已添加13个文件
已修改3个文件
4864 ■■■■■ 文件已修改
keil/include/drivers/dw_app_anchor.h 3 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/drivers/dw_tag.h 2 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/drivers/uwb_app.c 10 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/crc.c 47 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/crc.h 24 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/delay.c 31 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/delay.h 16 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/lora_1268.c 742 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/lora_1268.h 202 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/radio.c 1159 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/radio.h 379 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/sx126x-board.c 264 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/sx126x-board.h 132 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/sx126x.c 716 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/sx126x.h 1115 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/src/Radio/user.h 22 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
keil/include/drivers/dw_app_anchor.h
@@ -33,7 +33,8 @@
#define RESP_MSG_RESP_TX_TS_IDX  30
#define RESP_MSG_ANC_DISTOFFSET  34
#define TAG_KEEPTIMES    20 //标签存活时间
#define TAG_KEEPTIMES    30 //标签存活时间
#define REPORT_TAG_KEEPTIMES     30 //上报存活时间
#define MAX_TAG_LIST_NUM 200 //同时通讯标签最大数量
#define FREQ_OFFSET_MULTIPLIER          (998.4e6/2.0/1024.0/131072.0)
keil/include/drivers/dw_tag.h
@@ -23,6 +23,7 @@
#define ANCHOR_ID_IDX  1
#define MAX_NEARBASE_NUM 25
#define TAG_KEEPTIMES    30 //标签存活时间
#define KEEP_TIMES 5
#define TAG_NUM_IN_SYS                25
@@ -38,6 +39,7 @@
#define NEARBASEID_INDEX         11
#define TAG_KEEPTIMES    30 //标签存活时间
#define MAX_TAG_LIST_NUM 200 //同时通讯标签最大数量
#define FREQ_OFFSET_MULTIPLIER          (998.4e6/2.0/1024.0/131072.0)
keil/include/drivers/uwb_app.c
@@ -461,11 +461,18 @@
//    }
//    anchordata_num=j;
//}
uint16_t report_ancdist[ANC_MAX_NUM],report_ancid[ANC_MAX_NUM];
void TagListUpdate(void)
{
uint16_t i,j=0,k=0;
    for(i=0; i<taglist_num; i++)
    {
    {
            if(tagofflinetime[i]++<REPORT_TAG_KEEPTIMES)
        {
            report_ancid[k]=tagid_list[i];
            report_ancdist[k++]=(uint16_t)tagdist_list[i];
        }
             if(tagofflinetime[i]++<TAG_KEEPTIMES)
        {
            tagid_list[j]=tagid_list[i];
@@ -474,6 +481,7 @@
            tagofflinetime[j++]=tagofflinetime[i];
        }
        }
            report_ancnum = k;
         taglist_num=j;
}
keil/include/src/Radio/crc.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,47 @@
#include "crc.h"
uint16_t ComputeCrc( uint16_t crc, uint8_t dataByte, uint16_t polynomial )
{
  uint8_t i;
  for( i = 0; i < 8; i++ )
  {
   if( ( ( ( crc & 0x8000 ) >> 8 ) ^ ( dataByte & 0x80 ) ) != 0 )
   {
     crc <<= 1; // shift left once
     crc ^= polynomial; // XOR with polynomial
   }
   else
   {
     crc <<= 1; // shift left once
   }
   dataByte <<= 1; // Next data bit
  }
  return crc;
}
uint16_t RadioComputeCRC( uint8_t *buffer, uint8_t length, uint8_t crcType )
{
  uint8_t i = 0;
  uint16_t crc = 0;
  uint16_t polynomial = 0;
  polynomial = ( crcType == CRC_TYPE_IBM ) ? POLYNOMIAL_IBM : POLYNOMIAL_CCITT;
  crc = ( crcType == CRC_TYPE_IBM ) ? CRC_IBM_SEED : CRC_CCITT_SEED;
  for( i = 0; i < length; i++ )
  {
   crc = ComputeCrc( crc, buffer[i], polynomial );
  }
  if( crcType == CRC_TYPE_IBM )
  {
   return crc;
  }
  else
  {
   return( ( uint16_t ) ( ~crc ));
   }
}
keil/include/src/Radio/crc.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,24 @@
#ifndef _CRC_H_
#define _CRC_H_
#include <stdint.h>
// CRC types
#define CRC_TYPE_CCITT 0
#define CRC_TYPE_IBM 1
// Polynomial = X^16 + X^12 + X^5 + 1
#define POLYNOMIAL_CCITT 0x1021
// Polynomial = X^16 + X^15 + X^2 + 1
#define POLYNOMIAL_IBM 0x8005
// Seeds
#define CRC_IBM_SEED 0xFFFF
#define CRC_CCITT_SEED 0x1D0F
uint16_t RadioComputeCRC( uint8_t *buffer, uint8_t length, uint8_t crcType );
uint16_t ComputeCrc( uint16_t crc, uint8_t dataByte, uint16_t polynomial );
#endif
keil/include/src/Radio/delay.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,31 @@
#include "delay.h"
#include <stdint.h>
//#include "stm32l0xx_hal.h"
void Delay_Us (uint32_t delay)
{
  uint8_t i=0;
  uint32_t j=0;
  for(i=0;i<delay;i++)
  {
    for(j=0;j<8;j++);
  }
}
void Delay_Ms(uint32_t delay )
{
  uint32_t i=0;
  uint32_t j=0;
  for(i=0;i<delay;i++)
  {
    for(j=0;j<4540;j++);
  }
}
void HAL_Delay_nMS( uint32_t Delay )
{
    Delay_Ms(Delay);
}
keil/include/src/Radio/delay.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,16 @@
#ifndef _DELAY_H_
#define _DELAY_H_
#include<stdint.h>
//extern volatile  uint32_t TickCounter;
//extern volatile  uint32_t ticktimer;
void Delay_Us (uint32_t delay);
void Delay_Ms(uint32_t delay );
void HAL_Delay_nMS(uint32_t Delay );
//#define HAL_GetTick()  TickCounter
#endif
keil/include/src/Radio/lora_1268.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,742 @@
#include <math.h>
#include <string.h>
#include "sx126x.h"
#include "sx126x-board.h"
#include "lora_1268.h"
//#include "lora_3029.h""
#include "user.h"
#include "sx126x-board.h"
#include "string.h"
#include "stdio.h"
#include <stdlib.h>
#include "mk_spi.h"
#include "global_param.h"
#include "dw_app_anchor.h"
#include "HIDO_TypeDef.h"
#include "PCA9555.h"
#include "mk_misc.h"
/********************************************结构体**************************************************************/
typedef enum
{
    LOWPOWER,
    RX,
    RX_TIMEOUT,
    RX_ERROR,
    TX,
    TX_TIMEOUT,
}States_t;
/********************************************结构体**************************************************************/
/********************************************变量**************************************************************/
extern wg_state_enum wg_state;
/********************************************变量**************************************************************/
#define USE_MODEM_LORA
#if defined( USE_MODEM_LORA )
#define LORA_BANDWIDTH                              2         // [0: 125 kHz,
                                                              //  1: 250 kHz,
                                                              //  2: 500 kHz,
                                                              //  3: Reserved]
#define LORA_SPREADING_FACTOR                       5         // [SF7..SF12]
#define LORA_CODINGRATE                             1         // [1: 4/5,
                                                              //  2: 4/6,
                                                              //  3: 4/7,
                                                              //  4: 4/8]
#define LORA_PREAMBLE_LENGTH_T                      8         // Same for Tx
#define LORA_PREAMBLE_LENGTH_R                      8        // Same for Rx
//#define LORA_PREAMBLE_LENGTH                      990         // Same for Tx and Rx
#define LORA_SYMBOL_TIMEOUT                         0         // Symbols
#define LORA_FIX_LENGTH_PAYLOAD_ON                  false
#define LORA_IQ_INVERSION_ON_T                      false
#define LORA_IQ_INVERSION_ON_R                      false
#elif defined( USE_MODEM_FSK )
#define FSK_FDEV                                    5e3      // Hz
#define FSK_DATARATE                                2.4e3      // bps
#define FSK_BANDWIDTH                               20e3     // Hz >> DSB in sx126x
#define FSK_AFC_BANDWIDTH                           100e3     // Hz
#define FSK_PREAMBLE_LENGTH                         5         // Same for Tx and Rx
#define FSK_FIX_LENGTH_PAYLOAD_ON                   false
#else
    #error "Please define a modem in the compiler options."
#endif
/***lora接收,发送变量定义******/
extern uint32_t current_count;
extern uint32_t dev_id;
uint8_t  yuyin_no_sleep_flag,no_rx_flag;
uint8_t lora_up_rec_flag;
static uint16_t source_id;
/***lora接收,发送变量定义******/
uint32_t wg_lost_count = 10;
//static uint8_t tx_buf[10] = {0x55, 0x44, 0x33, 0x22, 0x11};
//static uint8_t rx_buf[10] = {0x00};
//extern uint32_t uwbled,gpsled,loraled,powerled;
extern uint8_t bat_percent,taglist_num;
//uint8_t report_ancnum;
//uint16_t report_ancdist[ANC_MAX_NUM],report_ancid[ANC_MAX_NUM];
extern void spi_transfer_callback(void *dev, uint32_t err_code);
extern uint16_t ancidlist_rec[TAG_NUM_IN_SYS],ancidlist_send[TAG_NUM_IN_SYS],rec_ancidlist[TAG_NUM_IN_SYS];
extern uint8_t report_ancnum;
extern uint16_t report_ancdist[ANC_MAX_NUM],report_ancid[ANC_MAX_NUM];
//extern wg_state_enum wg_state;
extern uint32_t wg_lost_count;
uint8_t lora_sendbuffer[200];
uint8_t seq_num;
extern uint16_t lora_up_uwb_flag;
//extern uint8_t wg_lost_count;
uint16_t wg_report_freq,wg_report_id;
uint8_t wg_report_sf;
#define WG_LOST_SWITCH_THRES   3
#define WG_LOST_NOUWB_COUNT    60
#define DEFAULT_WG_ID       0xFFFF
#define DEFAULT_LR_WG_ID    0xFFFE
uint8_t lora_jianting_flag = 1;
wg_state_enum wg_state = WG_Lost;
void LoraReportFreqPoll(void)
{
  //  wg_state = WG_Lost;
    if(wg_lost_count++>WG_LOST_NOUWB_COUNT)
    {
     lora_jianting_flag = 0;
    } else {
     lora_jianting_flag = 1;
    }
    if(wg_state==WG_Lost)
    {
            static uint8_t channel_switch_count = 0;
      //  channel_switch_count = 10;
        if(channel_switch_count++>1)
        {
//            channel_switch_count = 0;
//            wg_report_id = DEFAULT_LR_WG_ID;
//            wg_report_freq = LR_DATA_CHANNEL_FRQ; //如果丢失链接就进入WG管理信道。
//            wg_report_sf = LR_DATA_CHANNEL_SF;
        }
                else
                {
            wg_report_id = DEFAULT_WG_ID;
            wg_report_freq = REPORT_MANGE_CHANNEL_FRQ; //如果丢失链接就进入WG管理信道。
            wg_report_sf = REPORT_CHANNEL_SF;
//                        wg_report_freq = TEST_MANAGE_CHANNEL_FRQ;
//                      wg_report_sf = TEST_MANAGE_CHANNEL_SF;
                }
    } else {
        if(wg_lost_count>WG_LOST_SWITCH_THRES)
        {
            wg_state = WG_Lost;
        }
    }
}
static uint16_t checksum;
//uint16_t wg_report_freq,wg_report_id;
uint8_t lora_sendbuffer[200];
void LoraHeartBeartPoll(void)
{
//    lora_up_uwb_flag=2;
//  rf_set_default_para();
/*****************************心跳包上传内容************************************/
    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGHEARTBEAT;
    lora_sendbuffer[MSG_LENGTH] = 14;
    memcpy(&lora_sendbuffer[SOURCE_ID_IDX],&g_com_map[DEV_ID],2);
    memcpy(&lora_sendbuffer[DEST_ID_IDX],&wg_report_id,2);
    memcpy(&lora_sendbuffer[HB_VERSION_IDX],&g_com_map[VERSION],2);
    lora_sendbuffer[HB_UWBPOWER_IDX] = g_com_map[POWER];
    lora_sendbuffer[HB_LORAPOWER_IDX] = g_com_map[LORA_POWER];//将距离校准改为了TX发射功率设置
    checksum = Checksum_u16(lora_sendbuffer,14);
    memcpy(&lora_sendbuffer[14],&checksum,2);
    Radio.Send(lora_sendbuffer,16);
/*****************************心跳包上传内容*************************************/
}
#define HEATBEAT_UPDATE_TIME   20
uint16_t heatbeat_count = HEATBEAT_UPDATE_TIME-1 ;
uint16_t flag_getwgresp = 0;
int16_t intheight;            //气压
extern uint32_t dangqian_frqe;
uint16_t recnum[3];
extern uint32_t freq_list[4];
extern uint8_t DMA_RXBuf_BT[200];
extern uint8_t report_ancnum;
extern uint8_t report_ancnum_bt;
uint32_t BT_SEND_lenth=0;
uint8_t BT_NUM=0;
extern uint16_t report_ancdist[ANC_MAX_NUM],report_ancid[ANC_MAX_NUM];
extern uint8_t bat_percent;
extern uint16_t REV_RX_NUM;
extern uint16_t REV_POLL_NUM;
extern uint16_t REPLY_POLL_NUM;
uint16_t num[3]={0,0,0};
extern uint8_t stationary_flag;
extern uint8_t SOS_KEY_STATE;
uint32_t LORA_POLL_COUNT=0;
#define GET_USERKEY gpio_pin_get_val(SOS_PIN)
void LoraReportPoll(void)
{
////    // delay_ms(100);
////#ifdef _USE_BAR
////    GetPressAndHeight();
////    intheight = Height*100;
////#endif
////#ifdef _SMT_TEST
////    printf("气压值:%d",intheight);
////#endif
//////    TagListUpdate();
////    LoraReportFreqPoll();
////    flag_getwgresp = 0;
//    SwitchLoraSettings(478,REPORT_CHANNEL_SF,22);
////    if(heatbeat_count++>HEATBEAT_UPDATE_TIME && WG_Connected == wg_state) //如果心跳包到达上传时间,并且网关处于链接状态,就上传心跳包
////    {
////        heatbeat_count = 0;
////        LoraHeartBeartPoll();
////        return;
////    }
////    for(uint16_t i=0; i<report_ancnum-1; i++)
////    {
////        for(uint16_t j=0; j<report_ancnum-1-i; j++)
////        {
////            if(report_ancdist[j]>report_ancdist[j+1])
////            {
////                uint16_t id,dist;
////                uint8_t bat;
////                id = report_ancid[j];
////                dist = report_ancdist[j];
////                report_ancid[j] = report_ancid[j+1];
////                report_ancdist[j] = report_ancdist[j+1];
////                report_ancid[j+1] = id;
////                report_ancdist[j+1] = dist;
////            }
////        }
////    }
////
////    if(report_ancnum>LORA_REPORT_MAXANC_NUM)                                  //考虑lora传输时间,最多发送10个基站数据。
////        {
////      report_ancnum = LORA_REPORT_MAXANC_NUM;
////        }
////
////#ifdef USE_GPS
////    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGMSGTOWG_GPS;
////    lora_sendbuffer[MSG_LENGTH] = 4*report_ancnum+30;
////#else
////        BT_NUM=DMA_RXBuf_BT[0];
////        if(SOS_KEY_STATE)
////        {
////            BT_NUM=0;
//////        }
////    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGMSGTOWG;
//        lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGMSGTOWG_BT;
//    //lora_sendbuffer[MSG_LENGTH] = 4*report_ancnum+4*BT_NUM+ANCID_IDX+3;
////#endif
//    memcpy(&lora_sendbuffer[SOURCE_ID_IDX],&g_com_map[DEV_ID],2);
//    memcpy(&lora_sendbuffer[DEST_ID_IDX],&wg_report_id,2);
//    lora_sendbuffer[SEQNUM_IDX] = seq_num++;
//    lora_sendbuffer[BAT_IDX] = bat_percent;
////        lora_sendbuffer[STATE_IDX] = !GET_USERKEY|stationary_flag<<1;
////        //GET_USERKEY这个是那个lora——busy那个引脚
//////        lora_sendbuffer[STATE_IDX]=0x01;
//////        lora_sendbuffer[GATEWAY_CHANL]=0x02;
//////        lora_sendbuffer[CHANL_NUM]=0x03;
////
////#ifdef USE_GPS
////    memcpy(&lora_sendbuffer[GPS_JINGDU_IDX],&gps_jingdu,8);
////    memcpy(&lora_sendbuffer[GPS_WEIDU_IDX],&gps_jingdu,8);
////    memcpy(&lora_sendbuffer[GPS_HEIGHT_IDX],&gps_height,8);
////    lora_sendbuffer[GPS_STATE_IDX] = gps_state;
////    lora_sendbuffer[GPS_SATEL_NUM_IDX] = gps_satel_num;
////    lora_sendbuffer[GPS_SPOWER_IDX] = gps_signalpower;
////    lora_sendbuffer[GPS_CHAFENLINGQI] = gps_chafenlingqi;
////#endif
////    memcpy(&lora_sendbuffer[BAR_HEIGHT_IDX],&intheight,2);
////    lora_sendbuffer[BT_ANCID_IDX] = report_ancnum;
////    memcpy(&lora_sendbuffer[BT_ANCID_IDX+1],report_ancid,report_ancnum*2);
////    memcpy(&lora_sendbuffer[BT_ANCID_IDX+report_ancnum*2+1],report_ancdist,report_ancnum*2);
////        uint8_t LORA_RETRANSNUSSION_BT=0;
//////
//////        num[0]=REV_RX_NUM;
//////        num[1]=REV_POLL_NUM;
//////        num[2]=REPLY_POLL_NUM;
////        LORA_RETRANSNUSSION_BT=BT_ANCID_IDX+report_ancnum*4+1;
////        lora_sendbuffer[LORA_RETRANSNUSSION_BT] = 0x2D;         //蓝牙上传标识符
////    memcpy(&lora_sendbuffer[LORA_RETRANSNUSSION_BT+1],&DMA_RXBuf_BT[0],BT_NUM*2+1);                                     //基站ID
////    memcpy(&lora_sendbuffer[LORA_RETRANSNUSSION_BT+BT_NUM*2+2],&DMA_RXBuf_BT[1+BT_NUM*2],BT_NUM*2);//基站距离
////        lora_sendbuffer[MSG_LENGTH] = LORA_RETRANSNUSSION_BT+4*BT_NUM+2;
//////        }
//////        if(lora_sendbuffer[LORA_RETRANSNUSSION_BT]==0x2D)
//////        {
////        checksum = Checksum_u16(lora_sendbuffer,4*BT_NUM+4*report_ancnum+BT_ANCID_IDX+3);
////        memcpy(&lora_sendbuffer[LORA_RETRANSNUSSION_BT+BT_NUM*4+2],&checksum,2);
//        BT_SEND_flag=BT_ANCID_IDX+report_ancnum*4+BT_NUM*4+5;
//        Radio.Send(lora_sendbuffer,BT_SEND_flag);
////        LORA_POLL_COUNT++;
//////        LORA_3029_SINGLE_SEND(lora_sendbuffer,ANCID_IDX+report_ancnum*4+BT_NUM*4+4,0);
//////        }
//////        else
//////        {
//////        checksum = Checksum_u16(lora_sendbuffer,4*report_ancnum+ANCID_IDX);
//////        memcpy(&lora_sendbuffer[ANCID_IDX+report_ancnum*4],&checksum,2);
//////        Radio.Send(lora_sendbuffer,ANCID_IDX+report_ancnum*4+BT_NUM*4+2);
//////        }
#ifdef _USE_BAR
    GetPressAndHeight();
    intheight = Height*100;
#endif
#ifdef _SMT_TEST
    printf("气压值:%d",intheight);
#endif
//    TagListUpdate();
    LoraReportFreqPoll();
    flag_getwgresp = 0;
    //  wg_report_freq = REPORT_MANGE_CHANNEL_FRQ;
    SwitchLoraSettings(wg_report_freq,REPORT_CHANNEL_SF,g_com_map[LORA_POWER]);
    if(heatbeat_count++>HEATBEAT_UPDATE_TIME && WG_Connected == wg_state) //如果心跳包到达上传时间,并且网关处于链接状态,就上传心跳包
    {
        heatbeat_count = 0;
        LoraHeartBeartPoll();
        return;
    }
    for(uint16_t i=0; i<report_ancnum-1; i++)
    {
        for(uint16_t j=0; j<report_ancnum-1-i; j++)
        {
            if(report_ancdist[j]>report_ancdist[j+1])
            {
                uint16_t id,dist;
                uint8_t bat;
                id = report_ancid[j];
                dist = report_ancdist[j];
                report_ancid[j] = report_ancid[j+1];
                report_ancdist[j] = report_ancdist[j+1];
                report_ancid[j+1] = id;
                report_ancdist[j+1] = dist;
            }
        }
    }
    if(report_ancnum>LORA_REPORT_MAXANC_NUM)    //考虑lora传输时间,最多发送10个基站数据。
        report_ancnum = LORA_REPORT_MAXANC_NUM;
#ifdef USE_GPS
    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGMSGTOWG_GPS;
    lora_sendbuffer[MSG_LENGTH] = 4*report_ancnum+30;
#else
    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_TAGMSGTOWG;
    lora_sendbuffer[MSG_LENGTH] = 4*report_ancnum+ANCID_IDX;
#endif
    memcpy(&lora_sendbuffer[SOURCE_ID_IDX],&g_com_map[DEV_ID],2);
