yincheng.zhong
2024-03-08 d67d922c6345042cb3dfaedd621a2120fe808b70
Src/application/dw_app.c
@@ -3,7 +3,7 @@
 *  @file    main.c
 *  @brief   Double-sided two-way ranging (DS TWR) initiator example code
 *
 *
 *
 *
 * @attention
 *
@@ -15,6 +15,7 @@
 */
#include <string.h>
#include <math.h>
#include "dw_app.h"
#include "deca_device_api.h"
#include "deca_regs.h"
@@ -28,7 +29,9 @@
#include <stdio.h>
#include "beep.h"
#include "modbus.h"
#include "CRC.h"
//#define USART_INTEGRATE_OUTPUT
/*------------------------------------ Marcos ------------------------------------------*/
/* Inter-ranging delay period, in milliseconds. */
#define RNG_DELAY_MS 100
@@ -41,20 +44,24 @@
 * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */
#define UUS_TO_DWT_TIME 65536
/* Delay between frames, in UWB microseconds. See NOTE 4 below. */
/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
#define POLL_TX_TO_RESP_RX_DLY_UUS 150
/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
 * frame length of approximately 2.66 ms with above configuration. */
#define RESP_RX_TO_FINAL_TX_DLY_UUS 850
/* Receive response timeout. See NOTE 5 below. */
#define RESP_RX_TIMEOUT_UUS 600
///* Delay between frames, in UWB microseconds. See NOTE 4 below. */
///* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
//#define POLL_TX_TO_RESP_RX_DLY_UUS 150
///* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
// * frame length of approximately 2.66 ms with above configuration. */
//#define RESP_RX_TO_FINAL_TX_DLY_UUS 410
#define POLL_RX_TO_RESP_TX_DLY_UUS 420
/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
#define RESP_TX_TO_FINAL_RX_DLY_UUS 200
/* Receive final timeout. See NOTE 5 below. */
#define FINAL_RX_TIMEOUT_UUS 4300
///* Receive response timeout. See NOTE 5 below. */
//#define RESP_RX_TIMEOUT_UUS 600
//#define DELAY_BETWEEN_TWO_FRAME_UUS 400
////#define POLL_RX_TO_RESP_TX_DLY_UUS 470
///* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
//#define RESP_TX_TO_FINAL_RX_DLY_UUS 200
///* Receive final timeout. See NOTE 5 below. */
//#define FINAL_RX_TIMEOUT_UUS 4300
#define SPEED_OF_LIGHT 299702547
@@ -64,231 +71,54 @@
#define FINAL_MSG_FINAL_TX_TS_IDX 18
#define FINAL_MSG_TS_LEN 4
#define SYNC_SEQ_IDX             5
//common
#define GROUP_ID_IDX               0
#define ANCHOR_ID_IDX             1
#define TAG_ID_IDX                5
#define MESSAGE_TYPE_IDX          9
//#define _UWB_4G
//Poll
#define ANC_TYPE_IDX                14
#define BATTARY_IDX                  15
#define BUTTON_IDX                  16
#define SEQUENCE_IDX               17
//respose
#define DIST_IDX                      10
#define ANCTIMEMS             14
#define ANCTIMEUS             16
#define ANCSEND_INTERVAL      18
#define POLL                    0x01
#define RESPONSE                0x02
#define FINAL                  0x03
#define SYNC                     0x04
/*------------------------------------ Variables ------------------------------------------*/
/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
static dwt_config_t config = {
   2,               /* Channel number. */
   DWT_PRF_64M,     /* Pulse repetition frequency. */
   DWT_PLEN_128,    /* Preamble length. */
   DWT_PAC8,        /* Preamble acquisition chunk size. Used in RX only. */
   9,               /* TX preamble code. Used in TX only. */
   9,               /* RX preamble code. Used in RX only. */
   1,               /* Use non-standard SFD (Boolean) */
   DWT_BR_6M8,      /* Data rate. */
   DWT_PHRMODE_STD, /* PHY header mode. */
   (129 + 8 - 8)    /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
#ifdef _UWB_4G
    2,               /* Channel number. */
#else
    5,
#endif
    DWT_PRF_64M,     /* Pulse repetition frequency. */
    DWT_PLEN_128,    /* Preamble length. */
    DWT_PAC8,        /* Preamble acquisition chunk size. Used in RX only. */
    9,               /* TX preamble code. Used in TX only. */
    9,               /* RX preamble code. Used in RX only. */
    1,               /* Use non-standard SFD (Boolean) */
    DWT_BR_6M8,      /* Data rate. */
    DWT_PHRMODE_STD, /* PHY header mode. */
    (129 + 8 - 8)    /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
};
/* Frames used in the ranging process. See NOTE 2 below. */
static uint8_t tx_poll_msg[20] = {0};
static uint8_t tx_sync_msg[14] = {0};
//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
static uint8_t tx_final_msg[24] = {0};
//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
static uint8_t tx_resp_msg[22] = {0};
//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/* Frame sequence number, incremented after each transmission. */
static uint32_t frame_seq_nb = 0,frame_seq_nb2=0;
/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
static uint32_t status_reg = 0;
/* Buffer to store received response message.
