /* Write and send the response message. See NOTE 9 below.*/ |
| | | memcpy(&tx_resp_msg[11], &dist[TAG_ID], 2); |
| | | tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; |
| | | dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//åå
¥åéæ°æ® |
| | | dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设å®åéé¿åº¦ |
| | | dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//å»¶è¿åéï¼çå¾
æ¥æ¶ |
| | | |
| | | /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. |
| | | * See NOTE 7 below. */ |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///䏿æ¥è¯¢è¯çç¶æç´å°æ¥æ¶æåæè
åºç°é误 |
| | | { }; |
| | | |
| | | /* Increment frame sequence number after transmission of the response message (modulo 256). */ |
| | | frame_seq_nb++; |
| | | |
| | | if (status_reg & SYS_STATUS_RXFCG)//æ¥æ¶æå |
| | | { |
| | | /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//æ¸
æ¥æ å¿ä½ |
| | | |
| | | /* A frame has been received, read it into the local buffer. */ |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//æ°æ®é¿åº¦ |
| | | |
| | | dwt_readrxdata(rx_buffer, frame_len, 0);//è¯»åæ¥æ¶æ°æ® |
| | | |
| | | |
| | | /* Check that the frame is a final message sent by "DS TWR initiator" example. |
| | | * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ |
| | | rx_buffer[ALL_MSG_SN_IDX] = 0; |
| | | if (rx_buffer[9] == 0x23) //夿æ¯å¦ä¸ºFianlå
|
| | | { |
| | | uint32 poll_tx_ts, resp_rx_ts, final_tx_ts; |
| | | uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; |
| | | double Ra, Rb, Da, Db; |
| | | int64 tof_dtu; |
| | | |
| | | /* Retrieve response transmission and final reception timestamps. */ |
| | | resp_tx_ts = get_tx_timestamp_u64();//è·å¾responseåéæ¶é´T3 |
| | | final_rx_ts = get_rx_timestamp_u64();//è·å¾finalæ¥æ¶æ¶é´T6 |
| | | |
| | | /* Get timestamps embedded in the final message. */ |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//仿¥æ¶æ°æ®ä¸è¯»åT1ï¼T4ï¼T5 |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); |
| | | final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); |
| | | |
| | | /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ |
| | | poll_rx_ts_32 = (uint32)poll_rx_ts;//使ç¨32使°æ®è®¡ç® |
| | | resp_tx_ts_32 = (uint32)resp_tx_ts; |
| | | final_rx_ts_32 = (uint32)final_rx_ts; |
| | | Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 |
| | | Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 |
| | | Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 |
| | | Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 |
| | | tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计ç®å
¬å¼ |
| | | |
| | | tof = tof_dtu * DWT_TIME_UNITS; |
| | | distance = tof * SPEED_OF_LIGHT;//è·ç¦»=å
é*é£è¡æ¶é´ |
| | | dist2 = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //è·ç¦»åå»ç«æ£ç³»æ° |
| | | |
| | | dis = dist2 * 100; //dis 为åä½ä¸ºcmçè·ç¦» |
| | | dist[TAG_ID] = LP(dis, TAG_ID); //LP 为ä½é滤波å¨ï¼è®©æ°æ®æ´ç¨³å® |
| | | // time32_reset = 0; |
| | | GPIO_Toggle(GPIOA, LED_PIN); |
| | | if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //éè¿æ¨ç å¼å
³å¤ææ°æ®è¾åºæ ¼å¼ |
| | | { |
| | | dID = TAG_ID; |
| | | printf("TAG_ID: %2.0f ", dID); |
| | | dID = ANCHOR_ID; |
| | | printf("ANCHOR_ID: %2.0f ", dID); |
| | | printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); |
| | | } |
| | | else |
| | | { |
| | | send[2] = ANCHOR_ID; |
| | | send[3] = TAG_ID; |
| | | |
| | | memcpy(&send[4], &dist[TAG_ID], 2); |
| | | check = Checksum_u16(&send[2], 6); |
| | | memcpy(&send[8], &check, 2); |
| | | USART_puts(send, 10); |
| | | } |
| | | |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | } |
| | | } |
| | | } |
| | | else |
| | | { |
| | | /* Clear RX error events in the DW1000 status register. */ |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); |
| | | } |
| | | } |
| | | |
| | | |
| | | } |
| | | } |
| | | } |
| | | |
| | | /*! ------------------------------------------------------------------------------------------------------------------ |
| | | * @fn get_tx_timestamp_u64() |
| | | * |
| | | * @brief Get the TX time-stamp in a 64-bit variable. |
| | | * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! |
| | | * |
| | | * @param none |
| | | * |
| | | * @return 64-bit value of the read time-stamp. |
| | | */ |
| | | static uint64 get_tx_timestamp_u64(void) |
| | | { |
| | | uint8 ts_tab[5]; |
| | | uint64 ts = 0; |
| | | int i; |
| | | dwt_readtxtimestamp(ts_tab); |
| | | for (i = 4; i >= 0; i--) |
| | | { |
| | | ts <<= 8; |
| | | ts |= ts_tab[i]; |
| | | } |
| | | return ts; |
| | | } |
| | | |
| | | /*! ------------------------------------------------------------------------------------------------------------------ |
| | | * @fn get_rx_timestamp_u64() |
| | | * |
| | | * @brief Get the RX time-stamp in a 64-bit variable. |
| | | * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! |
| | | * |
| | | * @param none |
| | | * |
| | | * @return 64-bit value of the read time-stamp. |
| | | */ |
| | | static uint64 get_rx_timestamp_u64(void) |