    memcpy(&lora_sendbuffer[DEST_ID_IDX],&wg_report_id,2);
    lora_sendbuffer[SEQNUM_IDX] = seq_num++;
    lora_sendbuffer[BAT_IDX] = bat_percent;
    lora_sendbuffer[STATE_IDX] = !GET_USERKEY|stationary_flag<<1;
#ifdef USE_GPS
    memcpy(&lora_sendbuffer[GPS_JINGDU_IDX],&gps_jingdu,8);
    memcpy(&lora_sendbuffer[GPS_WEIDU_IDX],&gps_jingdu,8);
    memcpy(&lora_sendbuffer[GPS_HEIGHT_IDX],&gps_height,8);
    lora_sendbuffer[GPS_STATE_IDX] = gps_state;
    lora_sendbuffer[GPS_SATEL_NUM_IDX] = gps_satel_num;
    lora_sendbuffer[GPS_SPOWER_IDX] = gps_signalpower;
    lora_sendbuffer[GPS_CHAFENLINGQI] = gps_chafenlingqi;
#endif
    memcpy(&lora_sendbuffer[BAR_HEIGHT_IDX],&intheight,2);
    lora_sendbuffer[ANCNUM_IDX] = report_ancnum;
    memcpy(&lora_sendbuffer[ANCID_IDX],report_ancid,report_ancnum*2);
    memcpy(&lora_sendbuffer[ANCID_IDX+report_ancnum*2],report_ancdist,report_ancnum*2);
    checksum = Checksum_u16(lora_sendbuffer,4*report_ancnum+ANCID_IDX);
    memcpy(&lora_sendbuffer[ANCID_IDX+report_ancnum*4],&checksum,2);
    Radio.Send(lora_sendbuffer,ANCID_IDX+report_ancnum*4+2);
}
//static uint16_t delaytime = 1200;
static uint16_t source_id;
uint8_t rec_index,rec_secdelay;
//uint16_t rec_value,rec_delaytime,rx_count;
//uint16_t rec_value,rec_delaytime,rx_count,datalen_offset;
uint8_t shengji_flag,time=5;
extern uint32_t uwbled,gpsled,loraled,powerled;
extern struct RxDoneMsg RxDoneParams;
//extern     uint8_t Lora_tx_ancnum;
//extern   uint8_t lora_seq_nb2;
extern uint16_t lora_yingda_num;
uint8_t lora_tx_flag=0;
uint8_t lora_txanchor_power_flag;
extern uint16_t Lora_tx_ancid[50];
extern uint16_t Lora_tx_ancdist[50];
extern uint8_t Lora_tx_anc_electricity[50];
uint8_t lora_seq_nb1;
extern uint8_t lora_sendbuffer[200];
void LoraSendComMap(uint8_t cmd)
{
        uint8_t data_length = 0x50;
        uint16_t checksum = 0;
        lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_READPARARESP;
        lora_sendbuffer[MSG_LENGTH] = data_length+11;
                memcpy(&lora_sendbuffer[SOURCE_ID_IDX],&g_com_map[DEV_ID],2);
                memcpy(&lora_sendbuffer[DEST_ID_IDX],&wg_report_id,2);
        lora_sendbuffer[RP_CMD_IDX] = cmd;
        lora_sendbuffer[RP_INDEX_IDX] = 2;
        lora_sendbuffer[RP_LEN_IDX] = data_length;
        memcpy(&lora_sendbuffer[9], &g_com_map[1], data_length);
        checksum = Checksum_u16(lora_sendbuffer,11+data_length);
        memcpy(&lora_sendbuffer[11+data_length],&checksum,2);
//        LORA_3029_SINGLE_SEND(lora_sendbuffer,data_length+13,0);
                Radio.Send(lora_sendbuffer,data_length+13);
          //++;
  //  Delay_Ms(100);
}
void LoraRspWriteCommap(uint8_t index)
{
    uint8_t data_length = 2;
    uint16_t checksum = 0;
    lora_sendbuffer[MSG_TYPE_IDX] = LORA_MSGTYPE_READPARARESP;
    lora_sendbuffer[MSG_LENGTH] = data_length+9;
    memcpy(&lora_sendbuffer[SOURCE_ID_IDX],&g_com_map[DEV_ID],2);
    memcpy(&lora_sendbuffer[DEST_ID_IDX],&wg_report_id,2);
    lora_sendbuffer[RP_CMD_IDX] = WGRSP_RWTAG_WRITE;
    lora_sendbuffer[RP_INDEX_IDX] = index;
    lora_sendbuffer[RP_LEN_IDX] = data_length;
    memcpy(&lora_sendbuffer[7], &g_com_map[index/2], data_length);
    checksum = Checksum_u16(lora_sendbuffer,9+data_length);
    memcpy(&lora_sendbuffer[9+data_length],&checksum,2);
    Radio.Send(lora_sendbuffer,data_length+11);
  //LORA_3029_SINGLE_SEND(lora_sendbuffer,data_length+11,0);
  //  Delay_Ms(100);
}
uint8_t t22[20],ti;
uint8_t no_yingdaflag;
uint8_t aRxBuffer[1];
extern uint8_t group_id;
uint16_t lora_send_count;
uint8_t mode_flag=0;
uint32_t frqe,dangqian_frqe;
uint8_t sum_count;
void Lora_Tx_Poll()
{
//    if(lora_tx_flag)
//    {
//     OnMaster();
////
//            //rf_enter_continous_rx();
//        }
 if(lora_tx_flag)
    {
//            gpio_pin_set(IO_PIN_5);
        if(lora_send_count++%10==0||lora_jianting_flag)
        {
                    sum_count++;
            lora_tx_flag=0;
#ifdef GROUPID_SWITCH
            if(rec_secdelay>0)
            {
                rec_secdelay--;
                return;
            }
#endif
           LoraReportPoll();
        }
    }
}
////States_t State = LOWPOWER;
//////int8_t RssiValue = 0;
//////int8_t SnrValue = 0;
////uint8_t  lora_chongfuyingda_flag;
////uint8_t Lora_rx_open_flag;
////extern u32 Loratx_frequency;
uint8_t huifushengjibao_flag;
uint8_t LoraUp_flag;
//uint8_t lora_up_rec_flag;
uint8_t flag_writepara_needreset = 0;
//uint32_t wg_lost_count = 10;
//uint32_t lora_zhuangtai;
//uint16_t current_count;
//extern wg_state_enum wg_state;
uint8_t txdone=0;
void OnTxDone( void )
{
      txdone++;
    if(flag_writepara_needreset) //配置写入完成设备需要重启
    {
        printf("网关下发配置写入完成,重启");
        SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader
    }
    Radio.Standby();
    if(LoraUp_flag)
    {
    huifushengjibao_flag=1;
    Radio.Rx( 500 );
    }
    else
    {
    Radio.Rx( 50 );
    //LORA_LED_OFF;
    }
}
#define BUFFER_SIZE                                 255 // Define the payload size here
extern uint8_t imu_enable,motor_enable;
extern uint8_t lora_jianting_flag,report_ancnum;
extern uint16_t motor_keeptime;
extern uint32_t dev_id;
//extern wg_state_enum wg_state;
uint16_t rec_value,rec_delaytime,rx_count,datalen_offset;
uint16_t BufferSize = BUFFER_SIZE;
uint16_t CRC16=0;
uint16_t DEST_ID=0;
uint8_t shengji_flag;
int8_t RssiValue = 0;
int8_t SnrValue = 0;
uint8_t TX_Buffer[BUFFER_SIZE];
uint8_t RX_Buffer[BUFFER_SIZE];
static RadioEvents_t RadioEvents;
static uint16_t delaytime = 771;
static uint16_t source_id;
uint8_t rec_index,rec_secdelay;
uint16_t rec_value,rx_count,datalen_offset;
int32_t target_count;
uint32_t sleep_time_count=0;
uint32_t sleep_time_count_LAST=0;
uint16_t time_count;
uint8_t LoraUp_flag;
uint16_t REV_WG_pack=0;
uint8_t rxdone=0;
void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
                uint16_t checksum1;
        BufferSize = size;
        memcpy( RX_Buffer, payload, BufferSize );
        RssiValue = rssi;
        SnrValue = snr;
        Radio.Standby();
          rxdone++;
                no_rx_flag = 0;
                lora_up_rec_flag=1;
                 if(RX_Buffer[MSG_TYPE_IDX]==LORA_MSGTYPE_WGRESPTAG)
                        {
                            checksum1=Checksum_u16(RX_Buffer,BufferSize-2);
              memcpy(&DEST_ID,&RX_Buffer[DEST_ID_IDX],2);
                            memcpy(&CRC16,&RX_Buffer[BufferSize-2],2);
                            if(!memcmp(&checksum1,&RX_Buffer[BufferSize-2],2))
                            if(!memcmp(&dev_id,&RX_Buffer[DEST_ID_IDX],2))
                            {
                                memcpy(&source_id,&RX_Buffer[SOURCE_ID_IDX],2);
                                if(wg_state==WG_Lost)
                                    {
                                     wg_state = WG_Connected;
                                     wg_report_id = source_id;
                                    }
                                if(!memcmp(&wg_report_id,&RX_Buffer[SOURCE_ID_IDX],2))
                                {
                                        wg_lost_count = 0;
                                        switch(RX_Buffer[PWTAG_RW_FLAG_IDX])
                                        {
                                                case WGRSP_RWTAG_NONE:
//                                                REV_WG_pack++;
//                        wg_report_freq = RX_Buffer[POLL_FREQ_IDX]+400;
//                        memcpy(&rec_delaytime,&RX_Buffer[NEXTPOLL_TIME_IDX],2);
//                        if(report_ancnum<2)
//                        {
//                            datalen_offset = report_ancnum*85;
//                        }else{
//                            datalen_offset = (report_ancnum-1)*46+85;
//                        }
//                        rec_secdelay = RX_Buffer[PWTAG_SECDELAY_IDX];
//                        if(BufferSize!=13||rec_secdelay>20)
//                        {
//                         rec_secdelay = 0;
//                        }
//                                            if(rec_delaytime<500)
//                                                {
//                                                int t;
//                                                    t++;
//                                                }
////                        sleep_time_count =(__MS_TO_32K_CNT(rec_delaytime)/10)- delaytime-datalen_offset;
//                        sleep_time_count =(__MS_TO_32K_CNT(rec_delaytime)/10);
//                        while(sleep_time_count>=32768)
//                                                {
//                         sleep_time_count-=32768;
//                                                }
//                                                while(sleep_time_count<2000)
//                                                {
//                                                 sleep_time_count+=10000;
//                                                }
//                                                if(REV_WG_pack==1)
//                                                {
//                                                sleep_time_count_LAST=sleep_time_count;
//                                                }
//                                                if(abs(sleep_time_count_LAST-sleep_time_count)>2000||REV_WG_pack==1)
//                                                {
//                                                 sleep_timer_start(sleep_time_count);
                                                    time_count++;
//                                                }
                        break;
                                                case WGRSP_RWTAG_READ:
                                                            no_rx_flag = 1;
                                                            LoraSendComMap(WGRSP_RWTAG_READ);
                                                            break;
                                                case WGRSP_RWTAG_WRITE:
                                                        rec_index = RX_Buffer[PWTAG_WRITE_IDX_IDX];
                                                    switch(rec_index)
                                                            {
                                                                    case 0xdd:  //语音下发
                                                                            break;
//                        case 0x20:  //蜂鸣
//                            memcpy(&rec_value,&RX_Buffer[PWTAG_WRITE_VALUE_IDX],2);
//                            motor_keeptime = rec_value;
//                            break;
                        default :
                            memcpy(&rec_value,&RX_Buffer[PWTAG_WRITE_VALUE_IDX],2);
                            g_com_map[rec_index/2] = rec_value;
                            save_com_map_to_flash();
                            LoraRspWriteCommap(SUBMSG_WRITE_ANCPARA);
                            //flag_writepara_needreset = 1;
                            no_rx_flag = 1;
                                                            }
                                                            break;
                                                case WGRSP_RWTAG_UPDATE:
                                                rec_index = RX_Buffer[PWTAG_WRITE_IDX_IDX];
//                                                switch(rec_index)
//                                                {
//                                                        case 0xaa:  //升级下发
//                                                        memcpy(&rec_wenjian_daxiao,&RX_Buffer[WRITEPARA_VALUE_IDX],2);//文件大小
//                                                        if(rec_wenjian_daxiao>0XAC00||rec_wenjian_daxiao==0)
//                                                        {}//文件过大,超出范围
//                                                        else
//                                                        {
//                                                                memcpy(&wangguan_up_id,&RX_Buffer[SOURCE_ID_IDX],2);//网关ID å ç”¨2个字节
//                                                                shengji_flag=1;
//                                                                LoraUp_flag=1;
//                                                                imu_enable=0;
//                                                        }
////                              LoraUp_Poll();
//                                                                break;
//                                                }
                                                        break;
                                        }
                                    }
                                }
                            }
    if(!no_rx_flag)
    {
        if(lora_jianting_flag&&LoraUp_flag==0)
        {
            SwitchLoraSettings(UWB_CHANNEL_FRQ+group_id,UWB_CHANNEL_SF,0);
            Radio.Rx(0);
        }
    }
}
void OnTxTimeout( void )
{
    Radio.Standby();
    if(lora_jianting_flag)
    {
        SwitchLoraSettings(UWB_CHANNEL_FRQ+group_id,UWB_CHANNEL_SF,0);
        Radio.Rx(0);
    }
}
void OnRxTimeout( void )
{
    Radio.Standby();
    if(lora_jianting_flag)
    {
        SwitchLoraSettings(UWB_CHANNEL_FRQ+group_id,UWB_CHANNEL_SF,0);
        Radio.Rx(0);
    }
}
void OnRxError( void )
{
    Radio.Standby();
    if(lora_jianting_flag)
    {
        SwitchLoraSettings(UWB_CHANNEL_FRQ+group_id,UWB_CHANNEL_SF,0);
        Radio.Rx(0);
    }
}
uint16_t freq_test;
void SwitchLoraSettings(uint32_t freq,uint8_t sf,uint8_t power)
{
    Radio.Standby();
    Radio.SetChannel( freq*1000000 );
    freq_test = freq;
    Radio.SetTxConfig( MODEM_LORA, power, 0, 2,
    sf, LORA_CODINGRATE,LORA_PREAMBLE_LENGTH_T, LORA_FIX_LENGTH_PAYLOAD_ON,
    false, 0, 0, LORA_IQ_INVERSION_ON_T, 3000 );
    Radio.SetRxConfig( MODEM_LORA, LORA_BANDWIDTH,
    sf,LORA_CODINGRATE, 0, LORA_PREAMBLE_LENGTH_R,
    LORA_SYMBOL_TIMEOUT, LORA_FIX_LENGTH_PAYLOAD_ON,
    0, false, 0, 0, LORA_IQ_INVERSION_ON_R, 0 );
}
uint8_t active_flag;
void Lora_1268_Init(void)
{
    RadioEvents.TxDone = OnTxDone;
    RadioEvents.RxDone = OnRxDone;
    RadioEvents.TxTimeout = OnTxTimeout;
    RadioEvents.RxTimeout = OnRxTimeout;
    RadioEvents.RxError = OnRxError;
    Radio.Init( &RadioEvents );
//    SwitchLoraSettings(UWB_CHANNEL_FRQ+group_id,UWB_CHANNEL_SF,0); //切换lora接收频点
    if(active_flag)
    {
    Radio.Rx( 0 );
    }
//            else{
//        Radio.Sleep();
//    }
//        Radio.SetRxDutyCycle(RxDutyCycle_RX_time,RxDutyCycle_SLEEP_time);
}
keil/include/src/Radio/lora_1268.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,202 @@
#ifndef __LORA_1268_H
#define __LORA_1268_H
#include "mk_io.h"
//BT板子更改了片选角
//#define LORA_CS IO_PIN_14
#define LORA_CS IO_PIN_8
#define LORA_MOSI IO_PIN_11
#define LORA_MISO IO_PIN_12
#define LORA_CLK IO_PIN_13
#define LORA_IRQ IO_PIN_7
#define LORA_BUSY IO_PIN_2
#define LORA_NRST IO_PIN_4
#define LORA_NRST_DOWN  gpio_pin_clr(IO_PIN_4)
#define LORA_NRST_UP  gpio_pin_set(IO_PIN_4)
//#define BOXING_PIN IO_PIN_1
//#define LORA_DIO IO_PIN_4
#define ANC_MAX_NUM           50
#define LORA_REPORT_MAXANC_NUM  10
//#define TEST_FREQ
#ifdef  TEST_FREQ
#define LORA_UPCHANNEL_FRQ 456
#define LORA_UPCHANNEL_SF 9
#define TEST_FREQ_OFFSET   1
#define UWB_CHANNEL_FRQ 450+TEST_FREQ_OFFSET
#define UWB_CHANNEL_SF 5
#define LR_DATA_CHANNEL_FRQ 457
#define LR_DATA_CHANNEL_SF 9
#define REPORT_MANGE_CHANNEL_FRQ 458 +TEST_FREQ_OFFSET
#define REPORT_CHANNEL_SF 7
#else
#define LORA_UPCHANNEL_FRQ 476
#define LORA_UPCHANNEL_SF 8
#define UWB_CHANNEL_FRQ 470
#define UWB_CHANNEL_SF 5
#define REPORT_MANGE_CHANNEL_FRQ 478
#define REPORT_CHANNEL_SF 7
#define LR_DATA_CHANNEL_FRQ 475
#define LR_DATA_CHANNEL_SF 9
//#define TEST_MANAGE_CHANNEL_FRQ 457
//#define TEST_MANAGE_CHANNEL_SF 5
#endif
//LORA æ•°æ®æ ¼å¼
//免布线系统中 æ‰€æœ‰çš„LORA传输信息都包含在下面的MSG TYPE(消息类型)格式中,不同的消息类型,会对应不同的所有格式
//LORA MSG TYPE的几种类型
#define LORA_MSGTYPE_SYNC               1//网关下发给基站的同步信息
#define LORA_MSGTYPE_CFGRSP             2//基站回复给网关配置读取信息
#define LORA_MSGTYPE_UPDATE_CONFIRM     3//基站回复给网关升级确认信息
#define LORA_MSGTYPE_RANGEPOLL          4//基站发起测距同步信号
#define LORA_MSGTYPE_UPDATEFILE_REQUEST 5//基站发送给网关升级文件请求
#define LORA_MSGTYPE_UPDATEFILE_RESP    6//网关回复基站升级文件内容
#define LORA_MSGTYPE_ANCHEARTBEAT_POLL  7//网关回复基站升级文件内容
#define LORA_MSGTYPE_TAGMSGTOWG         0x22//标签距离信息发给网关
#define LORA_MSGTYPE_TAGMSGTOWG_GPS     0x23//标签距离信息发给网关
#define LORA_MSGTYPE_TAGMSGTOWG_BT      0x26//标签距离信息蓝牙距离信息,信号强度,发给网关
#define LORA_MSGTYPE_WGRESPTAG         8//网关回复标签测距定位报文
#define LORA_MSGTYPE_TAGHEARTBEAT       0x33//标签心跳包上传
#define LORA_MSGTYPE_READPARARESP       0x39  //标签基站回复网关读取配置指令
//SYNC消息下 å­æ¶ˆæ¯ç±»åž‹å®šä¹‰
#define SUBMSG_NONE             0//无其他消息 åªæ˜¯åŒæ­¥ä¿¡å·
#define SUBMSG_READ_ANCPARA     0x11//子消息类型:读取基站配置
#define SUBMSG_WRITE_ANCPARA    0x12//子消息类型:写基站配置
#define SUBMSG_UPDATE_TAG       5//子消息类型:升级标签
#define SUBMSG_UPDATE_ANC       6//子消息类型:升级基站
//SYNC消息类型格式
#define MSG_TYPE_IDX        0   //LORA MSG TYPE å®šä¹‰
#define MSG_LENGTH          1   //报文长度
#define SOURCE_ID_IDX       2   //网关ID å ç”¨2个字节
#define DEST_ID_IDX         4   //标签或者基站的设备ID 2个字节
#define SYSTIME_IDX         6   //系统时间
#define RANGE_STATE_IDX     7  //该网关范围是否测距标志位,为1则区域内基站测距,如果是0则区域内基站不测距
#define SUBMSGTYPE_IDX      9   //子消息类型IDX
#define WRITEPARA_INDEX_IDX 10  //写入参数的地址IDX
#define WRITEPARA_VALUE_IDX 11   //写入参数的值,2个字节   /*在发送升级基站请求时,被替换为要发送的升级文件的大小
#define WG_SYNC_RESERVE_IDX 13  //保留 4个字节
//LORA_MSGTYPE_TAGMSGTOWG æ ‡ç­¾ä¸ŠæŠ¥ç½‘关定位报文信息格式
#ifdef USE_GPS
    #define MSG_TYPE_IDX        0   //LORA MSG TYPE å®šä¹‰
    #define MSG_LENGTH          1   //报文长度
