| | |
| | | |
| | | //#define USART_INTEGRATE_OUTPUT |
| | | /*------------------------------------ Marcos ------------------------------------------*/ |
| | | |
| | | /* Inter-ranging delay period, in milliseconds. */ |
| | | #define RNG_DELAY_MS 100 |
| | | |
| | | #define PRE_TIMEOUT 5 |
| | | /* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */ |
| | | #define TX_ANT_DLY 0 |
| | | #define RX_ANT_DLY 32899 |
| | |
| | | #define FINAL_MSG_RESP_RX_TS_IDX 14 |
| | | #define FINAL_MSG_FINAL_TX_TS_IDX 18 |
| | | #define FINAL_MSG_TS_LEN 4 |
| | | extern dwt_rxdiag_t rx_diag; |
| | | //#define _UWB_4G |
| | | |
| | | //static dwt_config_t config = { |
| | | //#ifdef _UWB_4G |
| | | // 2, /* Channel number. */ |
| | | //#else |
| | | // 5, |
| | | //#endif |
| | | // DWT_PRF_64M, /* Pulse repetition frequency. */ |
| | | // DWT_PLEN_64, /* Preamble length. */ |
| | | // DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ |
| | | // 9, /* TX preamble code. Used in TX only. */ |
| | | // 9, /* RX preamble code. Used in RX only. */ |
| | | // 1, /* Use non-standard SFD (Boolean) */ |
| | | // DWT_BR_6M8, /* Data rate. */ |
| | | // DWT_PHRMODE_STD, /* PHY header mode. */ |
| | | // (65 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ |
| | | //}; |
| | | |
| | | static dwt_config_t config = { |
| | | 5, /* Channel number. */ |
| | | DWT_PRF_64M, /* Pulse repetition frequency. */ |
| | | DWT_PLEN_64, /* Preamble length. */ |
| | | DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ |
| | | 9, /* TX preamble code. Used in TX only. */ |
| | | 9, /* RX preamble code. Used in RX only. */ |
| | | 1, /* Use non-standard SFD (Boolean) */ |
| | | DWT_BR_6M8, /* Data rate. */ |
| | | DWT_PHRMODE_STD, /* PHY header mode. */ |
| | | (65 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ |
| | | #ifdef _UWB_4G |
| | | 2, /* Channel number. */ |
| | | #else |
| | | 9, |
| | | #endif |
| | | DWT_PLEN_128, /* Preamble length. Used in TX only. */ |
| | | DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ |
| | | 9, /* TX preamble code. Used in TX only. */ |
| | | 9, /* RX preamble code. Used in RX only. */ |
| | | 1, /* 0 to use standard 8 symbol SFD, 1 to use non-standard 8 symbol, 2 for non-standard 16 symbol SFD and 3 for 4z 8 symbol SDF type */ |
| | | DWT_BR_6M8, /* Data rate. */ |
| | | DWT_PHRMODE_STD, /* PHY header mode. */ |
| | | DWT_PHRRATE_STD, /* PHY header rate. */ |
| | | (129 + 8 - 8), /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ |
| | | DWT_STS_MODE_OFF, /* STS disabled */ |
| | | DWT_STS_LEN_64,/* STS length see allowed values in Enum dwt_sts_lengths_e */ |
| | | DWT_PDOA_M0 /* PDOA mode off */ |
| | | }; |
| | | dwt_txconfig_t txconfig_options = |
| | | { |
| | | 0x34, /* PG delay. */ |
| | | 0xfdfdfdfd, /* TX power. */ |
| | | 0x0 /*PG count*/ |
| | | }; |
| | | |
| | | dwt_txconfig_t txconfig_options_ch9 = |
| | | { |
| | | 0x34, /* PG delay. */ |
| | | 0xfefefefe, /* TX power. */ |
| | | 0x0 /*PG count*/ |
| | | }; |
| | | |
| | | static uint8_t tx_poll_msg[20] = {0}; |
| | | static uint8_t tx_sync_msg[14] = {0}; |
| | | static uint8_t tx_final_msg[60] = {0}; |
| | | static uint8_t tx_resp_msg[22] = {0}; |
| | | uint8_t tx_near_msg[80] = {0}; |
| | | |
| | | extern uint8_t module_power,imu_enable,motor_enable; |
| | | static uint32_t frame_seq_nb = 0; |
| | | static uint32_t status_reg = 0; |
| | | static uint8_t rx_buffer[100]; |
| | |
| | | *ts += ts_field[i] << (i * 8); |
| | | } |
| | | } |
| | | |
| | | uint32_t dw3000_id=0; |
| | | void Dw1000_Init(void) |
| | | { |
| | | /* Reset and initialise DW1000. |
| | | * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum |
