From 650a51bb30a4c8c97898648f72d826fbc1a8a59a Mon Sep 17 00:00:00 2001 From: zhyinch <zhyinch@gmail.com> Date: 星期六, 16 五月 2020 16:27:13 +0800 Subject: [PATCH] 未测试,修改成多次丢失才切换模式 --- 源码/核心板/Src/application/dw_app.c | 1127 ++++++++++++++++++++++++++++++++++++++-------------------- 1 files changed, 729 insertions(+), 398 deletions(-) diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" index 81f831a..3f127fc 100644 --- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" +++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" @@ -1,89 +1,13 @@ - -/*! ---------------------------------------------------------------------------- - * @file main.c - * @brief Double-sided two-way ranging (DS TWR) initiator example code - * - * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" - * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example - * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to - * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX - * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air - * and, thus, the estimated distance between the two devices. - * - * @attention - * - * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland. - * - * All rights reserved. - * - * @author Decawave - */ - -#include <string.h> #include "dw_app.h" -#include "deca_device_api.h" -#include "deca_regs.h" -#include "dw_driver.h" -#include "Spi.h" -#include "led.h" -#include "serial_at_cmd_app.h" -#include "Usart.h" -#include "global_param.h" -#include "filters.h" -#include <stdio.h> -#include "beep.h" - - -/*------------------------------------ Marcos ------------------------------------------*/ -/* Inter-ranging delay period, in milliseconds. */ -#define RNG_DELAY_MS 100 - -/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */ -#define TX_ANT_DLY 0 -#define RX_ANT_DLY 32899 - -/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor. - * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */ -#define UUS_TO_DWT_TIME 65536 - -/* Delay between frames, in UWB microseconds. See NOTE 4 below. */ -/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ -#define POLL_TX_TO_RESP_RX_DLY_UUS 150 -/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the - * frame length of approximately 2.66 ms with above configuration. */ -#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500 -/* Receive response timeout. See NOTE 5 below. */ -#define RESP_RX_TIMEOUT_UUS 2700 - -#define POLL_RX_TO_RESP_TX_DLY_UUS 420 -/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ -#define RESP_TX_TO_FINAL_RX_DLY_UUS 200 -/* Receive final timeout. See NOTE 5 below. */ -#define FINAL_RX_TIMEOUT_UUS 4300 - -#define SPEED_OF_LIGHT 299702547 - -/* Indexes to access some of the fields in the frames defined above. */ -#define ALL_MSG_SN_IDX 2 -#define FINAL_MSG_POLL_TX_TS_IDX 10 -#define FINAL_MSG_RESP_RX_TS_IDX 14 -#define FINAL_MSG_FINAL_TX_TS_IDX 18 -#define FINAL_MSG_TS_LEN 4 - -#define GROUP_ID_IDX 0 -#define ANCHOR_ID_IDX 1 -#define TAG_ID_IDX 3 -#define MESSAGE_TYPE_IDX 5 -#define DIST_IDX 6 - -#define POLL 0x01 -#define RESPONSE 0x02 -#define FINAL 0x03 - -/*------------------------------------ Variables ------------------------------------------*/ -/* Default communication configuration. We use here EVK1000's default mode (mode 3). */ +#include "ADC.h" +enum enumtagstate +{ + DISCPOLL, + GETNEARMSG, + NEARPOLL, +}tag_state; static dwt_config_t config = { - 5, /* Channel number. */ + 2, /* Channel number. */ DWT_PRF_64M, /* Pulse repetition frequency. */ DWT_PLEN_128, /* Preamble length. */ DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ @@ -94,66 +18,36 @@ DWT_PHRMODE_STD, /* PHY header mode. */ (129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ }; +static uint8_t tx_poll_msg[20] = {0}; +static uint8_t tx_sync_msg[14] = {0}; +static uint8_t tx_final_msg[60] = {0}; +static uint8_t tx_resp_msg[22] = {0}; +static uint8_t tx_nearpoll_msg[80] = {0}; +static uint8_t tx_nearresp_msg[80] = {0}; +static uint8_t tx_nearfinal_msg[80] = {0}; -/* Frames used in the ranging process. See NOTE 2 below. */ -static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; - -//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; - -/* Frame sequence number, incremented after each transmission. */ static uint32_t frame_seq_nb = 0; - -/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ static uint32_t status_reg = 0; - -/* Buffer to store received response message. - * Its size is adjusted to longest frame that this example code is supposed to handle. */ -#define RX_BUF_LEN 24 -static uint8_t rx_buffer[RX_BUF_LEN]; - -/* Time-stamps of frames transmission/reception, expressed in device time units. - * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */ +static uint8_t rx_buffer[100]; static uint64_t poll_tx_ts; static uint64_t resp_rx_ts; static uint64_t final_tx_ts; - -/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */ static uint64_t poll_rx_ts; static uint64_t resp_tx_ts; static uint64_t final_rx_ts; - static double tof; - -uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS]; -uint8_t tag_id = 0; -uint8_t tag_id_recv = 0; +int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ; +uint32_t tag_id = 0; +uint32_t tag_id_recv = 0; +uint32_t anc_id_recv = 0; uint8_t random_delay_tim = 0; - double distance, dist_no_bias, dist_cm; - uint32_t g_UWB_com_interval = 0; float dis_after_filter; //当前距离值 LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器 - -uint16_t g_Tagdist[256]; +uint16_t g_Tagdist[TAG_NUM_IN_SYS]; uint8_t g_flag_Taggetdist[256]; -/*------------------------------------ Functions ------------------------------------------*/ - -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn get_tx_timestamp_u64() - * - * @brief Get the TX time-stamp in a 64-bit variable. - * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! - * - * @param none - * - * @return 64-bit value of the read time-stamp. - */ static uint64_t get_tx_timestamp_u64(void) { uint8_t ts_tab[5]; @@ -168,16 +62,6 @@ return ts; } -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn get_rx_timestamp_u64() - * - * @brief Get the RX time-stamp in a 64-bit variable. - * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! - * - * @param none - * - * @return 64-bit value of the read time-stamp. - */ static uint64_t get_rx_timestamp_u64(void) { uint8_t ts_tab[5]; @@ -192,17 +76,6 @@ return ts; } -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn final_msg_set_ts() - * - * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final - * message, the least significant byte is at the lower address. - * - * @param ts_field pointer on the first byte of the timestamp field to fill - * ts timestamp value - * - * @return none - */ static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts) { int i; @@ -259,223 +132,532 @@ /* Set expected response's delay and timeout. See NOTE 4 and 5 below. * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ - dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 - dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间 + //设置接收超时时间 } void Dw1000_App_Init(void) { -// g_com_map[DEV_ID] = 0x02; +//g_com_map[DEV_ID] = 0x0b; tx_poll_msg[MESSAGE_TYPE_IDX]=POLL; tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE; tx_final_msg[MESSAGE_TYPE_IDX]=FINAL; - memcpy(&tx_poll_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_final_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &g_com_map[DEV_ID], 2); + tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC; + memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 2); + memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 2); + memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 2); + memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 2); + memcpy(&tx_nearresp_msg[ANCHOR_ID_IDX], &dev_id, 2); + memcpy(&tx_nearpoll_msg[TAG_ID_IDX], &dev_id, 2); + memcpy(&tx_nearfinal_msg[TAG_ID_IDX], &dev_id, 2); } +uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) +{ + uint16_t sum = 0; + uint32_t i; + for(i=0; i<len; i++) + sum += pdata[i]; + sum = ~sum; + return sum; +} + +u16 tag_time_recv[TAG_NUM_IN_SYS]; +u8 usart_send[100],usart_send_anc[100]; +u8 battary,button; +extern uint8_t g_pairstart; void tag_sleep_configuraion(void) { dwt_configuresleep(0x940, 0x7); dwt_entersleep(); } +extern uint8_t g_start_send_flag; +u8 g_start_sync_flag; +void SyncPoll(u8 sync_seq,uint32_t sync_baseid) +{u8 result; + g_start_sync_flag=1; //中断模式,退出终端后,需要重新来过 + dwt_forcetrxoff(); //关闭接收,以防在RX ON 状态 + + + tx_sync_msg[SYNC_SEQ_IDX]=sync_seq; + memcpy(&tx_sync_msg[ANCHOR_ID_IDX],&sync_baseid,4); + dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE); + if(result==0) + { + while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 + { }; + } + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位 +} uint16_t g_Resttimer; uint8_t result; -void Tag_App(void)//发送模式(TAG标签) +u8 tag_succ_times=0; +int32_t hex_dist; +u16 checksum; +int8_t tag_delaytime; +extern uint16_t sync_timer; +u16 tmp_time; +int32_t temp_dist; +u16 tagslotpos; + +u16 anclist_num=0,anclist_pos; //list 总数量和当前位置 +u16 ancid_list[TAG_NUM_IN_SYS]; +u8 nearbase_num=0,last_nearbase_num,next_nearbase_num; +u16 nearbaseid_list[MAX_NEARBASE_NUM],mainbase_id,true_nearbase_idlist[MAX_NEARBASE_NUM]; +int32_t mainbase_dist,nearbase_distlist[MAX_NEARBASE_NUM],true_nearbase_distlist[MAX_NEARBASE_NUM]; +uint8_t trygetnearmsg_times; + +u8 FindNearBasePos(u16 baseid) { + u8 