    #define SOURCE_ID_IDX       2   //网关ID å ç”¨2个字节
    #define DEST_ID_IDX         4   //标签或者基站的设备ID 2个字节
    #define SEQNUM_IDX          6   //标签报文序号
    #define BAT_IDX             7   //标签电量
    #define STATE_IDX           8
    #define GPS_JINGDU_IDX      9
    #define GPS_WEIDU_IDX       17
    #define GPS_HEIGHT_IDX      25
    #define GPS_STATE_IDX       29
    #define GPS_SATEL_NUM_IDX   30
    #define GPS_SPOWER_IDX      31  //信号强度
    #define GPS_CHAFENLINGQI    32  //差分龄期
    #define BAR_HEIGHT_IDX      33  //气压高度
    #define ANCNUM_IDX          35
    #define ANCID_IDX           36   //校验在4*ancnum+ANCID_IDX ä½ç½®
#else
    #define MSG_TYPE_IDX        0   //LORA MSG TYPE å®šä¹‰
    #define MSG_LENGTH          1   //报文长度
    #define SOURCE_ID_IDX       2   //网关ID å ç”¨2个字节
    #define DEST_ID_IDX         4   //标签或者基站的设备ID 2个字节
    #define SEQNUM_IDX          6   //标签报文序号
    #define BAT_IDX             7   //标签电量
    #define STATE_IDX           8
    #define BAR_HEIGHT_IDX      9  //气压高度
        #define GATEWAY_CHANL       9
        #define CHANL_NUM           10
    #define ANCNUM_IDX          11
    #define ANCID_IDX           12   //校验在4*ancnum+ANCID_IDX ä½ç½®
//        #define LORA_RETRANSNUSSION_BT 13  //LORA转发蓝牙协议标识符
#endif
//#define LORA_MSGTYPE_WGRESPTAG         8//网关回复标签测距定位报文 æ ¼å¼
#define MSG_TYPE_IDX            0   //LORA MSG TYPE å®šä¹‰
#define MSG_LENGTH              1   //报文长度
#define SOURCE_ID_IDX           2   //网关ID å ç”¨2个字节
#define DEST_ID_IDX             4   //标签或者基站的设备ID 2个字节
#define NEXTPOLL_TIME_IDX       6   //
#define POLL_FREQ_IDX           8   //分配的发送频率,需要+400的偏移量。
#define PWTAG_RW_FLAG_IDX       9   //读写标志 0无读写 1写入 2读取
#define PWTAG_WRITE_IDX_IDX     10   //写入地址
#define PWTAG_SECDELAY_IDX      10      //写入标签秒延迟 ä¸Žè¯»å†™åœ°å€å…±ç”¨ä¸€ä¸ªä½ç½®ï¼Œå½“有读写地址时,就没有这个参数。
#define PWTAG_WRITE_VALUE_IDX   11   //写入值
#define WGRSP_RWTAG_NONE    0//网关回复标签,无读写
#define WGRSP_RWTAG_READ    2//网关回复标签,无读写
#define WGRSP_RWTAG_WRITE   1//网关回复标签,无读写
#define WGRSP_RWTAG_UPDATE   0x06//网关回复标签,无读写
//#define LORA_MSGTYPE_READPARARESP       0x39  //标签基站回复网关读取配置指令
#define MSG_TYPE_IDX            0   //LORA MSG TYPE å®šä¹‰
#define MSG_LENGTH              1   //报文长度
#define SOURCE_ID_IDX           2   //网关ID å ç”¨2个字节
#define DEST_ID_IDX             4   //标签或者基站的设备ID 2个字节
#define RP_CMD_IDX              6   //标签或者基站的设备ID 2个字节
#define RP_INDEX_IDX              7   //标签或者基站的设备ID 2个字节
#define RP_LEN_IDX              8   //标签或者基站的设备ID 2个字节
//#define LORA_MSGTYPE_TAGHEARTBEAT       0x33//标签心跳包上传 æ ¼å¼
#define MSG_TYPE_IDX            0   //LORA MSG TYPE å®šä¹‰
#define MSG_LENGTH              1   //报文长度
#define SOURCE_ID_IDX           2   //网关ID å ç”¨2个字节
#define DEST_ID_IDX             4   //标签或者基站的设备ID 2个字节
#define HB_VERSION_IDX          6   //标签或者基站的设备ID 2个字节
#define HB_UWBPOWER_IDX         8   //标签或者基站的设备ID 2个字节
#define HB_LORAPOWER_IDX        9   //标签或者基站的设备ID 2个字节
#define HB_RESERVE_IDX          10//标签或者基站的设备ID 2个字节
//#define LORA_MSGTYPE_TAGBTMSGTOWG
    #define MSG_TYPE_IDX        0   //LORA MSG TYPE å®šä¹‰
    #define MSG_LENGTH          1   //报文长度
    #define SOURCE_ID_IDX       2   //网关ID å ç”¨2个字节
    #define DEST_ID_IDX         4   //标签或者基站的设备ID 2个字节
    #define SEQNUM_IDX          6   //标签报文序号
    #define BAT_IDX             7   //标签电量
    #define STATE_IDX           8        //按键/静止
    #define BAR_HEIGHT_IDX      9   //气压高度
        #define STEP_COUNT          15
        #define EXERCISE_STATE      16
    #define RESERVED_POSITION   17
//        #define GETWG_CHANL         11  //网关通道
//        #define GETCHANL_NUM        12    //通道序号
//    #define SIGNAL_STRENGTH     13  //信号强度
//        #define ERROR_TIME                    14    //误差时间
        #define STATION_NUM_UWB          16  //基站数量-蓝牙
//        #define STATION_NUM_UWB
    #define BT_ANCID_IDX           15   //校验在4*ancnum+ANCID_IDX ä½ç½®
typedef enum{    WG_Lost, //上报丢失    å¤±åŽ»å’Œç½‘å…³é€šè®¯
                WG_Connected,// ä¸ŠæŠ¥ä¸­       å’Œç½‘关通讯正常
}wg_state_enum;
void Lora_1268_Init(void);
void OnTxDone( void );
void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
void OnTxTimeout( void );
void OnRxTimeout( void );
void OnRxError( void );
void SwitchLoraSettings(uint32_t freq,uint8_t sf,uint8_t power);
#endif
keil/include/src/Radio/radio.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,1159 @@
/*!
 * \file      radio.c
 *
 * \brief     Radio driver API definition
 *
 * \copyright Revised BSD License, see section \ref LICENSE.
 *
 * \code
 *                ______                              _
 *               / _____)             _              | |
 *              ( (____  _____ ____ _| |_ _____  ____| |__
 *               \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 *               _____) ) ____| | | || |_| ____( (___| | | |
 *              (______/|_____)_|_|_| \__)_____)\____)_| |_|
 *              (C)2013-2017 Semtech
 *
 * \endcode
 *
 * \author    Miguel Luis ( Semtech )
 *
 * \author    Gregory Cristian ( Semtech )
 */
// #include "stm32l0xx_hal.h"
//#include "stm32l0xx_hal_conf.h"
//#include "main.h"
#include <math.h>
#include <string.h>
#include <stdbool.h>
//#include "stm32f0xx.h"
#include "delay.h"
//#include "dw_driver.h"
//#include "gpio.h"
//#include "spi.h"
#include "radio.h"
#include "sx126x.h"
#include "sx126x-board.h"
//#include "stm32l0xx_hal_gpio.h"
#include "lora_1268.h"
/*!
 * \brief Initializes the radio
 *
 * \param [IN] events Structure containing the driver callback functions
 */
void RadioInit( RadioEvents_t *events );
/*!
 * Return current radio status
 *
 * \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING]
 */
RadioState_t RadioGetStatus( void );
/*!
 * \brief Configures the radio with the given modem
 *
 * \param [IN] modem Modem to be used [0: FSK, 1: LoRa]
 */
void RadioSetModem( RadioModems_t modem );
/*!
 * \brief Sets the channel frequency
 *
 * \param [IN] freq         Channel RF frequency
 */
void RadioSetChannel( uint32_t freq );
/*!
 * \brief Checks if the channel is free for the given time
 *
 * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
 * \param [IN] freq       Channel RF frequency
 * \param [IN] rssiThresh RSSI threshold
 * \param [IN] maxCarrierSenseTime Max time while the RSSI is measured
 *
 * \retval isFree         [true: Channel is free, false: Channel is not free]
 */
bool RadioIsChannelFree( RadioModems_t modem, uint32_t freq, int16_t rssiThresh, uint32_t maxCarrierSenseTime );
/*!
 * \brief Generates a 32 bits random value based on the RSSI readings
 *
 * \remark This function sets the radio in LoRa modem mode and disables
 *         all interrupts.
 *         After calling this function either Radio.SetRxConfig or
 *         Radio.SetTxConfig functions must be called.
 *
 * \retval randomValue    32 bits random value
 */
uint32_t RadioRandom( void );
/*!
 * \brief Sets the reception parameters
 *
 * \param [IN] modem        Radio modem to be used [0: FSK, 1: LoRa]
 * \param [IN] bandwidth    Sets the bandwidth
 *                          FSK : >= 2600 and <= 250000 Hz
 *                          LoRa: [0: 125 kHz, 1: 250 kHz,
 *                                 2: 500 kHz, 3: Reserved]
 * \param [IN] datarate     Sets the Datarate
 *                          FSK : 600..300000 bits/s
 *                          LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
 *                                10: 1024, 11: 2048, 12: 4096  chips]
 * \param [IN] coderate     Sets the coding rate (LoRa only)
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
 * \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only)
 *                          FSK : >= 2600 and <= 250000 Hz
 *                          LoRa: N/A ( set to 0 )
 * \param [IN] preambleLen  Sets the Preamble length
 *                          FSK : Number of bytes
 *                          LoRa: Length in symbols (the hardware adds 4 more symbols)
 * \param [IN] symbTimeout  Sets the RxSingle timeout value
 *                          FSK : timeout in number of bytes
 *                          LoRa: timeout in symbols
 * \param [IN] fixLen       Fixed length packets [0: variable, 1: fixed]
 * \param [IN] payloadLen   Sets payload length when fixed length is used
 * \param [IN] crcOn        Enables/Disables the CRC [0: OFF, 1: ON]
 * \param [IN] FreqHopOn    Enables disables the intra-packet frequency hopping
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [0: OFF, 1: ON]
 * \param [IN] HopPeriod    Number of symbols between each hop
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: Number of symbols
 * \param [IN] iqInverted   Inverts IQ signals (LoRa only)
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [0: not inverted, 1: inverted]
 * \param [IN] rxContinuous Sets the reception in continuous mode
 *                          [false: single mode, true: continuous mode]
 */
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
                          uint32_t datarate, uint8_t coderate,
                          uint32_t bandwidthAfc, uint16_t preambleLen,
                          uint16_t symbTimeout, bool fixLen,
                          uint8_t payloadLen,
                          bool crcOn, bool FreqHopOn, uint8_t HopPeriod,
                          bool iqInverted, bool rxContinuous );
/*!
 * \brief Sets the transmission parameters
 *
 * \param [IN] modem        Radio modem to be used [0: FSK, 1: LoRa]
 * \param [IN] power        Sets the output power [dBm]
 * \param [IN] fdev         Sets the frequency deviation (FSK only)
 *                          FSK : [Hz]
 *                          LoRa: 0
 * \param [IN] bandwidth    Sets the bandwidth (LoRa only)
 *                          FSK : 0
 *                          LoRa: [0: 125 kHz, 1: 250 kHz,
 *                                 2: 500 kHz, 3: Reserved]
 * \param [IN] datarate     Sets the Datarate
 *                          FSK : 600..300000 bits/s
 *                          LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
 *                                10: 1024, 11: 2048, 12: 4096  chips]
 * \param [IN] coderate     Sets the coding rate (LoRa only)
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
 * \param [IN] preambleLen  Sets the preamble length
 *                          FSK : Number of bytes
 *                          LoRa: Length in symbols (the hardware adds 4 more symbols)
 * \param [IN] fixLen       Fixed length packets [0: variable, 1: fixed]
 * \param [IN] crcOn        Enables disables the CRC [0: OFF, 1: ON]
 * \param [IN] FreqHopOn    Enables disables the intra-packet frequency hopping
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [0: OFF, 1: ON]
 * \param [IN] HopPeriod    Number of symbols between each hop
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: Number of symbols
 * \param [IN] iqInverted   Inverts IQ signals (LoRa only)
 *                          FSK : N/A ( set to 0 )
 *                          LoRa: [0: not inverted, 1: inverted]
 * \param [IN] timeout      Transmission timeout [ms]
 */
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
                          uint32_t bandwidth, uint32_t datarate,
                          uint8_t coderate, uint16_t preambleLen,
                          bool fixLen, bool crcOn, bool FreqHopOn,
                          uint8_t HopPeriod, bool iqInverted, uint32_t timeout );
/*!
 * \brief Checks if the given RF frequency is supported by the hardware
 *
 * \param [IN] frequency RF frequency to be checked
 * \retval isSupported [true: supported, false: unsupported]
 */
bool RadioCheckRfFrequency( uint32_t frequency );
/*!
 * \brief Computes the packet time on air in ms for the given payload
 *
 * \Remark Can only be called once SetRxConfig or SetTxConfig have been called
 *
 * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
 * \param [IN] pktLen     Packet payload length
 *
 * \retval airTime        Computed airTime (ms) for the given packet payload length
 */
uint32_t RadioTimeOnAir( RadioModems_t modem, uint8_t pktLen );
/*!
 * \brief Sends the buffer of size. Prepares the packet to be sent and sets
 *        the radio in transmission
 *
 * \param [IN]: buffer     Buffer pointer
 * \param [IN]: size       Buffer size
 */
void RadioSend( uint8_t *buffer, uint8_t size );
/*!
 * \brief Sets the radio in sleep mode
 */
void RadioSleep( void );
/*!
 * \brief Sets the radio in standby mode
 */
void RadioStandby( void );
/*!
 * \brief Sets the radio in reception mode for the given time
 * \param [IN] timeout Reception timeout [ms]
 *                     [0: continuous, others timeout]
 */
void RadioRx( uint32_t timeout );
/*!
 * \brief Start a Channel Activity Detection
 */
void RadioStartCad( void );
/*!
 * \brief Sets the radio in continuous wave transmission mode
 *
 * \param [IN]: freq       Channel RF frequency
 * \param [IN]: power      Sets the output power [dBm]
 * \param [IN]: time       Transmission mode timeout [s]
 */
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time );
/*!
 * \brief Reads the current RSSI value
 *
 * \retval rssiValue Current RSSI value in [dBm]
 */
int16_t RadioRssi( RadioModems_t modem );
/*!
 * \brief Writes the radio register at the specified address
 *
 * \param [IN]: addr Register address
 * \param [IN]: data New register value
 */
void RadioWrite( uint16_t addr, uint8_t data );
/*!
 * \brief Reads the radio register at the specified address
 *
 * \param [IN]: addr Register address
 * \retval data Register value
 */
uint8_t RadioRead( uint16_t addr );
/*!
 * \brief Writes multiple radio registers starting at address
 *
 * \param [IN] addr   First Radio register address
 * \param [IN] buffer Buffer containing the new register's values
 * \param [IN] size   Number of registers to be written
 */
void RadioWriteBuffer( uint16_t addr, uint8_t *buffer, uint8_t size );
/*!
 * \brief Reads multiple radio registers starting at address
 *
 * \param [IN] addr First Radio register address
 * \param [OUT] buffer Buffer where to copy the registers data
 * \param [IN] size Number of registers to be read
 */
void RadioReadBuffer( uint16_t addr, uint8_t *buffer, uint8_t size );
/*!
 * \brief Sets the maximum payload length.
 *
 * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
 * \param [IN] max        Maximum payload length in bytes
 */
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max );
/*!
 * \brief Sets the network to public or private. Updates the sync byte.
 *
 * \remark Applies to LoRa modem only
 *
 * \param [IN] enable if true, it enables a public network
 */
void RadioSetPublicNetwork( bool enable );
/*!
 * \brief Gets the time required for the board plus radio to get out of sleep.[ms]
 *
 * \retval time Radio plus board wakeup time in ms.
 */
uint32_t RadioGetWakeupTime( void );
/*!
 * \brief Process radio irq
 */
void RadioIrqProcess( void );
/*!
 * \brief Sets the radio in reception mode with Max LNA gain for the given time
 * \param [IN] timeout Reception timeout [ms]
 *                     [0: continuous, others timeout]
 */
void RadioRxBoosted( uint32_t timeout );
/*!
 * \brief Sets the Rx duty cycle management parameters
 *
 * \param [in]  rxTime        Structure describing reception timeout value
 * \param [in]  sleepTime     Structure describing sleep timeout value
 */
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime );
/*!
 * Radio driver structure initialization
 */
const struct Radio_s Radio =
{
    RadioInit,
    RadioGetStatus,
    RadioSetModem,
    RadioSetChannel,
    RadioIsChannelFree,
    RadioRandom,
    RadioSetRxConfig,
    RadioSetTxConfig,
    RadioCheckRfFrequency,
    RadioTimeOnAir,
    RadioSend,
    RadioSleep,
    RadioStandby,
    RadioRx,
    RadioStartCad,
    RadioSetTxContinuousWave,
    RadioRssi,
    RadioWrite,
    RadioRead,
    RadioWriteBuffer,
    RadioReadBuffer,
    RadioSetMaxPayloadLength,
    RadioSetPublicNetwork,
    RadioGetWakeupTime,
    RadioIrqProcess,
    // Available on SX126x only
    RadioRxBoosted,
    RadioSetRxDutyCycle
};
/*
 * Local types definition
 */
 /*!
 * FSK bandwidth definition
 */
typedef struct
{
    uint32_t bandwidth;
    uint8_t  RegValue;
}FskBandwidth_t;
/*!
 * Precomputed FSK bandwidth registers values
 */
const FskBandwidth_t FskBandwidths[] =
{
    { 4800  , 0x1F },
    { 5800  , 0x17 },
    { 7300  , 0x0F },
    { 9700  , 0x1E },
    { 11700 , 0x16 },
    { 14600 , 0x0E },
    { 19500 , 0x1D },
    { 23400 , 0x15 },
    { 29300 , 0x0D },
    { 39000 , 0x1C },
    { 46900 , 0x14 },
    { 58600 , 0x0C },
    { 78200 , 0x1B },
    { 93800 , 0x13 },
    { 117300, 0x0B },
    { 156200, 0x1A },
    { 187200, 0x12 },
    { 234300, 0x0A },
    { 312000, 0x19 },
    { 373600, 0x11 },
    { 467000, 0x09 },
    { 500000, 0x00 }, // Invalid Bandwidth
};
const RadioLoRaBandwidths_t Bandwidths[] = { LORA_BW_125, LORA_BW_250, LORA_BW_500 };
//                                          SF12    SF11    SF10    SF9    SF8    SF7
static double RadioLoRaSymbTime[3][6] = {{ 32.768, 16.384, 8.192, 4.096, 2.048, 1.024 },  // 125 KHz
                                         { 16.384, 8.192,  4.096, 2.048, 1.024, 0.512 },  // 250 KHz
                                         { 8.192,  4.096,  2.048, 1.024, 0.512, 0.256 }}; // 500 KHz
uint8_t MaxPayloadLength = 0xFF;
uint32_t TxTimeout = 0;
uint32_t RxTimeout = 0;
bool RxContinuous = false;
PacketStatus_t RadioPktStatus;
uint8_t RadioRxPayload[255];
bool IrqFired = false;
/*
 * SX126x DIO IRQ callback functions prototype
 */
/*!
 * \brief DIO 0 IRQ callback
 */
void RadioOnDioIrq( void );
/*!
 * \brief Tx timeout timer callback
 */
void RadioOnTxTimeoutIrq( void );
/*!
 * \brief Rx timeout timer callback
 */
void RadioOnRxTimeoutIrq( void );
/*
 * Private global variables
 */
/*!