| | | * performance. */ |
| | | Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ |
| | | Spi_ChangePrescaler(SPIx_PRESCALER_SLOW); //设置为快速模式 |
| | | dwt_initialise(DWT_LOADUCODE);//初始化DW1000 |
| | | // Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ |
| | | // Spi_ChangePrescaler(SPIx_PRESCALER_SLOW); //设置为快速模式 |
| | | // dwt_initialise(DWT_LOADUCODE);//初始化DW1000 |
| | | Spi_ChangePrescaler(SPIx_PRESCALER_FAST); //设置为快速模式 |
| | | |
| | | /* Configure DW1000. See NOTE 6 below. */ |
| | | dwt_configure(&config);//配置DW1000 |
| | | |
| | | |
| | | |
| | | Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ |
| | | delay_ms(2); |
| | | // dw3000_id=dwt_readdevid() ; |
| | | while (!dwt_checkidlerc()) /* Need to make sure DW IC is in IDLE_RC before proceeding */ |
| | | { }; |
| | | while (dwt_initialise(DWT_DW_INIT) == DWT_ERROR) |
| | | { |
| | | // _dbg_printf("INIT FAILED "); |
| | | //while (1) |
| | | { }; |
| | | delay_ms(500); |
| | | } |
| | | |
| | | // /* Configure DW1000. See NOTE 6 below. */ |
| | | // dwt_configure(&config);//配置DW1000 |
| | | if(dwt_configure(&config)) /* if the dwt_configure returns DWT_ERROR either the PLL or RX calibration has failed the host should reset the device */ |
| | | { |
| | | // _dbg_printf((unsigned char *)"CONFIG FAILED "); |
| | | while (1) |
| | | { }; |
| | | } |
| | | dw3000_id=dwt_read32bitreg(SYS_STATUS_ID);; |
| | | /* Configure the TX spectrum parameters (power, PG delay and PG count) */ |
| | | dwt_configuretxrf(&txconfig_options_ch9); |
| | | /* Apply default antenna delay value. See NOTE 1 below. */ |
| | | dwt_setrxantennadelay(RX_ANT_DLY); //设置接收天线延迟 |
| | | dwt_settxantennadelay(TX_ANT_DLY); //设置发射天线延迟 |
| | | |
| | | /* Set expected response's delay and timeout. See NOTE 4 and 5 below. |
| | | * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ |
| | | //设置接收超时时间 |
| | | |
| | | // dwt_configciadiag(1); |
| | | // dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); |
| | | // dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); |
| | | // dwt_setpreambledetecttimeout(PRE_TIMEOUT); |
| | | /* Next can enable TX/RX states output on GPIOs 5 and 6 to help debug, and also TX/RX LEDs |
| | | * Note, in real low power applications the LEDs should not be used. */ |
| | | // dwt_setlnapamode(DWT_LNA_ENABLE|DWT_PA_ENABLE); |
| | | // dwt_entersleep(); |
| | | // dwt_setleds(DWT_LEDS_ENABLE | DWT_LEDS_INIT_BLINK); |
| | | // dw3000_id=dwt_read32bitreg(SYS_STATUS_ID);; |
| | | // _dbg_printf("spi 基站 成功\n"); |
| | | } |
| | | void Dw1000_App_Init(void) |
| | | { |
| | |
| | | extern uint8_t g_pairstart; |
| | | void tag_sleep_configuraion(void) |
| | | { |
| | | dwt_configuresleep(0x940, 0x7); |
| | | dwt_entersleep(); |
| | | // dwt_configuresleep(0x940, 0x7); |
| | | // dwt_entersleep(); |
| | | } |
| | | extern uint8_t g_start_send_flag; |
| | | |
| | |
| | | { |
| | | |
| | | // exsistbase_list[i]--; |
| | | clockOffsetRatio = anc_clockoffset[i] * (FREQ_OFFSET_MULTIPLIER * HERTZ_TO_PPM_MULTIPLIER_CHAN_5 / 1.0e6) ; |
| | | rtd_init = tag_resprx[i] - poll_tx_ts; |
| | | #ifdef _UWB_4G |
| | | clockOffsetRatio = anc_clockoffset[i] * (FREQ_OFFSET_MULTIPLIER * HERTZ_TO_PPM_MULTIPLIER_CHAN_2 / 1.0e6) ; |
| | | #else |
| | | clockOffsetRatio = anc_clockoffset[i] * (FREQ_OFFSET_MULTIPLIER * HERTZ_TO_PPM_MULTIPLIER_CHAN_5 / 1.0e6) ; |
| | | #endif |
| | | rtd_init = tag_resprx[i] - poll_tx_ts&0xffffffff; |
| | | rtd_resp = anc_resptx[i] - anc_pollrx[i]; |
| | | tof = ((rtd_init - rtd_resp * (1 - clockOffsetRatio)) / 2.0) * DWT_TIME_UNITS; |
| | | distance = tof * SPEED_OF_LIGHT; |
| | |
| | | } |
| | | |
| | | } |
| | | } |
| | | |
