| | |
| | | #ifdef _UWB_4G |
| | | 2, /* Channel number. */ |
| | | #else |
| | | 5, |
| | | 9, |
| | | #endif |
| | | DWT_PLEN_128, /* Preamble length. Used in TX only. */ |
| | | DWT_PLEN_1024, /* Preamble length. Used in TX only. */ |
| | | DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ |
| | | 9, /* TX preamble code. Used in TX only. */ |
| | | 9, /* RX preamble code. Used in RX only. */ |
| | |
| | | } |
| | | dw3000_id=dwt_read32bitreg(SYS_STATUS_ID);; |
| | | /* Configure the TX spectrum parameters (power, PG delay and PG count) */ |
| | | dwt_configuretxrf(&txconfig_options); |
| | | dwt_configuretxrf(&txconfig_options_ch9); |
| | | /* Apply default antenna delay value. See NOTE 1 below. */ |
| | | dwt_setrxantennadelay(RX_ANT_DLY); //设置接收天线延迟 |
| | | dwt_settxantennadelay(TX_ANT_DLY); //设置发射天线延迟 |
| | |
| | | // dwt_setpreambledetecttimeout(PRE_TIMEOUT); |
| | | /* Next can enable TX/RX states output on GPIOs 5 and 6 to help debug, and also TX/RX LEDs |
| | | * Note, in real low power applications the LEDs should not be used. */ |
| | | dwt_setlnapamode(DWT_LNA_ENABLE|DWT_PA_ENABLE); |
| | | // dwt_setlnapamode(DWT_LNA_ENABLE|DWT_PA_ENABLE); |
| | | // dwt_entersleep(); |
| | | // dwt_setleds(DWT_LEDS_ENABLE | DWT_LEDS_INIT_BLINK); |
| | | // dw3000_id=dwt_read32bitreg(SYS_STATUS_ID);; |
| | |
| | | u8 regpoll_count; |
| | | u32 id; |
| | | u8 iderror_count = 0; |
| | | float time1=0; |
| | | float time2=0; |
| | | float time3=0; |
| | | uint32_t temp23; |
| | | void Tag_App(void)//发送模式(TAG标签) |
| | | { |
| | | |
| | | time1=freqlost_count; |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | // time1=freqlost_count; |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | // delay_us(1000); |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | // delay_ms(2); |
| | | // while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | // { |
| | | // } |
| | | id = dwt_readdevid() ; |
| | | while (DWT_DEVICE_ID != id) |
| | | { |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | delay_us(1000); |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | delay_ms(2); |
| | | while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | { |
| | | } |
| | | dwt_restoreconfig(); |
| | | // id = dwt_readdevid() ; |
| | | // while (DWT_DEVICE_ID != id) |
| | | // { |
| | | // |
| | | // id = dwt_readdevid() ; |
| | | //// if(iderror_count++>100) |
| | | //// { |
| | | //// printf("UWB芯片ID错误"); |
| | | //// break; |
| | | //// } |
| | | // iderror_count++; |
| | | // } |
| | | temp23 = dwt_read32bitreg(CHAN_CTRL_ID) ; |
| | | id = dwt_readdevid() ; |
| | | |
| | | // iderror_count=0; |
| | | iderror_count++; |
| | | } |
| | | |
| | | dwt_restoreconfig(); |
| | | |
| | | |
| | | |
| | | iderror_count=0; |
| | | // delay_us(100); |
| | | // g_Resttimer=0; |
| | | // if(freqlost_count>FREQ_LOST_TIME) |
| | |
| | | // Registor_Poll(); |
| | | // } |
| | | // } |
| | | time2=freqlost_count; |
| | | NearPoll(); |
| | | time3=freqlost_count; |
| | | // dwt_configuresleep(DWT_CONFIG, DWT_PRES_SLEEP | DWT_WAKE_CSN | DWT_WAKE_WUP | DWT_SLP_EN); |
| | | dwt_restoreconfig(); |
| | | dwt_configuresleep(DWT_CONFIG, DWT_PRES_SLEEP | DWT_WAKE_CSN | DWT_WAKE_WUP | DWT_SLP_EN); |
| | | dwt_entersleep(); |
| | | // bat_percent=Get_VDDVlotage(); |
| | | bat_percent=Get_VDDVlotage(); |
| | | } |
| | | |
| | | static uint8_t tx_msg[] = {0xC5, 0, 'D', 'E', 'C', 'A', 'W', 'A', 'V', 'E'}; |
| | | /* Index to access to sequence number of the blink frame in the tx_msg array. */ |
| | | #define BLINK_FRAME_SN_IDX 1 |
| | | //static uint8_t tx_msg[] = {0xC5, 0, 'D', 'E', 'C', 'A', 'W', 'A', 'V', 'E'}; |
| | | ///* Index to access to sequence number of the blink frame in the tx_msg array. */ |
| | | //#define BLINK_FRAME_SN_IDX 1 |
| | | |
| | | #define FRAME_LENGTH sizeof(tx_msg)+FCS_LEN//The real length that is going to be transmitted |
| | | //#define FRAME_LENGTH sizeof(tx_msg)+FCS_LEN//The real length that is going to be transmitted |