 * Holds the current network type for the radio
 */
typedef struct
{
    bool Previous;
    bool Current;
}RadioPublicNetwork_t;
static RadioPublicNetwork_t RadioPublicNetwork = { false };
/*!
 * Radio callbacks variable
 */
static RadioEvents_t* RadioEvents;
/*
 * Public global variables
 */
/*!
 * Radio hardware and global parameters
 */
SX126x_t SX126x;
/*!
 * Tx and Rx timers
 */
//TimerEvent_t TxTimeoutTimer;
//TimerEvent_t RxTimeoutTimer;
/*!
 * Returns the known FSK bandwidth registers value
 *
 * \param [IN] bandwidth Bandwidth value in Hz
 * \retval regValue Bandwidth register value.
 */
static uint8_t RadioGetFskBandwidthRegValue( uint32_t bandwidth )
{
    uint8_t i;
    if( bandwidth == 0 )
    {
        return( 0x1F );
    }
    for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ) - 1; i++ )
    {
        if( ( bandwidth >= FskBandwidths[i].bandwidth ) && ( bandwidth < FskBandwidths[i + 1].bandwidth ) )
        {
            return FskBandwidths[i+1].RegValue;
        }
    }
    // ERROR: Value not found
    while( 1 );
}
uint8_t buf[2];
void RadioInit( RadioEvents_t *events )
{
    RadioEvents = events;
    SX126xInit( RadioOnDioIrq );
    SX126xSetStandby( STDBY_RC );
    SX126xSetRegulatorMode( USE_DCDC );
//    printf("Lora_Init2\r\n");
    SX126xSetBufferBaseAddress( 0x00, 0x00 );
//    SX126xReadCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
    SX126xSetTxParams( 0, RADIO_RAMP_200_US );
    SX126xSetDioIrqParams( IRQ_RADIO_ALL, IRQ_RADIO_ALL, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
    //Initialize driver timeout timers
    //TimerInit( &TxTimeoutTimer, RadioOnTxTimeoutIrq );
    //TimerInit( &RxTimeoutTimer, RadioOnRxTimeoutIrq );
    IrqFired = false;
}
RadioState_t RadioGetStatus( void )
{
    switch( SX126xGetOperatingMode( ) )
    {
        case MODE_TX:
            return RF_TX_RUNNING;
        case MODE_RX:
            return RF_RX_RUNNING;
        case RF_CAD:
            return RF_CAD;
        default:
            return RF_IDLE;
    }
}
void RadioSetModem( RadioModems_t modem )
{
    switch( modem )
    {
    default:
    case MODEM_FSK:
        SX126xSetPacketType( PACKET_TYPE_GFSK );
        // When switching to GFSK mode the LoRa SyncWord register value is reset
        // Thus, we also reset the RadioPublicNetwork variable
        RadioPublicNetwork.Current = false;
        break;
    case MODEM_LORA:
        SX126xSetPacketType( PACKET_TYPE_LORA );
        // Public/Private network register is reset when switching modems
        if( RadioPublicNetwork.Current != RadioPublicNetwork.Previous )
        {
            RadioPublicNetwork.Current = RadioPublicNetwork.Previous;
            RadioSetPublicNetwork( RadioPublicNetwork.Current );
        }
        break;
    }
}
void RadioSetChannel( uint32_t freq )
{
    SX126xSetRfFrequency( freq );
}
bool RadioIsChannelFree( RadioModems_t modem, uint32_t freq, int16_t rssiThresh, uint32_t maxCarrierSenseTime )
{
    bool status = true;
   // int16_t rssi = 0;
   // uint32_t carrierSenseTime = 0;
    RadioSetModem( modem );
    RadioSetChannel( freq );
    RadioRx( 0 );
    HAL_Delay_nMS( 1 );
    //carrierSenseTime = TimerGetCurrentTime( );
     //Perform carrier sense for maxCarrierSenseTime
//    while( TimerGetElapsedTime( carrierSenseTime ) < maxCarrierSenseTime )
//    {
//        rssi = RadioRssi( modem );
//
//        if( rssi > rssiThresh )
//        {
//            status = false;
//            break;
//        }
//    }
    RadioSleep( );
    return status;
}
uint32_t RadioRandom( void )
{
    uint8_t i;
    uint32_t rnd = 0;
    /*
     * Radio setup for random number generation
     */
    // Set LoRa modem ON
    RadioSetModem( MODEM_LORA );
    // Set radio in continuous reception
    SX126xSetRx( 0 );
    for( i = 0; i < 32; i++ )
    {
        HAL_Delay_nMS( 1 );
        // Unfiltered RSSI value reading. Only takes the LSB value
        rnd |= ( ( uint32_t )SX126xGetRssiInst( ) & 0x01 ) << i;
    }
    RadioSleep( );
    return rnd;
}
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
                         uint32_t datarate, uint8_t coderate,
                         uint32_t bandwidthAfc, uint16_t preambleLen,
                         uint16_t symbTimeout, bool fixLen,
                         uint8_t payloadLen,
                         bool crcOn, bool freqHopOn, uint8_t hopPeriod,
                         bool iqInverted, bool rxContinuous )
{
    RxContinuous = rxContinuous;
    if( fixLen == true )
    {
        MaxPayloadLength = payloadLen;
    }
    else
    {
        MaxPayloadLength = 0xFF;
    }
    switch( modem )
    {
        case MODEM_FSK:
            SX126xSetStopRxTimerOnPreambleDetect( false );
            SX126x.ModulationParams.PacketType = PACKET_TYPE_GFSK;
            SX126x.ModulationParams.Params.Gfsk.BitRate = datarate;
            SX126x.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
            SX126x.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth );
            SX126x.PacketParams.PacketType = PACKET_TYPE_GFSK;
            SX126x.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
            SX126x.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
            SX126x.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3; // convert byte into bit
            SX126x.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
            SX126x.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
            SX126x.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength;
            if( crcOn == true )
            {
                SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
            }
            else
            {
                SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
            }
            SX126x.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREE_OFF;
            RadioStandby( );
            RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
            SX126xSetModulationParams( &SX126x.ModulationParams );
            SX126xSetPacketParams( &SX126x.PacketParams );
            SX126xSetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
            SX126xSetWhiteningSeed( 0x01FF );
            RxTimeout = ( uint32_t )( symbTimeout * ( ( 1.0 / ( double )datarate ) * 8.0 ) * 1000 );
            break;
        case MODEM_LORA:
            SX126xSetStopRxTimerOnPreambleDetect( false );
            SX126xSetLoRaSymbNumTimeout( symbTimeout );
            SX126x.ModulationParams.PacketType = PACKET_TYPE_LORA;
            SX126x.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t )datarate;
            SX126x.ModulationParams.Params.LoRa.Bandwidth = Bandwidths[bandwidth];
            SX126x.ModulationParams.Params.LoRa.CodingRate = ( RadioLoRaCodingRates_t )coderate;
            if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
            ( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
            {
                SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
            }
            else
            {
                SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
            }
            SX126x.PacketParams.PacketType = PACKET_TYPE_LORA;
            if( ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
                ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
            {
                if( preambleLen < 12 )
                {
                    SX126x.PacketParams.Params.LoRa.PreambleLength = 12;
                }
                else
                {
                    SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
                }
            }
            else
            {
                SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
            }
            SX126x.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
            SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
            SX126x.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
            SX126x.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
            RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
            SX126xSetModulationParams( &SX126x.ModulationParams );
            SX126xSetPacketParams( &SX126x.PacketParams );
            // Timeout Max, Timeout handled directly in SetRx function
             RxTimeout = 0xFFFF;
            break;
    }
}
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
                        uint32_t bandwidth, uint32_t datarate,
                        uint8_t coderate, uint16_t preambleLen,
                        bool fixLen, bool crcOn, bool freqHopOn,
                        uint8_t hopPeriod, bool iqInverted, uint32_t timeout )
{
    switch( modem )
    {
        case MODEM_FSK:
            SX126x.ModulationParams.PacketType = PACKET_TYPE_GFSK;
            SX126x.ModulationParams.Params.Gfsk.BitRate = datarate;
            SX126x.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
            SX126x.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth );
            SX126x.ModulationParams.Params.Gfsk.Fdev = fdev;
            SX126x.PacketParams.PacketType = PACKET_TYPE_GFSK;
            SX126x.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
            SX126x.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
            SX126x.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3 ; // convert byte into bit
            SX126x.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
            SX126x.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
            if( crcOn == true )
            {
                SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
            }
            else
            {
                SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
            }
            SX126x.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREEWHITENING;
            RadioStandby( );
            RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
            SX126xSetModulationParams( &SX126x.ModulationParams );
            SX126xSetPacketParams( &SX126x.PacketParams );
            SX126xSetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
            SX126xSetWhiteningSeed( 0x01FF );
            break;
        case MODEM_LORA:
            SX126x.ModulationParams.PacketType = PACKET_TYPE_LORA;
            SX126x.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t ) datarate;
            SX126x.ModulationParams.Params.LoRa.Bandwidth =  Bandwidths[bandwidth];
            SX126x.ModulationParams.Params.LoRa.CodingRate= ( RadioLoRaCodingRates_t )coderate;
            if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
            ( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
            {
                SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
            }
            else
            {
                SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
            }
            SX126x.PacketParams.PacketType = PACKET_TYPE_LORA;
            if( ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
                ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
            {
                if( preambleLen < 12 )
                {
                    SX126x.PacketParams.Params.LoRa.PreambleLength = 12;
                }
                else
                {
                    SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
                }
            }
            else
            {
                SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
            }
            SX126x.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
            SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
            SX126x.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
            SX126x.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
            RadioStandby( );
            RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
            SX126xSetModulationParams( &SX126x.ModulationParams );
            SX126xSetPacketParams( &SX126x.PacketParams );
            break;
    }
    SX126xSetRfTxPower( power );
    TxTimeout = timeout;
}
bool RadioCheckRfFrequency( uint32_t frequency )
{
    return true;
}
uint32_t RadioTimeOnAir( RadioModems_t modem, uint8_t pktLen )
{
    uint32_t airTime = 0;
    switch( modem )
    {
    case MODEM_FSK:
        {
           airTime = rint( ( 8 * ( SX126x.PacketParams.Params.Gfsk.PreambleLength +
                                     ( SX126x.PacketParams.Params.Gfsk.SyncWordLength >> 3 ) +
                                     ( ( SX126x.PacketParams.Params.Gfsk.HeaderType == RADIO_PACKET_FIXED_LENGTH ) ? 0.0 : 1.0 ) +
                                     pktLen +
                                     ( ( SX126x.PacketParams.Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES ) ? 2.0 : 0 ) ) /
                                     SX126x.ModulationParams.Params.Gfsk.BitRate ) * 1e3 );
        }
        break;
    case MODEM_LORA:
        {
            double ts = RadioLoRaSymbTime[SX126x.ModulationParams.Params.LoRa.Bandwidth - 4][12 - SX126x.ModulationParams.Params.LoRa.SpreadingFactor];
            // time of preamble
            double tPreamble = ( SX126x.PacketParams.Params.LoRa.PreambleLength + 4.25 ) * ts;
            // Symbol length of payload and time
            double tmp = ceil( ( 8 * pktLen - 4 * SX126x.ModulationParams.Params.LoRa.SpreadingFactor +
                                 28 + 16 * SX126x.PacketParams.Params.LoRa.CrcMode -
                                 ( ( SX126x.PacketParams.Params.LoRa.HeaderType == LORA_PACKET_FIXED_LENGTH ) ? 20 : 0 ) ) /
                                 ( double )( 4 * ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor -
                                 ( ( SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize > 0 ) ? 2 : 0 ) ) ) ) *
                                 ( ( SX126x.ModulationParams.Params.LoRa.CodingRate % 4 ) + 4 );
            double nPayload = 8 + ( ( tmp > 0 ) ? tmp : 0 );
            double tPayload = nPayload * ts;
            // Time on air
            double tOnAir = tPreamble + tPayload;
            // return milli seconds
            airTime = floor( tOnAir + 0.999 );
        }
        break;
    }
    return airTime;
}
void RadioSend( uint8_t *buffer, uint8_t size )
{
    SX126xSetDioIrqParams( IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
                           IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
                           IRQ_RADIO_NONE,
                           IRQ_RADIO_NONE );
    if( SX126xGetPacketType( ) == PACKET_TYPE_LORA )
    {
        SX126x.PacketParams.Params.LoRa.PayloadLength = size;
    }
    else
    {
        SX126x.PacketParams.Params.Gfsk.PayloadLength = size;
    }
    SX126xSetPacketParams( &SX126x.PacketParams );
    SX126xSendPayload( buffer, size, 0 );
//    TimerSetValue( &TxTimeoutTimer, TxTimeout );
//    TimerStart( &TxTimeoutTimer );
}
void RadioSleep( void )
{
    SleepParams_t params = { 0 };
    params.Fields.WarmStart = 1;
    SX126xSetSleep( params );
    HAL_Delay_nMS( 2 );
}
void RadioStandby( void )
{
    SX126xSetStandby( STDBY_RC );
}
void RadioRx( uint32_t timeout )
{
    SX126xSetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
//                           IRQ_RX_DONE|IRQ_RX_TX_TIMEOUT,
                           IRQ_RX_DONE| IRQ_RX_TX_TIMEOUT,
                           IRQ_RADIO_NONE,
                           IRQ_RADIO_NONE );
    if( RxContinuous == true )
    {
        SX126xSetRx( 0xFFFFFF ); // Rx Continuous
    }
    else
    {
        SX126xSetRx( timeout << 6 );
    }
}
void RadioRxBoosted( uint32_t timeout )
{
    SX126xSetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
                           IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
                           IRQ_RADIO_NONE,
                           IRQ_RADIO_NONE );
    if( RxContinuous == true )
    {
        SX126xSetRxBoosted( 0xFFFFFF ); // Rx Continuous
    }
    else
    {
        SX126xSetRxBoosted( timeout << 6 );
    }
}
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
    SX126xSetRxDutyCycle( rxTime, sleepTime );
}
void RadioStartCad( void )
{
    SX126xSetCad( );
}
void RadioTx( uint32_t timeout )
{
    SX126xSetTx( timeout << 6 );
}
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time )
{
    SX126xSetRfFrequency( freq );
    SX126xSetRfTxPower( power );
    SX126xSetTxContinuousWave( );
//    TimerSetValue( &RxTimeoutTimer, time  * 1e3 );
//    TimerStart( &RxTimeoutTimer );
}
int16_t RadioRssi( RadioModems_t modem )
{
    return SX126xGetRssiInst( );
}
void RadioWrite( uint16_t addr, uint8_t data )
{
    SX126xWriteRegister( addr, data );
}
uint8_t RadioRead( uint16_t addr )
{
    return SX126xReadRegister( addr );
}
void RadioWriteBuffer( uint16_t addr, uint8_t *buffer, uint8_t size )
{
    SX126xWriteRegisters( addr, buffer, size );
}
void RadioReadBuffer( uint16_t addr, uint8_t *buffer, uint8_t size )
{
    SX126xReadRegisters( addr, buffer, size );
}
void RadioWriteFifo( uint8_t *buffer, uint8_t size )
{
    SX126xWriteBuffer( 0, buffer, size );
}
void RadioReadFifo( uint8_t *buffer, uint8_t size )
{
    SX126xReadBuffer( 0, buffer, size );
}
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max )
{
    if( modem == MODEM_LORA )
    {
        SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength = max;
        SX126xSetPacketParams( &SX126x.PacketParams );
    }
    else
    {
        if( SX126x.PacketParams.Params.Gfsk.HeaderType == RADIO_PACKET_VARIABLE_LENGTH )
        {
            SX126x.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength = max;
            SX126xSetPacketParams( &SX126x.PacketParams );
        }
    }
}
void RadioSetPublicNetwork( bool enable )
{
    RadioPublicNetwork.Current = RadioPublicNetwork.Previous = enable;
    RadioSetModem( MODEM_LORA );
    if( enable == true )
    {
        // Change LoRa modem SyncWord
        SX126xWriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PUBLIC_SYNCWORD >> 8 ) & 0xFF );
        SX126xWriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PUBLIC_SYNCWORD & 0xFF );
    }
    else
    {
        // Change LoRa modem SyncWord
        SX126xWriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PRIVATE_SYNCWORD >> 8 ) & 0xFF );
        SX126xWriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PRIVATE_SYNCWORD & 0xFF );
    }
}
uint32_t RadioGetWakeupTime( void )
{
    return( RADIO_TCXO_SETUP_TIME + RADIO_WAKEUP_TIME );
}
void RadioOnTxTimeoutIrq( void )
{
    if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
    {
        RadioEvents->TxTimeout( );
    }
}
void RadioOnRxTimeoutIrq( void )
{
    if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
    {
        RadioEvents->RxTimeout( );
    }
}
void RadioOnDioIrq( void )
{
    IrqFired = true;
}
void RadioIrqProcess( void )
{
   // if( IrqFired == true )
    if(gpio_pin_get_val(LORA_IRQ))
    {
        IrqFired = false;
        uint16_t irqRegs = SX126xGetIrqStatus( );
        SX126xClearIrqStatus( IRQ_RADIO_ALL );
        if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
        {
            if( ( RadioEvents != NULL ) && ( RadioEvents->TxDone != NULL ) )
            {
                RadioEvents->TxDone( );
            }
        }
        if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
        {
            uint8_t size;
            SX126xGetPayload( RadioRxPayload, &size , 255 );
            SX126xGetPacketStatus( &RadioPktStatus );
            if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
            {
                RadioEvents->RxDone( RadioRxPayload, size, RadioPktStatus.Params.LoRa.RssiPkt, RadioPktStatus.Params.LoRa.SnrPkt );
            }
        }
        if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
        {
            if( ( RadioEvents != NULL ) && ( RadioEvents->RxError ) )
            {
                RadioEvents->RxError( );
            }
        }
        if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
        {
            if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
            {
                RadioEvents->CadDone( ( ( irqRegs & IRQ_CAD_ACTIVITY_DETECTED ) == IRQ_CAD_ACTIVITY_DETECTED ) );
            }
        }
        if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
        {
            if( SX126xGetOperatingMode( ) == MODE_TX )
            {
                if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
                {
                    RadioEvents->TxTimeout( );
                }
            }
            else if( SX126xGetOperatingMode( ) == MODE_RX )
            {
                if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
                {
                    RadioEvents->RxTimeout( );
                }
            }
        }
        if( ( irqRegs & IRQ_PREAMBLE_DETECTED ) == IRQ_PREAMBLE_DETECTED )
        {
            //__NOP( );
        }
        if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
        {
            //__NOP( );
        }
        if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
        {
            //__NOP( );
        }
        if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
        {
            if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
            {
                RadioEvents->RxTimeout( );
            }
        }
    }
}
keil/include/src/Radio/radio.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,379 @@
/*!
 * \file      radio.h
 *
 * \brief     Radio driver API definition
 *
 * \copyright Revised BSD License, see section \ref LICENSE.
 *
 * \code
 *                ______                              _
 *               / _____)             _              | |
 *              ( (____  _____ ____ _| |_ _____  ____| |__
 *               \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 *               _____) ) ____| | | || |_| ____( (___| | | |
 *              (______/|_____)_|_|_| \__)_____)\____)_| |_|
 *              (C)2013-2017 Semtech
 *
 * \endcode
 *
 * \author    Miguel Luis ( Semtech )
 *
 * \author    Gregory Cristian ( Semtech )
 */
#ifndef __RADIO_H__
#define __RADIO_H__
#include<stdint.h>
#include<stdbool.h>
//#define USE_MODEM_LORA
/*!
 * Radio driver supported modems
 */
typedef enum
{
    MODEM_FSK = 0,
    MODEM_LORA,
}RadioModems_t;
/*!
 * Radio driver internal state machine states definition
 */
typedef enum
{
    RF_IDLE = 0,   //!< The radio is idle
    RF_RX_RUNNING, //!< The radio is in reception state
    RF_TX_RUNNING, //!< The radio is in transmission state
    RF_CAD,        //!< The radio is doing channel activity detection
}RadioState_t;
/*!
 * \brief Radio driver callback functions
 */
typedef struct
{
    /*!
     * \brief  Tx Done callback prototype.
     */
    void    ( *TxDone )( void );
    /*!
     * \brief  Tx Timeout callback prototype.
     */
    void    ( *TxTimeout )( void );
    /*!
     * \brief Rx Done callback prototype.
     *
     * \param [IN] payload Received buffer pointer
     * \param [IN] size    Received buffer size
     * \param [IN] rssi    RSSI value computed while receiving the frame [dBm]
     * \param [IN] snr     Raw SNR value given by the radio hardware
     *                     FSK : N/A ( set to 0 )
     *                     LoRa: SNR value in dB
     */
    void    ( *RxDone )( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
    /*!
     * \brief  Rx Timeout callback prototype.
     */
    void    ( *RxTimeout )( void );
    /*!
     * \brief Rx Error callback prototype.