| | | void Registor_Poll(void) |
| | | { |
| | | static u8 regpoll_count=0; |
| | | u8 timeout; |
| | | |
| | | tx_near_msg[MESSAGE_TYPE_IDX] = MBX_REG; |
| | | tx_near_msg[REGP_TAGSTATE_INDEX] = !GET_USERKEY<<2|imu_enable<<1|motor_enable; |
| | | tx_near_msg[REGP_FREQUENCY_INDEX] = bat_percent; |
| | | tx_near_msg[REGP_POWER_INDEX] = module_power; |
| | | memcpy(&tx_near_msg[REGP_VERSION_INDEX],&g_com_map[VERSION],2); |
| | | memcpy(&tx_near_msg[REGP_IMUTHRES_INDEX],&g_com_map[GROUP_ID],2); |
| | | memcpy(&tx_near_msg[REGP_NOMOVESLEEPTIME_INDEX],&g_com_map[DIST_OFFSET],2); |
| | | memcpy(&tx_near_msg[REGP_HEIGHTOFFSET_INDEX],&g_com_map[MAX_REPORT_ANC_NUM],2); |
| | | dwt_writetxdata(23, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 |
| | | dwt_writetxfctrl(23, 0);//设置超宽带发送数据长度 |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 |
| | | start_count=HAL_LPTIM_ReadCounter(&hlptim1); |
| | | timeout=50; |
| | | end_count=start_count+(timeout<<2); |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_TXFRS_BIT_MASK)))//不断查询芯片状态直到成功接收或者发生错误 |
| | | { |
| | | current_count=HAL_LPTIM_ReadCounter(&hlptim1); |
| | | if(current_count>=end_count&¤t_count<end_count+15000) |
| | | break; |
| | | |
| | | }; |
| | | |
| | | } |
| | | float range_lost_time = 0; |
| | | u16 rec_nearbaseid,rec_nearbasepos; |
| | |
| | | memcpy(&tx_near_msg[NEARBASEID_INDEX+nearbase_num*2],&u16_nearbase_distlist,nearbase_num*2); |
| | | tx_near_msg[MESSAGE_TYPE_IDX] = MBX_POLL; |
| | | memcpy(&tx_near_msg[ANCHOR_ID_IDX],&mainbase_id,2); |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET); |
| | | //delay_us(600); |
| | | //HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); |
| | | dwt_writetxdata(13+4*nearbase_num, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 |
| | | dwt_writetxfctrl(13+4*nearbase_num, 0);//设置超宽带发送数据长度 |
| | | dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 |
| | | |
| | | status_reg = dwt_read32bitreg(SYS_STATUS_ID); |
| | | tx_near_msg[TAGCONFIGSUCCESS_INDEX] =0; |
| | | para_update = 0; |
| | | get_newbase = 0; |
| | |
| | | flag_getresponse=0; |
| | | start_count=HAL_LPTIM_ReadCounter(&hlptim1); |
| | | recbase_num=0; |
| | | timeout=nearbase_num*SLOT_SCALE+10; |
| | | timeout=nearbase_num*SLOT_SCALE+20; |
| | | end_count=start_count+(timeout<<2); |
| | | if(end_count>=32768) |
| | | {end_count-=32768;} |
| | |
| | | while(current_count<end_count||current_count>end_count+15000) |
| | | { |
| | | current_count=HAL_LPTIM_ReadCounter(&hlptim1); |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 |
| | | while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG_BIT_MASK | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 |
| | | { |
| | | if(flag_finalsend&&flag_ancreadpara) |
| | | { |
| | |
| | | if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 |
| | | { |
| | | dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 |
| | | frame_len = dwt_read32bitreg(RX_FINFO_ID) & FRAME_LEN_MAX_EX; //获得接收到的数据长度 |
| | | dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 |
| | | test2 = dwt_readcarrierintegrator(); |
| | | dwt_setrxtimeout(0);//DELAY_BETWEEN_TWO_FRAME_UUS*(nearbase_num+1-recbase_num)+10);//设定接收超时时间,0位没有超时时间 |
| | | dwt_rxenable(0);//打开接收 |
| | | if (rx_buffer[MESSAGE_TYPE_IDX] == MBX_RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)&&rx_buffer[GROUP_ID_IDX]==group_id) //判断接收到的数据是否是response数据 |
| | | { |
| | | { |
| | | // dwt_readdiagnostics(&rx_diag); |
| | | poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 |
| | | resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 |
| | | recbase_num++; |
| | |
| | | } |
| | | } |
| | | } |
| | | |