| | | |
| | | /* Inter-frame delay period, in milliseconds. */ |
| | | #define TX_DELAY_MS 1000 |
| | | ///* Inter-frame delay period, in milliseconds. */ |
| | | //#define TX_DELAY_MS 1000 |
| | | |
| | | void Tag_App666(void)//发送模式(TAG标签) |
| | | { |
| | | while (1) |
| | | { |
| | | /* Write frame data to DW IC and prepare transmission. See NOTE 3 below. */ |
| | | dwt_writetxdata(FRAME_LENGTH-FCS_LEN, tx_msg, 0); /* Zero offset in TX buffer. Data does not include the CRC */ |
| | | /* In this example since the length of the transmitted frame does not change, |
| | | * nor the other parameters of the dwt_writetxfctrl function, the |
| | | * dwt_writetxfctrl call could be outside the main while(1) loop. |
| | | */ |
| | | dwt_writetxfctrl(FRAME_LENGTH, 0); /* Zero offset in TX buffer, no ranging. */ |
| | | //void Tag_App666(void)//发送模式(TAG标签) |
| | | //{ |
| | | // while (1) |
| | | // { |
| | | // /* Write frame data to DW IC and prepare transmission. See NOTE 3 below. */ |
| | | // dwt_writetxdata(FRAME_LENGTH-FCS_LEN, tx_msg, 0); /* Zero offset in TX buffer. Data does not include the CRC */ |
| | | // /* In this example since the length of the transmitted frame does not change, |
| | | // * nor the other parameters of the dwt_writetxfctrl function, the |
| | | // * dwt_writetxfctrl call could be outside the main while(1) loop. |
| | | // */ |
| | | // dwt_writetxfctrl(FRAME_LENGTH, 0); /* Zero offset in TX buffer, no ranging. */ |
| | | |
| | | /* Start transmission. */ |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE); |
| | | // /* Start transmission. */ |
| | | // dwt_starttx(DWT_START_TX_IMMEDIATE); |
| | | |
| | | /* Poll DW IC until TX frame sent event set. See NOTE 4 below. |
| | | * STATUS register is 5 bytes long but, as the event we are looking at is in the first byte of the register, we can use this simplest API |
| | | * function to access it.*/ |
| | | while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS_BIT_MASK)) |
| | | { }; |
| | | // /* Poll DW IC until TX frame sent event set. See NOTE 4 below. |
| | | // * STATUS register is 5 bytes long but, as the event we are looking at is in the first byte of the register, we can use this simplest API |
| | | // * function to access it.*/ |
| | | // while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS_BIT_MASK)) |
| | | // { }; |
| | | |
| | | //Sleep(200); /* If using LEDs we need to add small delay to see the TX LED blink */ |
| | | // //Sleep(200); /* If using LEDs we need to add small delay to see the TX LED blink */ |
| | | |
| | | /* Put DW IC to sleep. Go to IDLE state after wakeup*/ |
| | | dwt_entersleep(DWT_DW_IDLE); |
| | | // /* Put DW IC to sleep. Go to IDLE state after wakeup*/ |
| | | // dwt_entersleep(DWT_DW_IDLE); |
| | | |
| | | /* Execute a delay between transmissions. */ |
| | | // /* Execute a delay between transmissions. */ |
| | | |
| | | delay_ms(1000); |
| | | /* Wake DW IC up. See NOTE 5 below. */ |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | delay_us(1000); |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | // delay_ms(1000); |
| | | // /* Wake DW IC up. See NOTE 5 below. */ |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | // delay_us(1000); |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | |
| | | delay_ms(2); |
| | | while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | { |
| | | } |
| | | // delay_ms(2); |
| | | // while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | // { |
| | | // } |
| | | |
| | | /* Restore the required configurations on wake */ |
| | | dwt_restoreconfig(); |
| | | // /* Restore the required configurations on wake */ |
| | | // dwt_restoreconfig(); |
| | | |
| | | /* Increment the blink frame sequence number (modulo 256). */ |
| | | tx_msg[BLINK_FRAME_SN_IDX]++; |
| | | } |
| | | } |
| | | // /* Increment the blink frame sequence number (modulo 256). */ |
| | | // tx_msg[BLINK_FRAME_SN_IDX]++; |
| | | // } |
| | | //} |