     */
    void    ( *RxError )( void );
    /*!
     * \brief  FHSS Change Channel callback prototype.
     *
     * \param [IN] currentChannel   Index number of the current channel
     */
    void ( *FhssChangeChannel )( uint8_t currentChannel );
    /*!
     * \brief CAD Done callback prototype.
     *
     * \param [IN] channelDetected    Channel Activity detected during the CAD
     */
    void ( *CadDone ) ( bool channelActivityDetected );
}RadioEvents_t;
/*!
 * \brief Radio driver definition
 */
struct Radio_s
{
    /*!
     * \brief Initializes the radio
     *
     * \param [IN] events Structure containing the driver callback functions
     */
    void    ( *Init )( RadioEvents_t *events );
    /*!
     * Return current radio status
     *
     * \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING]
     */
    RadioState_t ( *GetStatus )( void );
    /*!
     * \brief Configures the radio with the given modem
     *
     * \param [IN] modem Modem to be used [0: FSK, 1: LoRa]
     */
    void    ( *SetModem )( RadioModems_t modem );
    /*!
     * \brief Sets the channel frequency
     *
     * \param [IN] freq         Channel RF frequency
     */
    void    ( *SetChannel )( uint32_t freq );
    /*!
     * \brief Checks if the channel is free for the given time
     *
     * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
     * \param [IN] freq       Channel RF frequency
     * \param [IN] rssiThresh RSSI threshold
     * \param [IN] maxCarrierSenseTime Max time while the RSSI is measured
     *
     * \retval isFree         [true: Channel is free, false: Channel is not free]
     */
    bool    ( *IsChannelFree )( RadioModems_t modem, uint32_t freq, int16_t rssiThresh, uint32_t maxCarrierSenseTime );
    /*!
     * \brief Generates a 32 bits random value based on the RSSI readings
     *
     * \remark This function sets the radio in LoRa modem mode and disables
     *         all interrupts.
     *         After calling this function either Radio.SetRxConfig or
     *         Radio.SetTxConfig functions must be called.
     *
     * \retval randomValue    32 bits random value
     */
    uint32_t ( *Random )( void );
    /*!
     * \brief Sets the reception parameters
     *
     * \param [IN] modem        Radio modem to be used [0: FSK, 1: LoRa]
     * \param [IN] bandwidth    Sets the bandwidth
     *                          FSK : >= 2600 and <= 250000 Hz
     *                          LoRa: [0: 125 kHz, 1: 250 kHz,
     *                                 2: 500 kHz, 3: Reserved]
     * \param [IN] datarate     Sets the Datarate
     *                          FSK : 600..300000 bits/s
     *                          LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
     *                                10: 1024, 11: 2048, 12: 4096  chips]
     * \param [IN] coderate     Sets the coding rate (LoRa only)
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
     * \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only)
     *                          FSK : >= 2600 and <= 250000 Hz
     *                          LoRa: N/A ( set to 0 )
     * \param [IN] preambleLen  Sets the Preamble length
     *                          FSK : Number of bytes
     *                          LoRa: Length in symbols (the hardware adds 4 more symbols)
     * \param [IN] symbTimeout  Sets the RxSingle timeout value
     *                          FSK : timeout in number of bytes
     *                          LoRa: timeout in symbols
     * \param [IN] fixLen       Fixed length packets [0: variable, 1: fixed]
     * \param [IN] payloadLen   Sets payload length when fixed length is used
     * \param [IN] crcOn        Enables/Disables the CRC [0: OFF, 1: ON]
     * \param [IN] freqHopOn    Enables disables the intra-packet frequency hopping
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [0: OFF, 1: ON]
     * \param [IN] hopPeriod    Number of symbols between each hop
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: Number of symbols
     * \param [IN] iqInverted   Inverts IQ signals (LoRa only)
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [0: not inverted, 1: inverted]
     * \param [IN] rxContinuous Sets the reception in continuous mode
     *                          [false: single mode, true: continuous mode]
     */
    void    ( *SetRxConfig )( RadioModems_t modem, uint32_t bandwidth,
                              uint32_t datarate, uint8_t coderate,
                              uint32_t bandwidthAfc, uint16_t preambleLen,
                              uint16_t symbTimeout, bool fixLen,
                              uint8_t payloadLen,
                              bool crcOn, bool freqHopOn, uint8_t hopPeriod,
                              bool iqInverted, bool rxContinuous );
    /*!
     * \brief Sets the transmission parameters
     *
     * \param [IN] modem        Radio modem to be used [0: FSK, 1: LoRa]
     * \param [IN] power        Sets the output power [dBm]
     * \param [IN] fdev         Sets the frequency deviation (FSK only)
     *                          FSK : [Hz]
     *                          LoRa: 0
     * \param [IN] bandwidth    Sets the bandwidth (LoRa only)
     *                          FSK : 0
     *                          LoRa: [0: 125 kHz, 1: 250 kHz,
     *                                 2: 500 kHz, 3: Reserved]
     * \param [IN] datarate     Sets the Datarate
     *                          FSK : 600..300000 bits/s
     *                          LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
     *                                10: 1024, 11: 2048, 12: 4096  chips]
     * \param [IN] coderate     Sets the coding rate (LoRa only)
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
     * \param [IN] preambleLen  Sets the preamble length
     *                          FSK : Number of bytes
     *                          LoRa: Length in symbols (the hardware adds 4 more symbols)
     * \param [IN] fixLen       Fixed length packets [0: variable, 1: fixed]
     * \param [IN] crcOn        Enables disables the CRC [0: OFF, 1: ON]
     * \param [IN] freqHopOn    Enables disables the intra-packet frequency hopping
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [0: OFF, 1: ON]
     * \param [IN] hopPeriod    Number of symbols between each hop
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: Number of symbols
     * \param [IN] iqInverted   Inverts IQ signals (LoRa only)
     *                          FSK : N/A ( set to 0 )
     *                          LoRa: [0: not inverted, 1: inverted]
     * \param [IN] timeout      Transmission timeout [ms]
     */
    void    ( *SetTxConfig )( RadioModems_t modem, int8_t power, uint32_t fdev,
                              uint32_t bandwidth, uint32_t datarate,
                              uint8_t coderate, uint16_t preambleLen,
                              bool fixLen, bool crcOn, bool freqHopOn,
                              uint8_t hopPeriod, bool iqInverted, uint32_t timeout );
    /*!
     * \brief Checks if the given RF frequency is supported by the hardware
     *
     * \param [IN] frequency RF frequency to be checked
     * \retval isSupported [true: supported, false: unsupported]
     */
    bool    ( *CheckRfFrequency )( uint32_t frequency );
    /*!
     * \brief Computes the packet time on air in ms for the given payload
     *
     * \Remark Can only be called once SetRxConfig or SetTxConfig have been called
     *
     * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
     * \param [IN] pktLen     Packet payload length
     *
     * \retval airTime        Computed airTime (ms) for the given packet payload length
     */
    uint32_t  ( *TimeOnAir )( RadioModems_t modem, uint8_t pktLen );
    /*!
     * \brief Sends the buffer of size. Prepares the packet to be sent and sets
     *        the radio in transmission
     *
     * \param [IN]: buffer     Buffer pointer
     * \param [IN]: size       Buffer size
     */
    void    ( *Send )( uint8_t *buffer, uint8_t size );
    /*!
     * \brief Sets the radio in sleep mode
     */
    void    ( *Sleep )( void );
    /*!
     * \brief Sets the radio in standby mode
     */
    void    ( *Standby )( void );
    /*!
     * \brief Sets the radio in reception mode for the given time
     * \param [IN] timeout Reception timeout [ms]
     *                     [0: continuous, others timeout]
     */
    void    ( *Rx )( uint32_t timeout );
    /*!
     * \brief Start a Channel Activity Detection
     */
    void    ( *StartCad )( void );
    /*!
     * \brief Sets the radio in continuous wave transmission mode
     *
     * \param [IN]: freq       Channel RF frequency
     * \param [IN]: power      Sets the output power [dBm]
     * \param [IN]: time       Transmission mode timeout [s]
     */
    void    ( *SetTxContinuousWave )( uint32_t freq, int8_t power, uint16_t time );
    /*!
     * \brief Reads the current RSSI value
     *
     * \retval rssiValue Current RSSI value in [dBm]
     */
    int16_t ( *Rssi )( RadioModems_t modem );
    /*!
     * \brief Writes the radio register at the specified address
     *
     * \param [IN]: addr Register address
     * \param [IN]: data New register value
     */
    void    ( *Write )( uint16_t addr, uint8_t data );
    /*!
     * \brief Reads the radio register at the specified address
     *
     * \param [IN]: addr Register address
     * \retval data Register value
     */
    uint8_t ( *Read )( uint16_t addr );
    /*!
     * \brief Writes multiple radio registers starting at address
     *
     * \param [IN] addr   First Radio register address
     * \param [IN] buffer Buffer containing the new register's values
     * \param [IN] size   Number of registers to be written
     */
    void    ( *WriteBuffer )( uint16_t addr, uint8_t *buffer, uint8_t size );
    /*!
     * \brief Reads multiple radio registers starting at address
     *
     * \param [IN] addr First Radio register address
     * \param [OUT] buffer Buffer where to copy the registers data
     * \param [IN] size Number of registers to be read
     */
    void    ( *ReadBuffer )( uint16_t addr, uint8_t *buffer, uint8_t size );
    /*!
     * \brief Sets the maximum payload length.
     *
     * \param [IN] modem      Radio modem to be used [0: FSK, 1: LoRa]
     * \param [IN] max        Maximum payload length in bytes
     */
    void    ( *SetMaxPayloadLength )( RadioModems_t modem, uint8_t max );
    /*!
     * \brief Sets the network to public or private. Updates the sync byte.
     *
     * \remark Applies to LoRa modem only
     *
     * \param [IN] enable if true, it enables a public network
     */
    void    ( *SetPublicNetwork )( bool enable );
    /*!
     * \brief Gets the time required for the board plus radio to get out of sleep.[ms]
     *
     * \retval time Radio plus board wakeup time in ms.
     */
    uint32_t  ( *GetWakeupTime )( void );
    /*!
     * \brief Process radio irq
     */
    void ( *IrqProcess )( void );
    /*
     * The next functions are available only on SX126x radios.
     */
    /*!
     * \brief Sets the radio in reception mode with Max LNA gain for the given time
     *
     * \remark Available on SX126x radios only.
     *
     * \param [IN] timeout Reception timeout [ms]
     *                     [0: continuous, others timeout]
     */
    void    ( *RxBoosted )( uint32_t timeout );
    /*!
     * \brief Sets the Rx duty cycle management parameters
     *
     * \remark Available on SX126x radios only.
     *
     * \param [in]  rxTime        Structure describing reception timeout value
     * \param [in]  sleepTime     Structure describing sleep timeout value
     */
    void ( *SetRxDutyCycle ) ( uint32_t rxTime, uint32_t sleepTime );
};
/*!
 * \brief Radio driver
 *
 * \remark This variable is defined and initialized in the specific radio
 *         board implementation
 */
extern const struct Radio_s Radio;
#endif // __RADIO_H__
keil/include/src/Radio/sx126x-board.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,264 @@
/*
  ______                              _
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2013 Semtech
Description: SX126x driver specific target board functions implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis and Gregory Cristian
*/
//#include "stm32f0xx.h"
#include "delay.h"
//#include "gpio.h"
//#include "Spi.h"
//#include "spi.h"
#include "radio.h"
#include "sx126x.h"
#include "sx126x-board.h"
#include "lora_1268.h"
#include "PCA9555.h"
//#include "main.h"
//#include "stm32l0xx_hal_spi.h"
#include "mk_spi.h"
//extern SPI_HandleTypeDef hspi1;
//void HAL_Delay_nMS( uint32_t Delay )
//{
//    uint32_t tickstart = 0;
//    tickstart = HAL_GetTick( );
//    while( ( HAL_GetTick( ) - tickstart ) < Delay );
//}
//void SX126x_CS_Di( )
//{
//     if(!HAL_GPIO_ReadPin( SPIx_CS_GPIO, SPIx_CS))
//     {
//        HAL_GPIO_WritePin( SPIx_CS_GPIO, SPIx_CS,GPIO_PIN_SET);
//         printf("uwb_cs_error\r\n");
//     }
//}
void spi_transfer_callback(void *dev, uint32_t err_code)
{
}
static void spi_receive_callback(void *dev, uint32_t err_code)
{
}
/*!
 * @brief Sends txBuffer and receives rxBuffer
 *
 * @param [IN] txBuffer Byte to be sent
 * @param [OUT] rxBuffer Byte to be sent
 * @param [IN] size Byte to be sent
 */
uint8_t SpiInOut( uint8_t txBuffer)
{
      uint8_t rxData = 0;
    spi_transfer(SPI_ID0, &txBuffer,&rxData, 1, spi_transfer_callback);
    return( rxData );
}
void SX126xReset( void )
{
    HAL_Delay_nMS( 10 );
//    HAL_GPIO_WritePin( RADIO_nRESET_GPIO_Port, RADIO_nRESET_Pin,GPIO_PIN_RESET);
//    gpio_pin_clr(LORA_NRST);
      LORA_NRST_DOWN;
    delay_us( 2000 );
//    HAL_GPIO_WritePin( RADIO_nRESET_GPIO_Port, RADIO_nRESET_Pin,GPIO_PIN_SET);
//    gpio_pin_set(LORA_NRST);
      LORA_NRST_UP;
    HAL_Delay_nMS( 10 );
}
void SX126xWaitOnBusy( void )
{
//   while(HAL_GPIO_ReadPin(RADIO_BUSY_GPIO_Port,RADIO_BUSY_Pin)==GPIO_PIN_SET);
   while(gpio_pin_get_val(LORA_BUSY)==1);
}
void SX126xWakeup( void )
{
    gpio_pin_clr(LORA_CS);
    SpiInOut(RADIO_GET_STATUS);
    SpiInOut(0);
    gpio_pin_set(LORA_CS);
    // Wait for chip to be ready.
    SX126xWaitOnBusy( );
}
void SX126xWriteCommand( RadioCommands_t command, uint8_t *buffer, uint16_t size )
{
    SX126xCheckDeviceReady( );
    gpio_pin_clr(LORA_CS);
    SpiInOut(( uint8_t )command );
    for( uint16_t i = 0; i < size; i++ )
    {
        SpiInOut(buffer[i] );
    }
        gpio_pin_set(LORA_CS);
    if( command != RADIO_SET_SLEEP )
    {
        SX126xWaitOnBusy( );
    }
}
void SX126xReadCommand( RadioCommands_t command, uint8_t *buffer, uint16_t size )
{
    SX126xCheckDeviceReady( );
      gpio_pin_clr(LORA_CS);
//    SX126x_CS_Di( );
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_RESET);
    SpiInOut(( uint8_t )command );
    SpiInOut(0x00 );
    for( uint16_t i = 0; i < size; i++ )
    {
        buffer[i] = SpiInOut(0 );
    }
        gpio_pin_set(LORA_CS);
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_SET);
    SX126xWaitOnBusy( );
}
void SX126xWriteRegisters( uint16_t address, uint8_t *buffer, uint16_t size )
{
    SX126xCheckDeviceReady( );
//    SX126x_CS_Di( );
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_RESET);
    gpio_pin_clr(LORA_CS);
    SpiInOut(RADIO_WRITE_REGISTER );
    SpiInOut(( address & 0xFF00 ) >> 8 );
    SpiInOut( address & 0x00FF );
    for( uint16_t i = 0; i < size; i++ )
    {
        SpiInOut(buffer[i] );
    }
        gpio_pin_set(LORA_CS);
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_SET);
    SX126xWaitOnBusy( );
}
void SX126xWriteRegister( uint16_t address, uint8_t value )
{
    SX126xWriteRegisters( address, &value, 1 );
}
void SX126xReadRegisters( uint16_t address, uint8_t *buffer, uint16_t size )
{
    SX126xCheckDeviceReady( );
//    SX126x_CS_Di( );
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_RESET);
        gpio_pin_clr(LORA_CS);
    SpiInOut(RADIO_READ_REGISTER );
    SpiInOut(( address & 0xFF00 ) >> 8 );
    SpiInOut( address & 0x00FF );
    SpiInOut( 0 );
    for( uint16_t i = 0; i < size; i++ )
    {
        buffer[i] = SpiInOut(0 );
    }
        gpio_pin_set(LORA_CS);
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_SET);
    SX126xWaitOnBusy( );
}
uint8_t SX126xReadRegister( uint16_t address )
{
    uint8_t data;
    SX126xReadRegisters( address, &data, 1 );
    return data;
}
void SX126xWriteBuffer( uint8_t offset, uint8_t *buffer, uint8_t size )
{
    SX126xCheckDeviceReady( );
//    SX126x_CS_Di( );
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_RESET);
    gpio_pin_clr(LORA_CS);
    SpiInOut( RADIO_WRITE_BUFFER );
    SpiInOut( offset );
    for( uint16_t i = 0; i < size; i++ )
    {
        SpiInOut( buffer[i] );
    }
        gpio_pin_set(LORA_CS);
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_SET);
    SX126xWaitOnBusy( );
}
void SX126xReadBuffer( uint8_t offset, uint8_t *buffer, uint8_t size )
{
    SX126xCheckDeviceReady( );
//    SX126x_CS_Di( );
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_RESET);
    gpio_pin_clr(LORA_CS);
    SpiInOut(  RADIO_READ_BUFFER );
    SpiInOut(  offset );
    SpiInOut(  0 );
    for( uint16_t i = 0; i < size; i++ )
    {
        buffer[i] = SpiInOut( 0 );
    }
//    HAL_GPIO_WritePin( RADIO_NSS_GPIO_Port, RADIO_NSS_Pin,GPIO_PIN_SET);
    gpio_pin_set(LORA_CS);
    SX126xWaitOnBusy( );
}
void SX126xSetRfTxPower( int8_t power )
{
    SX126xSetTxParams( power, RADIO_RAMP_40_US );
}
uint8_t SX126xGetPaSelect( uint32_t channel )
{
//    if( GpioRead( &DeviceSel ) == 1 )
//    {
//        return SX1261;
//    }
//    else
//    {
//        return SX1262;
//    }
  return SX1262;
}
void SX126xAntSwOn( void )
{
    //GpioInit( &AntPow, ANT_SWITCH_POWER, PIN_OUTPUT, PIN_PUSH_PULL, PIN_PULL_UP, 1 );
}
void SX126xAntSwOff( void )
{
   // GpioInit( &AntPow, ANT_SWITCH_POWER, PIN_ANALOGIC, PIN_PUSH_PULL, PIN_NO_PULL, 0 );
}
bool SX126xCheckRfFrequency( uint32_t frequency )
{
    // Implement check. Currently all frequencies are supported
    return true;
}
keil/include/src/Radio/sx126x-board.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,132 @@
/*
  ______                              _
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2013 Semtech
Description: SX126x driver specific target board functions implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis and Gregory Cristian
*/
#ifndef __SX126x_ARCH_H__
#define __SX126x_ARCH_H__
#include "sx126x.h"
/*!
 * \brief Initializes the radio I/Os pins interface
 */
//void SX126xIoInit( void );
/*!
 * \brief Initializes DIO IRQ handlers
 *
 * \param [IN] irqHandlers Array containing the IRQ callback functions
 */
//void SX126xIoIrqInit( DioIrqHandler dioIrq );
/*!
 * \brief De-initializes the radio I/Os pins interface.
 *
 * \remark Useful when going in MCU low power modes
 */
//void SX126xIoDeInit( void );
/*!
 * \brief HW Reset of the radio
 */
void SX126xReset( void );
/*!
 * \brief Blocking loop to wait while the Busy pin in high
 */
void SX126xWaitOnBusy( void );
/*!
 * \brief Wakes up the radio
 */
void SX126xWakeup( void );
/*!
 * \brief Send a command that write data to the radio
 *
 * \param [in]  opcode        Opcode of the command
 * \param [in]  buffer        Buffer to be send to the radio
 * \param [in]  size          Size of the buffer to send
 */
void SX126xWriteCommand( RadioCommands_t opcode, uint8_t *buffer, uint16_t size );
/*!
 * \brief Send a command that read data from the radio
 *
 * \param [in]  opcode        Opcode of the command
 * \param [out] buffer        Buffer holding data from the radio
 * \param [in]  size          Size of the buffer
 */
void SX126xReadCommand( RadioCommands_t opcode, uint8_t *buffer, uint16_t size );
/*!
 * \brief Write a single byte of data to the radio memory
 *
 * \param [in]  address       The address of the first byte to write in the radio
 * \param [in]  value         The data to be written in radio's memory
 */
void SX126xWriteRegister( uint16_t address, uint8_t value );
/*!
 * \brief Read a single byte of data from the radio memory
 *
 * \param [in]  address       The address of the first byte to write in the radio
 *
 * \retval      value         The value of the byte at the given address in radio's memory
 */
uint8_t SX126xReadRegister( uint16_t address );
/*!