| | | { |
| | | uint8 ts_tab[5]; |
| | | uint64 ts = 0; |
| | | int i; |
| | | dwt_readrxtimestamp(ts_tab); |
| | | for (i = 4; i >= 0; i--) |
| | | { |
| | | ts <<= 8; |
| | | ts |= ts_tab[i]; |
| | | } |
| | | return ts; |
| | | } |
| | | |
| | | /*! ------------------------------------------------------------------------------------------------------------------ |
| | | * @fn final_msg_set_ts() |
| | | * |
| | | * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final |
| | | * message, the least significant byte is at the lower address. |
| | | * |
| | | * @param ts_field pointer on the first byte of the timestamp field to fill |
| | | * ts timestamp value |
| | | * |
| | | * @return none |
| | | */ |
| | | static void final_msg_set_ts(uint8 *ts_field, uint64 ts) |
| | | { |
| | | int i; |
| | | for (i = 0; i < FINAL_MSG_TS_LEN; i++) |
| | | { |
| | | ts_field[i] = (uint8) ts; |
| | | ts >>= 8; |
| | | } |
| | | } |
| | | |
| | | /***************************************************************************************************************************************************** |
| | | * NOTES: |
| | | * |
| | | * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value |
| | | * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing |
| | | * range measurements. |
| | | * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE |
| | | * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: |
| | | * - a poll message sent by the initiator to trigger the ranging exchange. |
| | | * - a response message sent by the responder allowing the initiator to go on with the process |
| | | * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the |
| | | * time-of-flight (distance) estimate. |
| | | * The first 10 bytes of those frame are common and are composed of the following fields: |
| | | * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). |
| | | * - byte 2: sequence number, incremented for each new frame. |
| | | * - byte 3/4: PAN TAG_ID (0xDECA). |
| | | * - byte 5/6: destination address, see NOTE 3 below. |
| | | * - byte 7/8: source address, see NOTE 3 below. |
| | | * - byte 9: function code (specific values to indicate which message it is in the ranging process). |
| | | * The remaining bytes are specific to each message as follows: |
| | | * Poll message: |
| | | * - no more data |
| | | * Response message: |
| | | * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). |
| | | * - byte 11/12: activity parameter, not used here for activity code 0x02. |
| | | * Final message: |
| | | * - byte 10 -> 13: poll message transmission timestamp. |
| | | * - byte 14 -> 17: response message reception timestamp. |
| | | * - byte 18 -> 21: final message transmission timestamp. |
| | | * All messages end with a 2-byte checksum automatically set by DW1000. |
| | | * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a |
| | | * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only |
| | | * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. |
| | | * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator |
| | | * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more |
| | | * details about the timings involved in the ranging process. |
| | | * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value |
| | | * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the |
| | | * 110k data rate used (around 3 ms). |
| | | * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using |
| | | * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. |
| | | * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is |
| | | * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not |
| | | * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using |
| | | * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the |
| | | * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, |
| | | * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have |
| | | * been carefully defined to avoid this situation. |
| | | * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please |
| | | * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we |
| | | * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 |
| | | * bytes. |
| | | * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 |
| | | * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to |
| | | * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the |
| | | * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower |
| | | * 8 bits. |
| | | * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by |
| | | * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the |
| | | * time-of-flight computation) can be handled by a 32-bit subtraction. |
| | | * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the |
| | | * DW1000 API Guide for more details on the DW1000 driver functions. |
| | | ****************************************************************************************************************************************************/ |