 * Its size is adjusted to longest frame that this example code is supposed to handle. */
#define RX_BUF_LEN       24
static uint8_t rx_buffer[RX_BUF_LEN];
/* Time-stamps of frames transmission/reception, expressed in device time units.
 * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
static uint64_t poll_tx_ts;
static uint64_t resp_rx_ts;
static uint64_t final_tx_ts;
/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
static uint64_t poll_rx_ts;
static uint64_t resp_tx_ts;
static uint64_t final_rx_ts;
static double tof;
int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS];   ;
uint32_t tag_id = 0;
uint32_t tag_id_recv = 0;
uint8_t random_delay_tim = 0;
double distance, dist_no_bias, dist_cm;
uint32_t g_UWB_com_interval = 0;
float dis_after_filter;            //当前距离值
LPFilter_Frac* p_Dis_Filter;      //测距用的低通滤波器
int32_t g_Tagdist[TAG_NUM_IN_SYS];
uint8_t g_flag_Taggetdist[256];
/*------------------------------------ Functions ------------------------------------------*/
/*! ------------------------------------------------------------------------------------------------------------------
 * @fn get_tx_timestamp_u64()
 *
 * @brief Get the TX time-stamp in a 64-bit variable.
 *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
 *
 * @param  none
 *
 * @return  64-bit value of the read time-stamp.
 */
static uint64_t get_tx_timestamp_u64(void)
{
    uint8_t ts_tab[5];
    uint64_t ts = 0;
    int i;
    dwt_readtxtimestamp(ts_tab);
    for (i = 4; i >= 0; i--)
    {
        ts <<= 8;
        ts |= ts_tab[i];
    }
    return ts;
}
/*! ------------------------------------------------------------------------------------------------------------------
 * @fn get_rx_timestamp_u64()
 *
 * @brief Get the RX time-stamp in a 64-bit variable.
 *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
 *
 * @param  none
 *
 * @return  64-bit value of the read time-stamp.
 */
static uint64_t get_rx_timestamp_u64(void)
{
    uint8_t ts_tab[5];
    uint64_t ts = 0;
    int i;
    dwt_readrxtimestamp(ts_tab);
    for (i = 4; i >= 0; i--)
    {
        ts <<= 8;
        ts |= ts_tab[i];
    }
    return ts;
}
/*! ------------------------------------------------------------------------------------------------------------------
 * @fn final_msg_set_ts()
 *
 * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final
 *        message, the least significant byte is at the lower address.
 *
 * @param  ts_field  pointer on the first byte of the timestamp field to fill
 *         ts  timestamp value
 *
 * @return none
 */
static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts)
{
    int i;
    for (i = 0; i < FINAL_MSG_TS_LEN; i++)
    {
        ts_field[i] = (uint8_t) ts;
        ts >>= 8;
    }
}
static void final_msg_get_ts(const uint8_t *ts_field, uint32_t *ts)
{
    int i;
    *ts = 0;
    for (i = 0; i < FINAL_MSG_TS_LEN; i++)
    {
        *ts += ts_field[i] << (i * 8);
    }
}
void TagDistClear(void)
{
   static uint16_t clear_judge_cnt;
   uint16_t i;
   if(clear_judge_cnt++>1000)  //设定1S分频,每秒进一次。判断标志位大于等于2,2s没收到数据就把数据变成0xffff,不触发警报。
   {
      clear_judge_cnt=0;
      for(i=0;i<255;i++)
      {
         g_flag_Taggetdist[i]++;
         if(g_flag_Taggetdist[i]>=20)
         {
            g_Tagdist[i]=0xffff;
         }
      }
   }
}
uint32_t uwbid=0;
void Dw1000_Init(void)
{
   /* Reset and initialise DW1000.
    /* Reset and initialise DW1000.
     * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum
     * performance. */
    Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */
      Spi_ChangePrescaler(SPIx_PRESCALER_SLOW);   //设置为快速模式
    Spi_ChangePrescaler(SPIx_PRESCALER_SLOW);   //设置为快速模式
    dwt_initialise(DWT_LOADUCODE);//初始化DW1000
     Spi_ChangePrescaler(SPIx_PRESCALER_FAST);   //设置为快速模式
    Spi_ChangePrescaler(SPIx_PRESCALER_FAST);   //设置为快速模式
    /* Configure DW1000. See NOTE 6 below. */
    dwt_configure(&config);//配置DW1000
//    dwt_setinterrupt(  DWT_INT_RFCG | (DWT_INT_ARFE | DWT_INT_RFSL | DWT_INT_SFDT | DWT_INT_RPHE | DWT_INT_RFCE | DWT_INT_RFTO | DWT_INT_RXPTO), 1);
    /* Apply default antenna delay value. See NOTE 1 below. */
    dwt_setrxantennadelay(RX_ANT_DLY);      //设置接收天线延迟
    dwt_settxantennadelay(TX_ANT_DLY);      //设置发射天线延迟
//    dwt_setrxtimeout(1000);//设定接收超时时间,0位没有超时时间
//   dwt_rxenable(0);//打开接收
//    uwbid=dwt_readdevid();
    /* Set expected response's delay and timeout. See NOTE 4 and 5 below.
     * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
            //设置接收超时时间
    //设置接收超时时间
}
void Dw1000_App_Init(void)
{
//g_com_map[DEV_ID] = 0x0b;
   tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
   tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
   tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
   tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
   memcpy(&tx_poll_msg[GROUP_ID_IDX], &group_id, 1);
   memcpy(&tx_final_msg[GROUP_ID_IDX], &group_id, 1);
   memcpy(&tx_resp_msg[GROUP_ID_IDX], &group_id, 1);
   memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
   memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
   memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
   memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4);
}
uint16_t Checksum_u16(uint8_t* pdata, uint32_t len)
uint16_t Checksum_u16(uint8_t* pdata, uint32_t len)
{
    uint16_t sum = 0;
    uint32_t i;
@@ -298,233 +128,31 @@
    return sum;
}
uint16_t tag_time_recv[TAG_NUM_IN_SYS];
uint8_t usart_send[25];
uint8_t battary,button;
u16 tag_time_recv[TAG_NUM_IN_SYS];
u8 usart_send[100];
u8 battary,button;
extern uint8_t g_pairstart;
void tag_sleep_configuraion(void)
{
   dwt_configuresleep(0x940, 0x7);
   dwt_entersleep();
}
uint8_t g_start_send_flag;
uint8_t g_start_sync_flag;
void SyncPoll(uint8_t sync_seq)
{
   g_start_sync_flag=1;
   dwt_forcetrxoff();
   tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
   dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
   dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度
   dwt_starttx(DWT_START_TX_IMMEDIATE);
    dwt_configuresleep(0x940, 0x7);
    dwt_entersleep();
}
uint16_t g_Resttimer;
uint8_t result;
uint8_t tag_succ_times=0;
int32_t hex_dist,hex_dist2;
uint16_t checksum;
int8_t tag_delaytime;
extern uint16_t sync_timer;
uint16_t tmp_time,current_slottimes;
uint32_t time32_incr;
int32_t ancsync_time;
uint32_t frame_len;
int32_t count_offset,nextpoll_delaytime;
void Tag_App(void)//发送模式(TAG标签)
u32 id;
void UWB_Wkup(void)
{
   uint32_t final_tx_time;
   uint32_t start_poll,id;
   uint8_t i,getsync_flag=0;
   //LED0_ON;
   //dwt_forcetrxoff();
   id =  dwt_readdevid() ;
       while (DWT_DEVICE_ID != id)
    SPIx_CS_GPIO->BRR = SPIx_CS;
    delay_us(600);
    SPIx_CS_GPIO->BSRR = SPIx_CS;
    id =  dwt_readdevid() ;
    while (0xDECA0130!=id)
    {
         id =  dwt_readdevid() ;
        u8 iderror_count = 0;
        id =  dwt_readdevid() ;
        if(iderror_count++>100)
        {
            printf("UWB芯片ID错误\r\n");
            break;
        }
    }
   g_Resttimer=0;
    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);         //设置发送后开启接收,并设定延迟时间
    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
   tag_succ_times = 0;
   tx_poll_msg[BATTARY_IDX] = bat_percent;
   //tx_poll_msg[BUTTON_IDX] = !READ_KEY0;
   tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++;
   for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++)
   {
   /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
   tx_poll_msg[ANC_TYPE_IDX] = i;
   dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
   dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
   /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
    * set by dwt_setrxaftertxdelay() has elapsed. */
   result=dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
   start_poll = time32_incr;
   /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
   while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
   {
      status_reg = dwt_read32bitreg(SYS_STATUS_ID);
//      if(time32_incr - start_poll>20)
//      NVIC_SystemReset();
   //   IdleTask();
   };
   /* Increment frame sequence number after transmission of the poll message (modulo 256). */
   if(status_reg==0xffffffff)
   {
   //   NVIC_SystemReset();
   }
   if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
   {
      /* Clear good RX frame event and TX frame sent in the DW1000 status register. */
      dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
      /* A frame has been received, read it into the local buffer. */
      frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;   //获得接收到的数据长度
      dwt_readrxdata(rx_buffer, frame_len, 0);   //读取接收数据
      /* Check that the frame is the expected response from the companion "DS TWR responder" example.
       * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
      if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据
      { uint16_t anc_id_recv,current_count,rec_com_interval;
         /* Retrieve poll transmission and response reception timestamp. */
         poll_tx_ts = get_tx_timestamp_u64();                              //获得POLL发送时间T1
         resp_rx_ts = get_rx_timestamp_u64();                              //获得RESPONSE接收时间T4
         if(getsync_flag==0&&g_com_map[DEV_ROLE])
         {
            getsync_flag=1;
         memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
         memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
         tmp_time=tmp_time+450;
         if(tmp_time>999)
         {
            tmp_time-=999;
            sync_timer++;
            if(sync_timer>=1010)
               {sync_timer=0;}
         }
      //   TIM3->CNT=tmp_time;
      }
         memcpy(&hex_dist2, &rx_buffer[DIST_IDX], 4);
         memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4);
         memcpy(&rec_com_interval,&rx_buffer[ANCSEND_INTERVAL],  2);
         if(rec_com_interval>4&&rec_com_interval!=g_com_map[COM_INTERVAL])
         {
            g_com_map[COM_INTERVAL]=rec_com_interval;
            save_com_map_to_flash();
            delay_ms(100);
            SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader
         }
         /* Compute final message transmission time. See NOTE 9 below. */
         final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
         dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
         /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
         final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
         /* Write all timestamps in the final message. See NOTE 10 below. */
         final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
         final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts);
         final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
         /* Write and send final message. See NOTE 7 below. */
         dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
         dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
         result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
         ancsync_time=((sync_timer+0)*1000+tmp_time);
         current_count=HAL_LPTIM_ReadCounter(&hlptim1);
      //   count_offset=sync_count-current_count-143;
      //   current_slottimes=(ancsync_time-10000)/(g_com_map[COM_INTERVAL]*1000);
         nextpoll_delaytime=tyncpoll_time*1000+g_com_map[COM_INTERVAL]*1000-((ancsync_time-10000)%(g_com_map[COM_INTERVAL]*1000))-5150;
         if(abs(ancsync_time-910000)<1000)
         {
         nextpoll_delaytime+=10000;
         }
         if(nextpoll_delaytime<2000)
         {
            nextpoll_delaytime+=g_com_map[COM_INTERVAL]*1000;
         }
         lastpoll_count= current_count+(nextpoll_delaytime)/LPTIMER_LSB;
         if(lastpoll_count>LPTIMER_1S_COUNT)
            lastpoll_count-=LPTIMER_1S_COUNT;
         __HAL_LPTIM_COMPARE_SET(&hlptim1, lastpoll_count);
//         printf("ancsync_time: %u     \r\n ",ancsync_time);
//         printf("current_slottimes: %u   ",current_slottimes);
//         printf("nextpoll_delaytime: %u   ",nextpoll_delaytime);
//         printf("current_count: %u   ",current_count);
//         printf("lastpoll_count: %u",lastpoll_count);
         tag_succ_times++;
               memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2);
//               g_Tagdist[anc_id_recv]=   hex_dist;
//               g_flag_Taggetdist[anc_id_recv]=0;
               if(!g_com_map[MODBUS_MODE])
               {
               usart_send[2] = 1;//正常模式
               usart_send[3] = 17;//数据段长度
               usart_send[4] = frame_seq_nb;//数据段长度
               memcpy(&usart_send[5],&dev_id,2);
               memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2);
               memcpy(&usart_send[9],&hex_dist2,4);
               usart_send[13] = battary;
               usart_send[14] = button;
               checksum = Checksum_u16(&usart_send[2],17);
               memcpy(&usart_send[19],&checksum,2);
         //      UART_PushFrame(usart_send,21);
               }
      //         memcpy(&Modbus_HoldReg[anc_id_recv*2],&hex_dist,4);
         /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
         if(result==0)
         {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
         { };
      }
         /* Clear TXFRS event. */
         dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
         /* Increment frame sequence number after transmission of the final message (modulo 256). */
         random_delay_tim = 0;
      }
      else
      {
         random_delay_tim = DFT_RAND_DLY_TIM_MS; //如果通讯失败,将间隔时间增加5ms,避开因为多标签同时发送引起的冲突。
      }
   }
   else
   {
      /* Clear RX error events in the DW1000 status register. */
      dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
      random_delay_tim = DFT_RAND_DLY_TIM_MS;
   }
//   deca_sleep(10);
}
   dwt_entersleep();
//   if(tag_succ_times<g_com_map[MIN_REPORT_ANC_NUM])
//   {
//   //poll_timer +=time32_incr&0x7+3;
//   }
//HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI);
   /* Execute a delay between ranging exchanges. */
}