 * \brief Sets the radio output power.
 *
 * \param [IN] power Sets the RF output power
 */
void SX126xSetRfTxPower( int8_t power );
/*!
 * \brief Gets the board PA selection configuration
 *
 * \param [IN] channel Channel frequency in Hz
 * \retval PaSelect RegPaConfig PaSelect value
 */
uint8_t SX126xGetPaSelect( uint32_t channel );
/*!
 * \brief Initializes the RF Switch I/Os pins interface
 */
void SX126xAntSwOn( void );
/*!
 * \brief De-initializes the RF Switch I/Os pins interface
 *
 * \remark Needed to decrease the power consumption in MCU low power modes
 */
void SX126xAntSwOff( void );
/*!
 * \brief Checks if the given RF frequency is supported by the hardware
 *
 * \param [IN] frequency RF frequency to be checked
 * \retval isSupported [true: supported, false: unsupported]
 */
bool SX126xCheckRfFrequency( uint32_t frequency );
/*!
 * Radio hardware and global parameters
 */
extern SX126x_t SX126x;
uint8_t SpiInOut( uint8_t txBuffer);
#endif // __SX126x_ARCH_H__
keil/include/src/Radio/sx126x.c
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,716 @@
/*!
 * \file      sx126x.c
 *
 * \brief     SX126x driver implementation
 *
 * \copyright Revised BSD License, see section \ref LICENSE.
 *
 * \code
 *                ______                              _
 *               / _____)             _              | |
 *              ( (____  _____ ____ _| |_ _____  ____| |__
 *               \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 *               _____) ) ____| | | || |_| ____( (___| | | |
 *              (______/|_____)_|_|_| \__)_____)\____)_| |_|
 *              (C)2013-2017 Semtech
 *
 * \endcode
 *
 * \author    Miguel Luis ( Semtech )
 *
 * \author    Gregory Cristian ( Semtech )
 */
#include <math.h>
#include <string.h>
#include "sx126x.h"
#include "sx126x-board.h"
#include "delay.h"
//#define USE_TCXO
/*!
 * \brief Radio registers definition
 */
typedef struct
{
    uint16_t      Addr;                             //!< The address of the register
    uint8_t       Value;                            //!< The value of the register
}RadioRegisters_t;
/*!
 * \brief Holds the internal operating mode of the radio
 */
static RadioOperatingModes_t OperatingMode;
/*!
 * \brief Stores the current packet type set in the radio
 */
static RadioPacketTypes_t PacketType;
/*!
 * \brief Stores the last frequency error measured on LoRa received packet
 */
volatile uint32_t FrequencyError = 0;
/*!
 * \brief Hold the status of the Image calibration
 */
static bool ImageCalibrated = false;
/*
 * SX126x DIO IRQ callback functions prototype
 */
/*!
 * \brief DIO 0 IRQ callback
 */
void SX126xOnDioIrq( void );
/*!
 * \brief DIO 0 IRQ callback
 */
void SX126xSetPollingMode( void );
/*!
 * \brief DIO 0 IRQ callback
 */
void SX126xSetInterruptMode( void );
/*
 * \brief Process the IRQ if handled by the driver
 */
void SX126xProcessIrqs( void );
void SX126xInit( DioIrqHandler dioIrq )
{
    SX126xReset( );
    SX126xWakeup( );
    SX126xSetStandby( STDBY_RC );
#ifdef USE_TCXO
    CalibrationParams_t calibParam;
    SX126xSetDio3AsTcxoCtrl( TCXO_CTRL_1_7V, RADIO_TCXO_SETUP_TIME << 6 ); // convert from ms to SX126x time base
    calibParam.Value = 0x7F;
    SX126xCalibrate( calibParam );
#endif
    SX126xSetDio2AsRfSwitchCtrl( true );
    OperatingMode = MODE_STDBY_RC;
}
RadioOperatingModes_t SX126xGetOperatingMode( void )
{
    return OperatingMode;
}
void SX126xCheckDeviceReady( void )
{
    if( ( SX126xGetOperatingMode( ) == MODE_SLEEP ) || ( SX126xGetOperatingMode( ) == MODE_RX_DC ) )
    {
        SX126xWakeup( );
        // Switch is turned off when device is in sleep mode and turned on is all other modes
        SX126xAntSwOn( );
    }
    SX126xWaitOnBusy( );
}
void SX126xSetPayload( uint8_t *payload, uint8_t size )
{
    SX126xWriteBuffer( 0x00, payload, size );
}
uint8_t SX126xGetPayload( uint8_t *buffer, uint8_t *size,  uint8_t maxSize )
{
    uint8_t offset = 0;
    SX126xGetRxBufferStatus( size, &offset );
    if( *size > maxSize )
    {
        return 1;
    }
    SX126xReadBuffer( offset, buffer, *size );
    return 0;
}
void SX126xSendPayload( uint8_t *payload, uint8_t size, uint32_t timeout )
{
    SX126xSetPayload( payload, size );
    SX126xSetTx( timeout );
}
uint8_t SX126xSetSyncWord( uint8_t *syncWord )
{
    SX126xWriteRegisters( REG_LR_SYNCWORDBASEADDRESS, syncWord, 8 );
    return 0;
}
void SX126xSetCrcSeed( uint16_t seed )
{
    uint8_t buf[2];
    buf[0] = ( uint8_t )( ( seed >> 8 ) & 0xFF );
    buf[1] = ( uint8_t )( seed & 0xFF );
    switch( SX126xGetPacketType( ) )
    {
        case PACKET_TYPE_GFSK:
            SX126xWriteRegisters( REG_LR_CRCSEEDBASEADDR, buf, 2 );
            break;
        default:
            break;
    }
}
void SX126xSetCrcPolynomial( uint16_t polynomial )
{
    uint8_t buf[2];
    buf[0] = ( uint8_t )( ( polynomial >> 8 ) & 0xFF );
    buf[1] = ( uint8_t )( polynomial & 0xFF );
    switch( SX126xGetPacketType( ) )
    {
        case PACKET_TYPE_GFSK:
            SX126xWriteRegisters( REG_LR_CRCPOLYBASEADDR, buf, 2 );
            break;
        default:
            break;
    }
}
void SX126xSetWhiteningSeed( uint16_t seed )
{
    uint8_t regValue = 0;
    switch( SX126xGetPacketType( ) )
    {
        case PACKET_TYPE_GFSK:
            regValue = SX126xReadRegister( REG_LR_WHITSEEDBASEADDR_MSB ) & 0xFE;
            regValue = ( ( seed >> 8 ) & 0x01 ) | regValue;
            SX126xWriteRegister( REG_LR_WHITSEEDBASEADDR_MSB, regValue ); // only 1 bit.
            SX126xWriteRegister( REG_LR_WHITSEEDBASEADDR_LSB, ( uint8_t )seed );
            break;
        default:
            break;
    }
}
uint32_t SX126xGetRandom( void )
{
    uint8_t buf[] = { 0, 0, 0, 0 };
    // Set radio in continuous reception
    SX126xSetRx( 0 );
    HAL_Delay_nMS( 1 );
    SX126xReadRegisters( RANDOM_NUMBER_GENERATORBASEADDR, buf, 4 );
    SX126xSetStandby( STDBY_RC );
    return ( buf[0] << 24 ) | ( buf[1] << 16 ) | ( buf[2] << 8 ) | buf[3];
}
void SX126xSetSleep( SleepParams_t sleepConfig )
{
    SX126xAntSwOff( );
    SX126xWriteCommand( RADIO_SET_SLEEP, &sleepConfig.Value, 1 );
    OperatingMode = MODE_SLEEP;
}
void SX126xSetStandby( RadioStandbyModes_t standbyConfig )
{
    SX126xWriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
    if( standbyConfig == STDBY_RC )
    {
        OperatingMode = MODE_STDBY_RC;
    }
    else
    {
        OperatingMode = MODE_STDBY_XOSC;
    }
}
void SX126xSetFs( void )
{
    SX126xWriteCommand( RADIO_SET_FS, 0, 0 );
    OperatingMode = MODE_FS;
}
void SX126xSetTx( uint32_t timeout )
{
    uint8_t buf[3];
    OperatingMode = MODE_TX;
    buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
    buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
    buf[2] = ( uint8_t )( timeout & 0xFF );
    SX126xWriteCommand( RADIO_SET_TX, buf, 3 );
}
void SX126xSetRx( uint32_t timeout )
{
    uint8_t buf[3];
    OperatingMode = MODE_RX;
    buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
    buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
    buf[2] = ( uint8_t )( timeout & 0xFF );
    SX126xWriteCommand( RADIO_SET_RX, buf, 3 );
}
void SX126xSetRxBoosted( uint32_t timeout )
{
    uint8_t buf[3];
    OperatingMode = MODE_RX;
    SX126xWriteRegister( REG_RX_GAIN, 0x96 ); // max LNA gain, increase current by ~2mA for around ~3dB in sensivity
    buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
    buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
    buf[2] = ( uint8_t )( timeout & 0xFF );
    SX126xWriteCommand( RADIO_SET_RX, buf, 3 );
}
void SX126xSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
    uint8_t buf[6];
    buf[0] = ( uint8_t )( ( rxTime >> 16 ) & 0xFF );
    buf[1] = ( uint8_t )( ( rxTime >> 8 ) & 0xFF );
    buf[2] = ( uint8_t )( rxTime & 0xFF );
    buf[3] = ( uint8_t )( ( sleepTime >> 16 ) & 0xFF );
    buf[4] = ( uint8_t )( ( sleepTime >> 8 ) & 0xFF );
    buf[5] = ( uint8_t )( sleepTime & 0xFF );
    SX126xWriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 6 );
    OperatingMode = MODE_RX_DC;
}
void SX126xSetCad( void )
{
    SX126xWriteCommand( RADIO_SET_CAD, 0, 0 );
    OperatingMode = MODE_CAD;
}
void SX126xSetTxContinuousWave( void )
{
    SX126xWriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
}
void SX126xSetTxInfinitePreamble( void )
{
    SX126xWriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
}
void SX126xSetStopRxTimerOnPreambleDetect( bool enable )
{
    SX126xWriteCommand( RADIO_SET_STOPRXTIMERONPREAMBLE, ( uint8_t* )&enable, 1 );
}
void SX126xSetLoRaSymbNumTimeout( uint8_t SymbNum )
{
    SX126xWriteCommand( RADIO_SET_LORASYMBTIMEOUT, &SymbNum, 1 );
}
void SX126xSetRegulatorMode( RadioRegulatorMode_t mode )
{
    SX126xWriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
}
void SX126xCalibrate( CalibrationParams_t calibParam )
{
    SX126xWriteCommand( RADIO_CALIBRATE, ( uint8_t* )&calibParam, 1 );
}
void SX126xCalibrateImage( uint32_t freq )
{
    uint8_t calFreq[2];
    if( freq > 900000000 )
    {
        calFreq[0] = 0xE1;
        calFreq[1] = 0xE9;
    }
    else if( freq > 850000000 )
    {
        calFreq[0] = 0xD7;
        calFreq[1] = 0xD8;
    }
    else if( freq > 770000000 )
    {
        calFreq[0] = 0xC1;
        calFreq[1] = 0xC5;
    }
    else if( freq > 460000000 )
    {
        calFreq[0] = 0x75;
        calFreq[1] = 0x81;
    }
    else if( freq > 425000000 )
    {
        calFreq[0] = 0x6B;
        calFreq[1] = 0x6F;
    }
    SX126xWriteCommand( RADIO_CALIBRATEIMAGE, calFreq, 2 );
}
void SX126xSetPaConfig( uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut )
{
    uint8_t buf[4];
    buf[0] = paDutyCycle;
    buf[1] = hpMax;
    buf[2] = deviceSel;
    buf[3] = paLut;
    SX126xWriteCommand( RADIO_SET_PACONFIG, buf, 4 );
}
void SX126xSetRxTxFallbackMode( uint8_t fallbackMode )
{
    SX126xWriteCommand( RADIO_SET_TXFALLBACKMODE, &fallbackMode, 1 );
}
void SX126xSetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
{
    uint8_t buf[8];
    buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
    buf[1] = ( uint8_t )( irqMask & 0x00FF );
    buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
    buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
    buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
    buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
    buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
    buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
    SX126xWriteCommand( RADIO_CFG_DIOIRQ, buf, 8 );
}
uint16_t SX126xGetIrqStatus( void )
{
    uint8_t irqStatus[2];
    SX126xReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
    return ( irqStatus[0] << 8 ) | irqStatus[1];
}
void SX126xSetDio2AsRfSwitchCtrl( uint8_t enable )
{
    SX126xWriteCommand( RADIO_SET_RFSWITCHMODE, &enable, 1 );
}
void SX126xSetDio3AsTcxoCtrl( RadioTcxoCtrlVoltage_t tcxoVoltage, uint32_t timeout )
{
    uint8_t buf[4];
    buf[0] = tcxoVoltage & 0x07;
    buf[1] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
    buf[2] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
    buf[3] = ( uint8_t )( timeout & 0xFF );
    SX126xWriteCommand( RADIO_SET_TCXOMODE, buf, 4 );
}
void SX126xSetRfFrequency( uint32_t frequency )
{
    uint8_t buf[4];
    uint32_t freq = 0;
    if( ImageCalibrated == false )
    {
        SX126xCalibrateImage( frequency );
        ImageCalibrated = true;
    }
    freq = ( uint32_t )( ( double )frequency / ( double )FREQ_STEP );
    buf[0] = ( uint8_t )( ( freq >> 24 ) & 0xFF );
    buf[1] = ( uint8_t )( ( freq >> 16 ) & 0xFF );
    buf[2] = ( uint8_t )( ( freq >> 8 ) & 0xFF );
    buf[3] = ( uint8_t )( freq & 0xFF );
    SX126xWriteCommand( RADIO_SET_RFFREQUENCY, buf, 4 );
}
void SX126xSetPacketType( RadioPacketTypes_t packetType )
{
    // Save packet type internally to avoid questioning the radio
    PacketType = packetType;
    SX126xWriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
}
RadioPacketTypes_t SX126xGetPacketType( void )
{
    return PacketType;
}
void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime )
{
    uint8_t buf[2];
    if( SX126xGetPaSelect( 0 ) == SX1261 )
    {
        if( power == 15 )
        {
            SX126xSetPaConfig( 0x06, 0x00, 0x01, 0x01 );
        }
        else
        {
            SX126xSetPaConfig( 0x04, 0x00, 0x01, 0x01 );
        }
        if( power >= 14 )
        {
            power = 14;
        }
        else if( power < -3 )
        {
            power = -3;
        }
        SX126xWriteRegister( REG_OCP, 0x18 ); // current max is 80 mA for the whole device
    }
    else // sx1262
    {
        SX126xSetPaConfig( 0x04, 0x07, 0x00, 0x01 );
        if( power > 22 )
        {
            power = 22;
        }
        else if( power < -3 )
        {
            power = -3;
        }
        SX126xWriteRegister( REG_OCP, 0x38 ); // current max 160mA for the whole device
    }
    buf[0] = power;
    buf[1] = ( uint8_t )rampTime;
    SX126xWriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
}
void SX126xSetModulationParams( ModulationParams_t *modulationParams )
{
    uint8_t n;
    uint32_t tempVal = 0;
    uint8_t buf[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
    // Check if required configuration corresponds to the stored packet type
    // If not, silently update radio packet type
    if( PacketType != modulationParams->PacketType )
    {
        SX126xSetPacketType( modulationParams->PacketType );
    }
    switch( modulationParams->PacketType )
    {
    case PACKET_TYPE_GFSK:
        n = 8;
        tempVal = ( uint32_t )( 32 * ( ( double )XTAL_FREQ / ( double )modulationParams->Params.Gfsk.BitRate ) );
        buf[0] = ( tempVal >> 16 ) & 0xFF;
        buf[1] = ( tempVal >> 8 ) & 0xFF;
        buf[2] = tempVal & 0xFF;
        buf[3] = modulationParams->Params.Gfsk.ModulationShaping;
        buf[4] = modulationParams->Params.Gfsk.Bandwidth;
        tempVal = ( uint32_t )( ( double )modulationParams->Params.Gfsk.Fdev / ( double )FREQ_STEP );
        buf[5] = ( tempVal >> 16 ) & 0xFF;
        buf[6] = ( tempVal >> 8 ) & 0xFF;
        buf[7] = ( tempVal& 0xFF );
        SX126xWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
        break;
    case PACKET_TYPE_LORA:
        n = 4;
        buf[0] = modulationParams->Params.LoRa.SpreadingFactor;
        buf[1] = modulationParams->Params.LoRa.Bandwidth;
        buf[2] = modulationParams->Params.LoRa.CodingRate;
        buf[3] = modulationParams->Params.LoRa.LowDatarateOptimize;
        SX126xWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
        break;
    default:
    case PACKET_TYPE_NONE:
        return;
    }
}
void SX126xSetPacketParams( PacketParams_t *packetParams )
{
    uint8_t n;
    uint8_t crcVal = 0;
    uint8_t buf[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
    // Check if required configuration corresponds to the stored packet type
    // If not, silently update radio packet type
    if( PacketType != packetParams->PacketType )
    {
        SX126xSetPacketType( packetParams->PacketType );
    }
    switch( packetParams->PacketType )
    {
    case PACKET_TYPE_GFSK:
        if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_IBM )
        {
            SX126xSetCrcSeed( CRC_IBM_SEED );
            SX126xSetCrcPolynomial( CRC_POLYNOMIAL_IBM );
            crcVal = RADIO_CRC_2_BYTES;
        }
        else if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_CCIT )
        {
            SX126xSetCrcSeed( CRC_CCITT_SEED );
            SX126xSetCrcPolynomial( CRC_POLYNOMIAL_CCITT );
            crcVal = RADIO_CRC_2_BYTES_INV;
        }
        else
        {
            crcVal = packetParams->Params.Gfsk.CrcLength;
        }
        n = 9;
        buf[0] = ( packetParams->Params.Gfsk.PreambleLength >> 8 ) & 0xFF;
        buf[1] = packetParams->Params.Gfsk.PreambleLength;
        buf[2] = packetParams->Params.Gfsk.PreambleMinDetect;
        buf[3] = ( packetParams->Params.Gfsk.SyncWordLength /*<< 3*/ ); // convert from byte to bit
        buf[4] = packetParams->Params.Gfsk.AddrComp;
        buf[5] = packetParams->Params.Gfsk.HeaderType;
        buf[6] = packetParams->Params.Gfsk.PayloadLength;
        buf[7] = crcVal;
        buf[8] = packetParams->Params.Gfsk.DcFree;
        break;
    case PACKET_TYPE_LORA:
        n = 6;
        buf[0] = ( packetParams->Params.LoRa.PreambleLength >> 8 ) & 0xFF;
        buf[1] = packetParams->Params.LoRa.PreambleLength;
        buf[2] = packetParams->Params.LoRa.HeaderType;
        buf[3] = packetParams->Params.LoRa.PayloadLength;
        buf[4] = packetParams->Params.LoRa.CrcMode;
        buf[5] = packetParams->Params.LoRa.InvertIQ;
        break;
    default:
    case PACKET_TYPE_NONE:
        return;
    }
    SX126xWriteCommand( RADIO_SET_PACKETPARAMS, buf, n );
}
void SX126xSetCadParams( RadioLoRaCadSymbols_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, RadioCadExitModes_t cadExitMode, uint32_t cadTimeout )
{
    uint8_t buf[7];
    buf[0] = ( uint8_t )cadSymbolNum;
    buf[1] = cadDetPeak;
    buf[2] = cadDetMin;
    buf[3] = ( uint8_t )cadExitMode;
    buf[4] = ( uint8_t )( ( cadTimeout >> 16 ) & 0xFF );
    buf[5] = ( uint8_t )( ( cadTimeout >> 8 ) & 0xFF );
    buf[6] = ( uint8_t )( cadTimeout & 0xFF );
    SX126xWriteCommand( RADIO_SET_CADPARAMS, buf, 5 );
    OperatingMode = MODE_CAD;
}
void SX126xSetBufferBaseAddress( uint8_t txBaseAddress, uint8_t rxBaseAddress )
{
    uint8_t buf[2];
    buf[0] = txBaseAddress;
    buf[1] = rxBaseAddress;
    SX126xWriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
}
RadioStatus_t SX126xGetStatus( void )
{
    uint8_t stat = 0;
    RadioStatus_t status;
    SX126xReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 );
    status.Value = stat;
    return status;
}
int8_t SX126xGetRssiInst( void )
{
    uint8_t buf[1];
    int8_t rssi = 0;
    SX126xReadCommand( RADIO_GET_RSSIINST, buf, 1 );
    rssi = -buf[0] >> 1;
    return rssi;
}
void SX126xGetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer )
{
    uint8_t status[2];
    SX126xReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
    // In case of LORA fixed header, the payloadLength is obtained by reading
    // the register REG_LR_PAYLOADLENGTH
    if( ( SX126xGetPacketType( ) == PACKET_TYPE_LORA ) && ( SX126xReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) )
    {
        *payloadLength = SX126xReadRegister( REG_LR_PAYLOADLENGTH );
    }
    else
    {
        *payloadLength = status[0];
    }
    *rxStartBufferPointer = status[1];
}
void SX126xGetPacketStatus( PacketStatus_t *pktStatus )
{
    uint8_t status[3];
    SX126xReadCommand( RADIO_GET_PACKETSTATUS, status, 3 );
    pktStatus->packetType = SX126xGetPacketType( );
    switch( pktStatus->packetType )
    {
        case PACKET_TYPE_GFSK:
            pktStatus->Params.Gfsk.RxStatus = status[0];
            pktStatus->Params.Gfsk.RssiSync = -status[1] >> 1;
            pktStatus->Params.Gfsk.RssiAvg = -status[2] >> 1;
            pktStatus->Params.Gfsk.FreqError = 0;
            break;
        case PACKET_TYPE_LORA:
            pktStatus->Params.LoRa.RssiPkt = -status[0] >> 1;
            ( status[1] < 128 ) ? ( pktStatus->Params.LoRa.SnrPkt = status[1] >> 2 ) : ( pktStatus->Params.LoRa.SnrPkt = ( ( status[1] - 256 ) >> 2 ) );
            pktStatus->Params.LoRa.SignalRssiPkt = -status[2] >> 1;
            pktStatus->Params.LoRa.FreqError = FrequencyError;
            break;
        default:
        case PACKET_TYPE_NONE:
            // In that specific case, we set everything in the pktStatus to zeros
            // and reset the packet type accordingly
            memset( pktStatus, 0, sizeof( PacketStatus_t ) );
            pktStatus->packetType = PACKET_TYPE_NONE;
            break;
    }
}
RadioError_t SX126xGetDeviceErrors( void )
{
    RadioError_t error;
    SX126xReadCommand( RADIO_GET_ERROR, ( uint8_t * )&error, 2 );
    return error;
}
void SX126xClearDeviceErrors( void )
{
    uint8_t buf[2] = { 0x00, 0x00 };
    SX126xWriteCommand( RADIO_CLR_ERROR, buf, 2 );
}
void SX126xClearIrqStatus( uint16_t irq )
{
    uint8_t buf[2];
    buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF );
    buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF );
    SX126xWriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
}
keil/include/src/Radio/sx126x.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,1115 @@
/*!