| | | u8 regpoll_count; |
| | | u32 id; |
| | | u8 iderror_count = 0; |
| | | void Tag_App(void)//发送模式(TAG标签) |
| | | { |
| | | |
| | | //LED0_ON; |
| | | { |
| | | |
| | | // time1=freqlost_count; |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | // delay_us(1000); |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | // delay_ms(2); |
| | | // while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | // { |
| | | // } |
| | | id = dwt_readdevid() ; |
| | | while (DWT_DEVICE_ID != id) |
| | | { |
| | | u8 iderror_count = 0; |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | delay_us(1000); |
| | | HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | delay_ms(2); |
| | | id = dwt_readdevid() ; |
| | | if(iderror_count++>100) |
| | | { |
| | | printf("UWB芯片ID错误"); |
| | | break; |
| | | } |
| | | |
| | | iderror_count++; |
| | | } |
| | | delay_us(100); |
| | | g_Resttimer=0; |
| | | |
| | | dwt_restoreconfig(); |
| | | |
| | | |
| | | |
| | | iderror_count=0; |
| | | |
| | | NearPoll(); |
| | | dwt_restoreconfig(); |
| | | dwt_configuresleep(DWT_CONFIG, DWT_PRES_SLEEP | DWT_WAKE_CSN | DWT_WAKE_WUP | DWT_SLP_EN); |
| | | dwt_entersleep(); |
| | | bat_percent=Get_VDDVlotage(); |
| | | } |
| | | |
| | | //static uint8_t tx_msg[] = {0xC5, 0, 'D', 'E', 'C', 'A', 'W', 'A', 'V', 'E'}; |
| | | ///* Index to access to sequence number of the blink frame in the tx_msg array. */ |
| | | //#define BLINK_FRAME_SN_IDX 1 |
| | | |
| | | //#define FRAME_LENGTH sizeof(tx_msg)+FCS_LEN//The real length that is going to be transmitted |
| | | |
| | | ///* Inter-frame delay period, in milliseconds. */ |
| | | //#define TX_DELAY_MS 1000 |
| | | |
| | | //void Tag_App666(void)//发送模式(TAG标签) |
| | | //{ |
| | | // while (1) |
| | | // { |
| | | // /* Write frame data to DW IC and prepare transmission. See NOTE 3 below. */ |
| | | // dwt_writetxdata(FRAME_LENGTH-FCS_LEN, tx_msg, 0); /* Zero offset in TX buffer. Data does not include the CRC */ |
| | | // /* In this example since the length of the transmitted frame does not change, |
| | | // * nor the other parameters of the dwt_writetxfctrl function, the |
| | | // * dwt_writetxfctrl call could be outside the main while(1) loop. |
| | | // */ |
| | | // dwt_writetxfctrl(FRAME_LENGTH, 0); /* Zero offset in TX buffer, no ranging. */ |
| | | |
| | | // /* Start transmission. */ |
| | | // dwt_starttx(DWT_START_TX_IMMEDIATE); |
| | | |
| | | // /* Poll DW IC until TX frame sent event set. See NOTE 4 below. |
| | | // * STATUS register is 5 bytes long but, as the event we are looking at is in the first byte of the register, we can use this simplest API |
| | | // * function to access it.*/ |
| | | // while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS_BIT_MASK)) |
| | | // { }; |
| | | |
| | | // //Sleep(200); /* If using LEDs we need to add small delay to see the TX LED blink */ |
| | | |
| | | // /* Put DW IC to sleep. Go to IDLE state after wakeup*/ |
| | | // dwt_entersleep(DWT_DW_IDLE); |
| | | |
| | | // /* Execute a delay between transmissions. */ |
| | | |
| | | // delay_ms(1000); |
| | | // /* Wake DW IC up. See NOTE 5 below. */ |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); |
| | | // delay_us(1000); |
| | | // HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); |
| | | |
| | | // delay_ms(2); |
| | | // while(!dwt_checkidlerc()) //check in IDLE_RC before proceeding |
| | | // { |
| | | // } |
| | | |
| | | // /* Restore the required configurations on wake */ |
| | | // dwt_restoreconfig(); |
| | | |
| | | // /* Increment the blink frame sequence number (modulo 256). */ |
| | | // tx_msg[BLINK_FRAME_SN_IDX]++; |
| | | // } |
| | | //} |