 * \file      sx126x.h
 *
 * \brief     SX126x driver implementation
 *
 * \copyright Revised BSD License, see section \ref LICENSE.
 *
 * \code
 *                ______                              _
 *               / _____)             _              | |
 *              ( (____  _____ ____ _| |_ _____  ____| |__
 *               \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 *               _____) ) ____| | | || |_| ____( (___| | | |
 *              (______/|_____)_|_|_| \__)_____)\____)_| |_|
 *              (C)2013-2017 Semtech
 *
 * \endcode
 *
 * \author    Miguel Luis ( Semtech )
 *
 * \author    Gregory Cristian ( Semtech )
 */
#ifndef __SX126x_H__
#define __SX126x_H__
#include <stdint.h>
#include <stdbool.h>
#define SX1261                                      1
#define SX1262                                      2
#ifdef USE_TCXO
    /*!
     * Radio complete Wake-up Time with TCXO stabilisation time
     */
    #define RADIO_TCXO_SETUP_TIME                       5 // [ms]
#else
    /*!
     * Radio complete Wake-up Time with TCXO stabilisation time
     */
    #define RADIO_TCXO_SETUP_TIME                       0 // No Used
#endif
/*!
 * Radio complete Wake-up Time with margin for temperature compensation
 */
#define RADIO_WAKEUP_TIME                               3 // [ms]
/*!
 * \brief Compensation delay for SetAutoTx/Rx functions in 15.625 microseconds
 */
#define AUTO_RX_TX_OFFSET                           2
/*!
 * \brief LFSR initial value to compute IBM type CRC
 */
#define CRC_IBM_SEED                                0xFFFF
/*!
 * \brief LFSR initial value to compute CCIT type CRC
 */
#define CRC_CCITT_SEED                              0x1D0F
/*!
 * \brief Polynomial used to compute IBM CRC
 */
#define CRC_POLYNOMIAL_IBM                          0x8005
/*!
 * \brief Polynomial used to compute CCIT CRC
 */
#define CRC_POLYNOMIAL_CCITT                        0x1021
/*!
 * \brief The address of the register holding the first byte defining the CRC seed
 *
 */
#define REG_LR_CRCSEEDBASEADDR                      0x06BC
/*!
 * \brief The address of the register holding the first byte defining the CRC polynomial
 */
#define REG_LR_CRCPOLYBASEADDR                      0x06BE
/*!
 * \brief The address of the register holding the first byte defining the whitening seed
 */
#define REG_LR_WHITSEEDBASEADDR_MSB                 0x06B8
#define REG_LR_WHITSEEDBASEADDR_LSB                 0x06B9
/*!
 * \brief The address of the register holding the packet configuration
 */
#define REG_LR_PACKETPARAMS                         0x0704
/*!
 * \brief The address of the register holding the payload size
 */
#define REG_LR_PAYLOADLENGTH                        0x0702
/*!
 * \brief The addresses of the registers holding SyncWords values
 */
#define REG_LR_SYNCWORDBASEADDRESS                  0x06C0
/*!
 * \brief The addresses of the register holding LoRa Modem SyncWord value
 */
#define REG_LR_SYNCWORD                             0x0740
/*!
 * Syncword for Private LoRa networks
 */
#define LORA_MAC_PRIVATE_SYNCWORD                   0x1424
/*!
 * Syncword for Public LoRa networks
 */
#define LORA_MAC_PUBLIC_SYNCWORD                    0x3444
/*!
 * The address of the register giving a 4 bytes random number
 */
#define RANDOM_NUMBER_GENERATORBASEADDR             0x0819
/*!
 * The address of the register holding RX Gain value (0x94: power saving, 0x96: rx boosted)
 */
#define REG_RX_GAIN                                 0x08AC
/*!
 * Change the value on the device internal trimming capacitor
 */
#define REG_XTA_TRIM                                0x0911
/*!
 * Set the current max value in the over current protection
 */
#define REG_OCP                                     0x08E7
/*!
 * \brief Structure describing the radio status
 */
typedef union RadioStatus_u
{
    uint8_t Value;
    struct
    {   //bit order is lsb -> msb
        uint8_t Reserved  : 1;  //!< Reserved
        uint8_t CmdStatus : 3;  //!< Command status
        uint8_t ChipMode  : 3;  //!< Chip mode
        uint8_t CpuBusy   : 1;  //!< Flag for CPU radio busy
    }Fields;
}RadioStatus_t;
/*!
 * \brief Structure describing the error codes for callback functions
 */
typedef enum
{
    IRQ_HEADER_ERROR_CODE                   = 0x01,
    IRQ_SYNCWORD_ERROR_CODE                 = 0x02,
    IRQ_CRC_ERROR_CODE                      = 0x04,
}IrqErrorCode_t;
enum IrqPblSyncHeaderCode_t
{
    IRQ_PBL_DETECT_CODE                     = 0x01,
    IRQ_SYNCWORD_VALID_CODE                 = 0x02,
    IRQ_HEADER_VALID_CODE                   = 0x04,
};
/*!
 * \brief Represents the operating mode the radio is actually running
 */
typedef enum
{
    MODE_SLEEP                              = 0x00,         //! The radio is in sleep mode
    MODE_STDBY_RC,                                          //! The radio is in standby mode with RC oscillator
    MODE_STDBY_XOSC,                                        //! The radio is in standby mode with XOSC oscillator
    MODE_FS,                                                //! The radio is in frequency synthesis mode
    MODE_TX,                                                //! The radio is in transmit mode
    MODE_RX,                                                //! The radio is in receive mode
    MODE_RX_DC,                                             //! The radio is in receive duty cycle mode
    MODE_CAD                                                //! The radio is in channel activity detection mode
}RadioOperatingModes_t;
/*!
 * \brief Declares the oscillator in use while in standby mode
 *
 * Using the STDBY_RC standby mode allow to reduce the energy consumption
 * STDBY_XOSC should be used for time critical applications
 */
typedef enum
{
    STDBY_RC                                = 0x00,
    STDBY_XOSC                              = 0x01,
}RadioStandbyModes_t;
/*!
 * \brief Declares the power regulation used to power the device
 *
 * This command allows the user to specify if DC-DC or LDO is used for power regulation.
 * Using only LDO implies that the Rx or Tx current is doubled
 */
typedef enum
{
    USE_LDO                                 = 0x00, // default
    USE_DCDC                                = 0x01,
}RadioRegulatorMode_t;
/*!
 * \brief Represents the possible packet type (i.e. modem) used
 */
typedef enum
{
    PACKET_TYPE_GFSK                        = 0x00,
    PACKET_TYPE_LORA                        = 0x01,
    PACKET_TYPE_NONE                        = 0x0F,
}RadioPacketTypes_t;
/*!
 * \brief Represents the ramping time for power amplifier
 */
typedef enum
{
    RADIO_RAMP_10_US                        = 0x00,
    RADIO_RAMP_20_US                        = 0x01,
    RADIO_RAMP_40_US                        = 0x02,
    RADIO_RAMP_80_US                        = 0x03,
    RADIO_RAMP_200_US                       = 0x04,
    RADIO_RAMP_800_US                       = 0x05,
    RADIO_RAMP_1700_US                      = 0x06,
    RADIO_RAMP_3400_US                      = 0x07,
}RadioRampTimes_t;
/*!
 * \brief Represents the number of symbols to be used for channel activity detection operation
 */
typedef enum
{
    LORA_CAD_01_SYMBOL                      = 0x00,
    LORA_CAD_02_SYMBOL                      = 0x01,
    LORA_CAD_04_SYMBOL                      = 0x02,
    LORA_CAD_08_SYMBOL                      = 0x03,
    LORA_CAD_16_SYMBOL                      = 0x04,
}RadioLoRaCadSymbols_t;
/*!
 * \brief Represents the Channel Activity Detection actions after the CAD operation is finished
 */
typedef enum
{
    LORA_CAD_ONLY                           = 0x00,
    LORA_CAD_RX                             = 0x01,
    LORA_CAD_LBT                            = 0x10,
}RadioCadExitModes_t;
/*!
 * \brief Represents the modulation shaping parameter
 */
typedef enum
{
    MOD_SHAPING_OFF                         = 0x00,
    MOD_SHAPING_G_BT_03                     = 0x08,
    MOD_SHAPING_G_BT_05                     = 0x09,
    MOD_SHAPING_G_BT_07                     = 0x0A,
    MOD_SHAPING_G_BT_1                      = 0x0B,
}RadioModShapings_t;
/*!
 * \brief Represents the modulation shaping parameter
 */
typedef enum
{
    RX_BW_4800                              = 0x1F,
    RX_BW_5800                              = 0x17,
    RX_BW_7300                              = 0x0F,
    RX_BW_9700                              = 0x1E,
    RX_BW_11700                             = 0x16,
    RX_BW_14600                             = 0x0E,
    RX_BW_19500                             = 0x1D,
    RX_BW_23400                             = 0x15,
    RX_BW_29300                             = 0x0D,
    RX_BW_39000                             = 0x1C,
    RX_BW_46900                             = 0x14,
    RX_BW_58600                             = 0x0C,
    RX_BW_78200                             = 0x1B,
    RX_BW_93800                             = 0x13,
    RX_BW_117300                            = 0x0B,
    RX_BW_156200                            = 0x1A,
    RX_BW_187200                            = 0x12,
    RX_BW_234300                            = 0x0A,
    RX_BW_312000                            = 0x19,
    RX_BW_373600                            = 0x11,
    RX_BW_467000                            = 0x09,
}RadioRxBandwidth_t;
/*!
 * \brief Represents the possible spreading factor values in LoRa packet types
 */
typedef enum
{
    LORA_SF5                                = 0x05,
    LORA_SF6                                = 0x06,
    LORA_SF7                                = 0x07,
    LORA_SF8                                = 0x08,
    LORA_SF9                                = 0x09,
    LORA_SF10                               = 0x0A,
    LORA_SF11                               = 0x0B,
    LORA_SF12                               = 0x0C,
}RadioLoRaSpreadingFactors_t;
/*!
 * \brief Represents the bandwidth values for LoRa packet type
 */
typedef enum
{
    LORA_BW_500                             = 6,
    LORA_BW_250                             = 5,
    LORA_BW_125                             = 4,
    LORA_BW_062                             = 3,
    LORA_BW_041                             = 10,
    LORA_BW_031                             = 2,
    LORA_BW_020                             = 9,
    LORA_BW_015                             = 1,
    LORA_BW_010                             = 8,
    LORA_BW_007                             = 0,
}RadioLoRaBandwidths_t;
/*!
 * \brief Represents the coding rate values for LoRa packet type
 */
typedef enum
{
    LORA_CR_4_5                             = 0x01,
    LORA_CR_4_6                             = 0x02,
    LORA_CR_4_7                             = 0x03,
    LORA_CR_4_8                             = 0x04,
}RadioLoRaCodingRates_t;
/*!
 * \brief Represents the preamble length used to detect the packet on Rx side
 */
typedef enum
{
    RADIO_PREAMBLE_DETECTOR_OFF             = 0x00,         //!< Preamble detection length off
    RADIO_PREAMBLE_DETECTOR_08_BITS         = 0x04,         //!< Preamble detection length 8 bits
    RADIO_PREAMBLE_DETECTOR_16_BITS         = 0x05,         //!< Preamble detection length 16 bits
    RADIO_PREAMBLE_DETECTOR_24_BITS         = 0x06,         //!< Preamble detection length 24 bits
    RADIO_PREAMBLE_DETECTOR_32_BITS         = 0x07,         //!< Preamble detection length 32 bit
}RadioPreambleDetection_t;
/*!
 * \brief Represents the possible combinations of SyncWord correlators activated
 */
typedef enum
{
    RADIO_ADDRESSCOMP_FILT_OFF              = 0x00,         //!< No correlator turned on, i.e. do not search for SyncWord
    RADIO_ADDRESSCOMP_FILT_NODE             = 0x01,
    RADIO_ADDRESSCOMP_FILT_NODE_BROAD       = 0x02,
}RadioAddressComp_t;
/*!
 *  \brief Radio GFSK packet length mode
 */
typedef enum
{
    RADIO_PACKET_FIXED_LENGTH               = 0x00,         //!< The packet is known on both sides, no header included in the packet
    RADIO_PACKET_VARIABLE_LENGTH            = 0x01,         //!< The packet is on variable size, header included
}RadioPacketLengthModes_t;
/*!
 * \brief Represents the CRC length
 */
typedef enum
{
    RADIO_CRC_OFF                           = 0x01,         //!< No CRC in use
    RADIO_CRC_1_BYTES                       = 0x00,
    RADIO_CRC_2_BYTES                       = 0x02,
    RADIO_CRC_1_BYTES_INV                   = 0x04,
    RADIO_CRC_2_BYTES_INV                   = 0x06,
    RADIO_CRC_2_BYTES_IBM                   = 0xF1,
    RADIO_CRC_2_BYTES_CCIT                  = 0xF2,
}RadioCrcTypes_t;
/*!
 * \brief Radio whitening mode activated or deactivated
 */
typedef enum
{
    RADIO_DC_FREE_OFF                       = 0x00,
    RADIO_DC_FREEWHITENING                  = 0x01,
}RadioDcFree_t;
/*!
 * \brief Holds the Radio lengths mode for the LoRa packet type
 */
typedef enum
{
    LORA_PACKET_VARIABLE_LENGTH             = 0x00,         //!< The packet is on variable size, header included
    LORA_PACKET_FIXED_LENGTH                = 0x01,         //!< The packet is known on both sides, no header included in the packet
    LORA_PACKET_EXPLICIT                    = LORA_PACKET_VARIABLE_LENGTH,
    LORA_PACKET_IMPLICIT                    = LORA_PACKET_FIXED_LENGTH,
}RadioLoRaPacketLengthsMode_t;
/*!
 * \brief Represents the CRC mode for LoRa packet type
 */
typedef enum
{
    LORA_CRC_ON                             = 0x01,         //!< CRC activated
    LORA_CRC_OFF                            = 0x00,         //!< CRC not used
}RadioLoRaCrcModes_t;
/*!
 * \brief Represents the IQ mode for LoRa packet type
 */
typedef enum
{
    LORA_IQ_NORMAL                          = 0x00,
    LORA_IQ_INVERTED                        = 0x01,
}RadioLoRaIQModes_t;
/*!
 * \brief Represents the voltage used to control the TCXO on/off from DIO3
 */
typedef enum
{
    TCXO_CTRL_1_6V                          = 0x00,
    TCXO_CTRL_1_7V                          = 0x01,
    TCXO_CTRL_1_8V                          = 0x02,
    TCXO_CTRL_2_2V                          = 0x03,
    TCXO_CTRL_2_4V                          = 0x04,
    TCXO_CTRL_2_7V                          = 0x05,
    TCXO_CTRL_3_0V                          = 0x06,
    TCXO_CTRL_3_3V                          = 0x07,
}RadioTcxoCtrlVoltage_t;
/*!
 * \brief Represents the interruption masks available for the radio
 *
 * \remark Note that not all these interruptions are available for all packet types
 */
typedef enum
{
    IRQ_RADIO_NONE                          = 0x0000,
    IRQ_TX_DONE                             = 0x0001,
    IRQ_RX_DONE                             = 0x0002,
    IRQ_PREAMBLE_DETECTED                   = 0x0004,
    IRQ_SYNCWORD_VALID                      = 0x0008,
    IRQ_HEADER_VALID                        = 0x0010,
    IRQ_HEADER_ERROR                        = 0x0020,
    IRQ_CRC_ERROR                           = 0x0040,
    IRQ_CAD_DONE                            = 0x0080,
    IRQ_CAD_ACTIVITY_DETECTED               = 0x0100,
    IRQ_RX_TX_TIMEOUT                       = 0x0200,
    IRQ_RADIO_ALL                           = 0xFFFF,
}RadioIrqMasks_t;
/*!
 * \brief Represents all possible opcode understood by the radio
 */
typedef enum RadioCommands_e
{
    RADIO_GET_STATUS                        = 0xC0,
    RADIO_WRITE_REGISTER                    = 0x0D,
    RADIO_READ_REGISTER                     = 0x1D,
    RADIO_WRITE_BUFFER                      = 0x0E,
    RADIO_READ_BUFFER                       = 0x1E,
    RADIO_SET_SLEEP                         = 0x84,
    RADIO_SET_STANDBY                       = 0x80,
    RADIO_SET_FS                            = 0xC1,
    RADIO_SET_TX                            = 0x83,
    RADIO_SET_RX                            = 0x82,
    RADIO_SET_RXDUTYCYCLE                   = 0x94,
    RADIO_SET_CAD                           = 0xC5,
    RADIO_SET_TXCONTINUOUSWAVE              = 0xD1,
    RADIO_SET_TXCONTINUOUSPREAMBLE          = 0xD2,
    RADIO_SET_PACKETTYPE                    = 0x8A,
    RADIO_GET_PACKETTYPE                    = 0x11,
    RADIO_SET_RFFREQUENCY                   = 0x86,
    RADIO_SET_TXPARAMS                      = 0x8E,
    RADIO_SET_PACONFIG                      = 0x95,
    RADIO_SET_CADPARAMS                     = 0x88,
    RADIO_SET_BUFFERBASEADDRESS             = 0x8F,
    RADIO_SET_MODULATIONPARAMS              = 0x8B,
    RADIO_SET_PACKETPARAMS                  = 0x8C,
    RADIO_GET_RXBUFFERSTATUS                = 0x13,
    RADIO_GET_PACKETSTATUS                  = 0x14,
    RADIO_GET_RSSIINST                      = 0x15,
    RADIO_GET_STATS                         = 0x10,
    RADIO_RESET_STATS                       = 0x00,
    RADIO_CFG_DIOIRQ                        = 0x08,
    RADIO_GET_IRQSTATUS                     = 0x12,
    RADIO_CLR_IRQSTATUS                     = 0x02,
    RADIO_CALIBRATE                         = 0x89,
    RADIO_CALIBRATEIMAGE                    = 0x98,
    RADIO_SET_REGULATORMODE                 = 0x96,
    RADIO_GET_ERROR                         = 0x17,
    RADIO_CLR_ERROR                         = 0x07,
    RADIO_SET_TCXOMODE                      = 0x97,
    RADIO_SET_TXFALLBACKMODE                = 0x93,
    RADIO_SET_RFSWITCHMODE                  = 0x9D,
    RADIO_SET_STOPRXTIMERONPREAMBLE         = 0x9F,
    RADIO_SET_LORASYMBTIMEOUT               = 0xA0,
}RadioCommands_t;
/*!
 * \brief The type describing the modulation parameters for every packet types
 */
typedef struct
{
    RadioPacketTypes_t                   PacketType;        //!< Packet to which the modulation parameters are referring to.
    struct
    {
        struct
        {
            uint32_t                     BitRate;
            uint32_t                     Fdev;
            RadioModShapings_t           ModulationShaping;
            uint8_t                      Bandwidth;
        }Gfsk;
        struct
        {
            RadioLoRaSpreadingFactors_t  SpreadingFactor;   //!< Spreading Factor for the LoRa modulation
            RadioLoRaBandwidths_t        Bandwidth;         //!< Bandwidth for the LoRa modulation
            RadioLoRaCodingRates_t       CodingRate;        //!< Coding rate for the LoRa modulation
            uint8_t                      LowDatarateOptimize; //!< Indicates if the modem uses the low datarate optimization
        }LoRa;
    }Params;                                                //!< Holds the modulation parameters structure
}ModulationParams_t;
/*!
 * \brief The type describing the packet parameters for every packet types
 */
typedef struct
{
    RadioPacketTypes_t                    PacketType;        //!< Packet to which the packet parameters are referring to.
    struct
    {
        /*!
         * \brief Holds the GFSK packet parameters
         */
        struct
        {
            uint16_t                     PreambleLength;    //!< The preamble Tx length for GFSK packet type in bit
            RadioPreambleDetection_t     PreambleMinDetect; //!< The preamble Rx length minimal for GFSK packet type
            uint8_t                      SyncWordLength;    //!< The synchronization word length for GFSK packet type
            RadioAddressComp_t           AddrComp;          //!< Activated SyncWord correlators
            RadioPacketLengthModes_t     HeaderType;        //!< If the header is explicit, it will be transmitted in the GFSK packet. If the header is implicit, it will not be transmitted
            uint8_t                      PayloadLength;     //!< Size of the payload in the GFSK packet
            RadioCrcTypes_t              CrcLength;         //!< Size of the CRC block in the GFSK packet
            RadioDcFree_t                DcFree;
        }Gfsk;
        /*!
         * \brief Holds the LoRa packet parameters
         */
        struct
        {
            uint16_t                     PreambleLength;    //!< The preamble length is the number of LoRa symbols in the preamble
            RadioLoRaPacketLengthsMode_t HeaderType;        //!< If the header is explicit, it will be transmitted in the LoRa packet. If the header is implicit, it will not be transmitted
            uint8_t                      PayloadLength;     //!< Size of the payload in the LoRa packet
            RadioLoRaCrcModes_t          CrcMode;           //!< Size of CRC block in LoRa packet
            RadioLoRaIQModes_t           InvertIQ;          //!< Allows to swap IQ for LoRa packet
        }LoRa;
    }Params;                                                //!< Holds the packet parameters structure
}PacketParams_t;
/*!
 * \brief Represents the packet status for every packet type
 */
typedef struct
{
    RadioPacketTypes_t                    packetType;      //!< Packet to which the packet status are referring to.
    struct
    {
        struct
        {
            uint8_t RxStatus;
            int8_t RssiAvg;                                //!< The averaged RSSI
            int8_t RssiSync;                               //!< The RSSI measured on last packet
            uint32_t FreqError;
        }Gfsk;
        struct
        {
            int8_t RssiPkt;                                //!< The RSSI of the last packet
            int8_t SnrPkt;                                 //!< The SNR of the last packet
            int8_t SignalRssiPkt;
            uint32_t FreqError;
        }LoRa;
    }Params;
}PacketStatus_t;
/*!
 * \brief Represents the Rx internal counters values when GFSK or LoRa packet type is used
 */
typedef struct
{
    RadioPacketTypes_t                    packetType;       //!< Packet to which the packet status are referring to.
    uint16_t PacketReceived;
    uint16_t CrcOk;
    uint16_t LengthError;
}RxCounter_t;
/*!
 * \brief Represents a calibration configuration
 */
typedef union
{
    struct
    {
        uint8_t RC64KEnable    : 1;                             //!< Calibrate RC64K clock
        uint8_t RC13MEnable    : 1;                             //!< Calibrate RC13M clock
        uint8_t PLLEnable      : 1;                             //!< Calibrate PLL
        uint8_t ADCPulseEnable : 1;                             //!< Calibrate ADC Pulse
        uint8_t ADCBulkNEnable : 1;                             //!< Calibrate ADC bulkN
        uint8_t ADCBulkPEnable : 1;                             //!< Calibrate ADC bulkP
        uint8_t ImgEnable      : 1;
        uint8_t                : 1;
    }Fields;
    uint8_t Value;
}CalibrationParams_t;
/*!
 * \brief Represents a sleep mode configuration
 */
typedef union
{
    struct
    {
        uint8_t WakeUpRTC               : 1;                    //!< Get out of sleep mode if wakeup signal received from RTC
        uint8_t Reset                   : 1;
        uint8_t WarmStart               : 1;
        uint8_t Reserved                : 5;
    }Fields;
    uint8_t Value;
}SleepParams_t;
/*!
 * \brief Represents the possible radio system error states
 */
typedef union
{
    struct
    {
        uint8_t Rc64kCalib              : 1;                    //!< RC 64kHz oscillator calibration failed
        uint8_t Rc13mCalib              : 1;                    //!< RC 13MHz oscillator calibration failed
        uint8_t PllCalib                : 1;                    //!< PLL calibration failed
        uint8_t AdcCalib                : 1;                    //!< ADC calibration failed
        uint8_t ImgCalib                : 1;                    //!< Image calibration failed
        uint8_t XoscStart               : 1;                    //!< XOSC oscillator failed to start
        uint8_t PllLock                 : 1;                    //!< PLL lock failed
        uint8_t BuckStart               : 1;                    //!< Buck converter failed to start
        uint8_t PaRamp                  : 1;                    //!< PA ramp failed
        uint8_t                         : 7;                    //!< Reserved
    }Fields;
    uint16_t Value;
}RadioError_t;
/*!
 * Radio hardware and global parameters
 */
typedef struct SX126x_s
{
//    Gpio_t        Reset;
//    Gpio_t        BUSY;
//    Gpio_t        DIO1;
//    Gpio_t        DIO2;
//    Gpio_t        DIO3;
//    Spi_t         Spi;
    PacketParams_t PacketParams;
    PacketStatus_t PacketStatus;
    ModulationParams_t ModulationParams;
}SX126x_t;
/*!
 * Hardware IO IRQ callback function definition
 */
typedef void ( DioIrqHandler )( void );
/*!
 * SX126x definitions
 */
/*!
 * \brief Provides the frequency of the chip running on the radio and the frequency step
 *
 * \remark These defines are used for computing the frequency divider to set the RF frequency
 */
#define XTAL_FREQ                                   ( double )32000000
#define FREQ_DIV                                    ( double )pow( 2.0, 25.0 )
#define FREQ_STEP                                   ( double )( XTAL_FREQ / FREQ_DIV )
#define RX_BUFFER_SIZE                              256
/*!
 * \brief The radio callbacks structure
 * Holds function pointers to be called on radio interrupts
 */
typedef struct
{
    void ( *txDone )( void );                       //!< Pointer to a function run on successful transmission
    void ( *rxDone )( void );                       //!< Pointer to a function run on successful reception
    void ( *rxPreambleDetect )( void );             //!< Pointer to a function run on successful Preamble detection
    void ( *rxSyncWordDone )( void );               //!< Pointer to a function run on successful SyncWord reception
    void ( *rxHeaderDone )( bool isOk );            //!< Pointer to a function run on successful Header reception
    void ( *txTimeout )( void );                    //!< Pointer to a function run on transmission timeout
    void ( *rxTimeout )( void );                    //!< Pointer to a function run on reception timeout
    void ( *rxError )( IrqErrorCode_t errCode );    //!< Pointer to a function run on reception error
    void ( *cadDone )( bool cadFlag );              //!< Pointer to a function run on channel activity detected
}SX126xCallbacks_t;
/*!
 * ============================================================================
 * Public functions prototypes
 * ============================================================================
 */
/*!
 * \brief Initializes the radio driver
 */
void SX126xInit( DioIrqHandler dioIrq );
/*!
 * \brief Gets the current Operation Mode of the Radio
 *
 * \retval      RadioOperatingModes_t last operating mode
 */
RadioOperatingModes_t SX126xGetOperatingMode( void );
/*!
 * \brief Wakeup the radio if it is in Sleep mode and check that Busy is low
 */
void SX126xCheckDeviceReady( void );
/*!
 * \brief Saves the payload to be send in the radio buffer
 *
 * \param [in]  payload       A pointer to the payload
 * \param [in]  size          The size of the payload
 */
void SX126xSetPayload( uint8_t *payload, uint8_t size );
/*!
 * \brief Reads the payload received. If the received payload is longer
 * than maxSize, then the method returns 1 and do not set size and payload.
 *
 * \param [out] payload       A pointer to a buffer into which the payload will be copied
 * \param [out] size          A pointer to the size of the payload received
 * \param [in]  maxSize       The maximal size allowed to copy into the buffer
 */
uint8_t SX126xGetPayload( uint8_t *payload, uint8_t *size, uint8_t maxSize );
/*!
 * \brief Sends a payload
 *
 * \param [in]  payload       A pointer to the payload to send
 * \param [in]  size          The size of the payload to send
 * \param [in]  timeout       The timeout for Tx operation
 */
void SX126xSendPayload( uint8_t *payload, uint8_t size, uint32_t timeout );
/*!
 * \brief Sets the Sync Word given by index used in GFSK
 *
 * \param [in]  syncWord      SyncWord bytes ( 8 bytes )
 *
 * \retval      status        [0: OK, 1: NOK]
 */
uint8_t SX126xSetSyncWord( uint8_t *syncWord );
/*!
 * \brief Sets the Initial value for the LFSR used for the CRC calculation
 *
 * \param [in]  seed          Initial LFSR value ( 2 bytes )
 *
 */
void SX126xSetCrcSeed( uint16_t seed );
/*!
 * \brief Sets the seed used for the CRC calculation
 *
 * \param [in]  seed          The seed value
 *
 */
void SX126xSetCrcPolynomial( uint16_t polynomial );
/*!
 * \brief Sets the Initial value of the LFSR used for the whitening in GFSK protocols
 *
 * \param [in]  seed          Initial LFSR value
 */
void SX126xSetWhiteningSeed( uint16_t seed );
/*!
 * \brief Gets a 32 bits random value generated by the radio
 *
 * \remark The radio must be in reception mode before executing this function
 *
 * \retval randomValue    32 bits random value
 */
uint32_t SX126xGetRandom( void );
/*!
 * \brief Sets the radio in sleep mode
 *
 * \param [in]  sleepConfig   The sleep configuration describing data
 *                            retention and RTC wake-up
 */
void SX126xSetSleep( SleepParams_t sleepConfig );
/*!
 * \brief Sets the radio in configuration mode
 *
 * \param [in]  mode          The standby mode to put the radio into
 */
void SX126xSetStandby( RadioStandbyModes_t mode );
/*!
 * \brief Sets the radio in FS mode
 */
void SX126xSetFs( void );
/*!
 * \brief Sets the radio in transmission mode
 *
 * \param [in]  timeout       Structure describing the transmission timeout value
 */
void SX126xSetTx( uint32_t timeout );
/*!
 * \brief Sets the radio in reception mode
 *
 * \param [in]  timeout       Structure describing the reception timeout value
 */
void SX126xSetRx( uint32_t timeout );
/*!
 * \brief Sets the radio in reception mode with Boosted LNA gain
 *
 * \param [in]  timeout       Structure describing the reception timeout value
 */
void SX126xSetRxBoosted( uint32_t timeout );
/*!
 * \brief Sets the Rx duty cycle management parameters
 *
 * \param [in]  rxTime        Structure describing reception timeout value
 * \param [in]  sleepTime     Structure describing sleep timeout value
 */
void SX126xSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime );
/*!
 * \brief Sets the radio in CAD mode
 */
void SX126xSetCad( void );
/*!
 * \brief Sets the radio in continuous wave transmission mode
 */
void SX126xSetTxContinuousWave( void );
/*!
 * \brief Sets the radio in continuous preamble transmission mode
 */
void SX126xSetTxInfinitePreamble( void );
/*!
 * \brief Decide which interrupt will stop the internal radio rx timer.
 *
 * \param [in]  enable          [0: Timer stop after header/syncword detection
 *                               1: Timer stop after preamble detection]
 */
void SX126xSetStopRxTimerOnPreambleDetect( bool enable );
/*!
 * \brief Set the number of symbol the radio will wait to validate a reception
 *
 * \param [in]  SymbNum          number of LoRa symbols
 */
void SX126xSetLoRaSymbNumTimeout( uint8_t SymbNum );
/*!
 * \brief Sets the power regulators operating mode
 *
 * \param [in]  mode          [0: LDO, 1:DC_DC]
 */
void SX126xSetRegulatorMode( RadioRegulatorMode_t mode );
/*!
 * \brief Calibrates the given radio block
 *
 * \param [in]  calibParam    The description of blocks to be calibrated
 */
void SX126xCalibrate( CalibrationParams_t calibParam );
/*!
 * \brief Calibrates the Image rejection depending of the frequency
 *
 * \param [in]  freq    The operating frequency
 */
void SX126xCalibrateImage( uint32_t freq );
/*!
 * \brief Activate the extention of the timeout when long preamble is used
 *
 * \param [in]  enable      The radio will extend the timeout to cope with long preamble
 */
void SX126xSetLongPreamble( uint8_t enable );
/*!
 * \brief Sets the transmission parameters
 *
 * \param [in]  paDutyCycle     Duty Cycle for the PA
 * \param [in]  hpMax          0 for sx1261, 7 for sx1262
 * \param [in]  deviceSel       1 for sx1261, 0 for sx1262
 * \param [in]  paLut           0 for 14dBm LUT, 1 for 22dBm LUT
 */
void SX126xSetPaConfig( uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut );
/*!
 * \brief Defines into which mode the chip goes after a TX / RX done
 *
 * \param [in]  fallbackMode    The mode in which the radio goes
 */
void SX126xSetRxTxFallbackMode( uint8_t fallbackMode );
/*!
 * \brief Write data to the radio memory
 *
 * \param [in]  address       The address of the first byte to write in the radio
 * \param [in]  buffer        The data to be written in radio's memory
 * \param [in]  size          The number of bytes to write in radio's memory
 */
void SX126xWriteRegisters( uint16_t address, uint8_t *buffer, uint16_t size );
/*!
 * \brief Read data from the radio memory
 *
 * \param [in]  address       The address of the first byte to read from the radio
 * \param [out] buffer        The buffer that holds data read from radio
 * \param [in]  size          The number of bytes to read from radio's memory
 */
void SX126xReadRegisters( uint16_t address, uint8_t *buffer, uint16_t size );
/*!
 * \brief Write data to the buffer holding the payload in the radio
 *
 * \param [in]  offset        The offset to start writing the payload
 * \param [in]  buffer        The data to be written (the payload)
 * \param [in]  size          The number of byte to be written
 */
void SX126xWriteBuffer( uint8_t offset, uint8_t *buffer, uint8_t size );
/*!
 * \brief Read data from the buffer holding the payload in the radio
 *
 * \param [in]  offset        The offset to start reading the payload
 * \param [out] buffer        A pointer to a buffer holding the data from the radio
 * \param [in]  size          The number of byte to be read
 */
void SX126xReadBuffer( uint8_t offset, uint8_t *buffer, uint8_t size );
/*!
 * \brief   Sets the IRQ mask and DIO masks
 *
 * \param [in]  irqMask       General IRQ mask
 * \param [in]  dio1Mask      DIO1 mask
 * \param [in]  dio2Mask      DIO2 mask
 * \param [in]  dio3Mask      DIO3 mask
 */
void SX126xSetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask );
/*!
 * \brief Returns the current IRQ status
 *
 * \retval      irqStatus     IRQ status
 */
uint16_t SX126xGetIrqStatus( void );
/*!
 * \brief Indicates if DIO2 is used to control an RF Switch
 *
 * \param [in] enable     true of false
 */
void SX126xSetDio2AsRfSwitchCtrl( uint8_t enable );
/*!
 * \brief Indicates if the Radio main clock is supplied from a tcxo
 *
 * \param [in] tcxoVoltage     voltage used to control the TCXO
 * \param [in] timeout         time given to the TCXO to go to 32MHz
 */
void SX126xSetDio3AsTcxoCtrl( RadioTcxoCtrlVoltage_t tcxoVoltage, uint32_t timeout );
/*!
 * \brief Sets the RF frequency
 *
 * \param [in]  frequency     RF frequency [Hz]
 */
void SX126xSetRfFrequency( uint32_t frequency );
/*!
 * \brief Sets the radio for the given protocol
 *
 * \param [in]  packetType    [PACKET_TYPE_GFSK, PACKET_TYPE_LORA]
 *
 * \remark This method has to be called before SetRfFrequency,
 *         SetModulationParams and SetPacketParams
 */
void SX126xSetPacketType( RadioPacketTypes_t packetType );
/*!
 * \brief Gets the current radio protocol
 *
 * \retval      packetType    [PACKET_TYPE_GFSK, PACKET_TYPE_LORA]
 */
RadioPacketTypes_t SX126xGetPacketType( void );
/*!
 * \brief Sets the transmission parameters
 *
 * \param [in]  power         RF output power [-18..13] dBm
 * \param [in]  rampTime      Transmission ramp up time
 */
void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime );
/*!
 * \brief Set the modulation parameters
 *
 * \param [in]  modParams     A structure describing the modulation parameters
 */
void SX126xSetModulationParams( ModulationParams_t *modParams );
/*!
 * \brief Sets the packet parameters
 *
 * \param [in]  packetParams  A structure describing the packet parameters
 */
void SX126xSetPacketParams( PacketParams_t *packetParams );
/*!
 * \brief Sets the Channel Activity Detection (CAD) parameters
 *
 * \param [in]  cadSymbolNum   The number of symbol to use for CAD operations
 *                             [LORA_CAD_01_SYMBOL, LORA_CAD_02_SYMBOL,
 *                              LORA_CAD_04_SYMBOL, LORA_CAD_08_SYMBOL,
 *                              LORA_CAD_16_SYMBOL]
 * \param [in]  cadDetPeak     Limit for detection of SNR peak used in the CAD
 * \param [in]  cadDetMin      Set the minimum symbol recognition for CAD
 * \param [in]  cadExitMode    Operation to be done at the end of CAD action
 *                             [LORA_CAD_ONLY, LORA_CAD_RX, LORA_CAD_LBT]
 * \param [in]  cadTimeout     Defines the timeout value to abort the CAD activity
 */
void SX126xSetCadParams( RadioLoRaCadSymbols_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, RadioCadExitModes_t cadExitMode, uint32_t cadTimeout );
/*!
 * \brief Sets the data buffer base address for transmission and reception
 *
 * \param [in]  txBaseAddress Transmission base address
 * \param [in]  rxBaseAddress Reception base address
 */
void SX126xSetBufferBaseAddress( uint8_t txBaseAddress, uint8_t rxBaseAddress );
/*!
 * \brief Gets the current radio status
 *
 * \retval      status        Radio status
 */
RadioStatus_t SX126xGetStatus( void );
/*!
 * \brief Returns the instantaneous RSSI value for the last packet received
 *
 * \retval      rssiInst      Instantaneous RSSI
 */
int8_t SX126xGetRssiInst( void );
/*!
 * \brief Gets the last received packet buffer status
 *
 * \param [out] payloadLength Last received packet payload length
 * \param [out] rxStartBuffer Last received packet buffer address pointer
 */
void SX126xGetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBuffer );
/*!
 * \brief Gets the last received packet payload length
 *
 * \param [out] pktStatus     A structure of packet status
 */
void SX126xGetPacketStatus( PacketStatus_t *pktStatus );
/*!
 * \brief Returns the possible system errors
 *
 * \retval sysErrors Value representing the possible sys failures
 */
RadioError_t SX126xGetDeviceErrors( void );
/*!
 * \brief Clear all the errors in the device
 */
void SX126xClearDeviceErrors( void );
/*!
 * \brief Clears the IRQs
 *
 * \param [in]  irq           IRQ(s) to be cleared
 */
void SX126xClearIrqStatus( uint16_t irq );
#endif // __SX126x_H__
keil/include/src/Radio/user.h
¶Ô±ÈÐÂÎļþ
@@ -0,0 +1,22 @@
#ifndef _USER_H_
#define _USER_H_
//#include "stm32f0xx.h"
//#include "stm32l0xx_hal.h"
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
//#include "gpio.h"
#include "delay.h"
//#include "spi.h"
#include "radio.h"
#include "sx126x.h"
#include "sx126x-board.h"
#include "crc.h"
#endif