i; + for(i=0;i<=nearbase_num;i++) + { + if(baseid==nearbaseid_list[i]) + return i; + } + return i+1; +} +u8 recbase_num=0; +#define CHANGE_BASE_THRESHOLD 5 +void NearAncSelect(void) +{static u16 last_mainbase_id,change_base_count; + int32_t nearbase_mindist=99999, nearbase_minpos; + u8 i; + for(i=0;i<recbase_num-1;i++) + { + if(nearbase_mindist>nearbase_distlist[i]) + { + nearbase_mindist=nearbase_distlist[i]; + nearbase_minpos=i; + } + } + if(nearbase_mindist<mainbase_dist-THRESHOLD_CHANGE_MAINBASE_DIST) + { + if(last_mainbase_id==nearbaseid_list[nearbase_minpos]) + { + change_base_count++; + if(change_base_count>CHANGE_BASE_THRESHOLD) + { + mainbase_id=last_mainbase_id; + tag_state=GETNEARMSG; + } + }else{ + change_base_count=0; + } + last_mainbase_id=nearbaseid_list[nearbase_minpos]; + }else{ + change_base_count=0; + } +} +u8 anclost_times=0; +u8 exsistbase_list[MAX_NEARBASE_NUM],report_num; +u16 temp_sync_timer1,temp_sync_timer2; +void NearPoll(void) +{ + static u8 mainbase_lost_count=0,flag_finalsend,flag_rxon; + uint32_t temp1,temp2,dw_systime; uint32_t frame_len; uint32_t final_tx_time; - - g_Resttimer=0; - UART_CheckReceive(); - GPIO_ResetBits(SPIx_GPIO, SPIx_CS); - delay_us(2500); - GPIO_SetBits(SPIx_GPIO, SPIx_CS); - - /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ - tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; - dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 - dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度 - - /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay - * set by dwt_setrxaftertxdelay() has elapsed. */ + u32 start_poll; + u8 i,j,getsync_flag=0,timeout; +// printf("%d",sync_timer); + dwt_forcetrxoff(); + dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 + dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); + tag_succ_times = 0; + GPIO_WriteBit(GPIOA, GPIO_Pin_10, Bit_SET); + if(next_nearbase_num>=MAX_NEARBASE_NUM) + { + next_nearbase_num = MAX_NEARBASE_NUM-1; + } + //nearbase_num=0; + last_nearbase_num=next_nearbase_num; + recbase_num=0; + tx_nearpoll_msg[BATTARY_IDX] = Get_Battary(); + tx_nearpoll_msg[BUTTON_IDX] = !READ_KEY0; + tx_nearpoll_msg[SEQUENCE_IDX] = frame_seq_nb++; + tx_nearpoll_msg[NEARBASENUM_INDEX] = nearbase_num; + memcpy(&tx_nearpoll_msg[NEARBASEID_INDEX],&nearbaseid_list,nearbase_num*2); + tx_nearpoll_msg[MESSAGE_TYPE_IDX] = NEAR_POLL; + memcpy(&tx_nearpoll_msg[ANCHOR_ID_IDX],&mainbase_id,2); + dwt_writetxdata(13+2*nearbase_num, tx_nearpoll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(13+2*nearbase_num, 0);//设置超宽带发送数据长度 dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 - - /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 - { }; - - /* Increment frame sequence number after transmission of the poll message (modulo 256). */ - frame_seq_nb++; - - if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 - { - /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 - - /* A frame has been received, read it into the local buffer. */ - frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 - - dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 - - - /* Check that the frame is the expected response from the companion "DS TWR responder" example. - * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE) //判断接收到的数据是否是response数据 - { - /* Retrieve poll transmission and response reception timestamp. */ - poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 - resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 - - memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2); - memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2); - /* Compute final message transmission time. See NOTE 9 below. */ - final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2 - dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 - - /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ - final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay - - /* Write all timestamps in the final message. See NOTE 10 below. */ - final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据 - final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); - final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); - - /* Write and send final message. See NOTE 7 below. */ - tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; - dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000 - dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度 - result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 - - - /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ - if(result==0) - {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 - { }; - } - /* Clear TXFRS event. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位 - - /* Increment frame sequence number after transmission of the final message (modulo 256). */ - frame_seq_nb++; - random_delay_tim = 0; - } - else - { - random_delay_tim = DFT_RAND_DLY_TIM_MS; //如果通讯失败,将间隔时间增加5ms,避开因为多标签同时发送引起的冲突。 - } - } - else - { - /* Clear RX error events in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); - random_delay_tim = DFT_RAND_DLY_TIM_MS; - } - LED0_BLINK; - /* Execute a delay between ranging exchanges. */ - dwt_entersleep(); + flag_finalsend=0; + flag_rxon=1; + neartimout_timer=0; + + timeout=ceil((float)nearbase_num/4)+2; + //timeout=5; + mainbase_dist=100000; + mainbase_lost_count++; + while(neartimout_timer<timeout) + { + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 + { + if(flag_finalsend) + { + dw_systime=dwt_readsystimestamphi32(); + if(dw_systime>temp1&&dw_systime<temp2) + { + flag_finalsend=0; + flag_rxon=0; + dwt_forcetrxoff(); + dwt_setdelayedtrxtime(final_tx_time); + result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 + break; + } + } + if(neartimout_timer>timeout) + break; + }; + if(status_reg==0xffffffff) + { + NVIC_SystemReset(); + } + if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 + frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 + dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 + dwt_setrxtimeout(0);//DELAY_BETWEEN_TWO_FRAME_UUS*(nearbase_num+1-recbase_num)+10);//设定接收超时时间,0位没有超时时间 + dwt_rxenable(0);//打开接收 + if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据 + { u16 rec_nearbaseid,rec_nearbasepos; + int32_t temp_dist; + poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 + resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 + recbase_num++; + memcpy(&rec_nearbaseid,&rx_buffer[ANCHOR_ID_IDX],2); + if(nearbase_num==0) + { + nearbaseid_list[0]=rec_nearbaseid; + nearbase_num=1; + memcpy(&tx_nearfinal_msg[ANCHOR_ID_IDX],&rec_nearbaseid,2); + } + if(rec_nearbaseid==nearbaseid_list[0]) + { + //////////////////////////////////时间同步 + temp_sync_timer2=sync_timer; + memcpy(&temp_sync_timer1,&rx_buffer[ANCTIMEMS],2); + memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2); + sync_timer=temp_sync_timer1; + exsistbase_list[0]=10; +//// memcpy(&tagslotpos,&rx_buffer[TAGSLOTPOS],2); +// + tmp_time=tmp_time+450; + if(tmp_time>999) + { + tmp_time-=999; + sync_timer++; + if(sync_timer>=1010) + {sync_timer=0;} + } + TIM3->CNT=tmp_time; + +// if(tagslotpos>max_slotpos) +// tagslotpos=tagslotpos%(max_slotpos+1); +// tyncpoll_time=(tagslotpos-1)*slottime; + //////////////////////////// + rec_nearbasepos=0; + exsistbase_list[rec_nearbasepos]=10; + memcpy(&temp_dist,&rx_buffer[DIST_IDX],4); + nearbase_distlist[rec_nearbasepos]=temp_dist; + + mainbase_lost_count=0; + flag_finalsend=1; + final_tx_time = (resp_rx_ts + ((RESP_RX_TO_FINAL_TX_DLY_UUS+DELAY_BETWEEN_TWO_FRAME_UUS*nearbase_num+500) * UUS_TO_DWT_TIME)) >> 8; + temp1=final_tx_time-((350*UUS_TO_DWT_TIME)>>8); + temp2=final_tx_time+((100*UUS_TO_DWT_TIME)>>8); + // dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 + final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay + final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据 + final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX], resp_rx_ts); + final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); + tx_nearfinal_msg[MESSAGE_TYPE_IDX]=NEAR_FINAL; + dwt_writetxdata(28+nearbase_num*4, tx_nearfinal_msg, 0);//将发送数据写入DW1000 + dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度 + if(temp_dist!=0x1ffff) + { + #ifndef USART_INTEGRATE_OUTPUT + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb;//数据段长度 + memcpy(&usart_send[5],&dev_id,2); + memcpy(&usart_send[7],&rec_nearbaseid,2); + memcpy(&usart_send[9],&rx_buffer[DIST_IDX],4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + #endif + } + //result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 + }else{ + rec_nearbasepos=FindNearBasePos(rec_nearbaseid); + if(rec_nearbasepos>nearbase_num) //发现新的基站 + { + nearbase_num++; + nearbaseid_list[nearbase_num] = rec_nearbaseid; + memcpy(&tx_nearfinal_msg[ANCHOR_ID_IDX],&rec_nearbaseid,2); + } + + exsistbase_list[rec_nearbasepos]=10; + memcpy(&temp_dist,&rx_buffer[DIST_IDX],4); + nearbase_distlist[rec_nearbasepos]=temp_dist; + + final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos)*4], resp_rx_ts); + dwt_writetxdata(28+nearbase_num*4, tx_nearfinal_msg, 0);//将发送数据写入DW1000 + dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度 + LED0_BLINK; + if(temp_dist!=0x1ffff) + { + #ifndef USART_INTEGRATE_OUTPUT + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb;//数据段长度 + memcpy(&usart_send[5],&dev_id,2); + memcpy(&usart_send[7],&rec_nearbaseid,2); + memcpy(&usart_send[9],&rx_buffer[DIST_IDX],4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + #endif + + //dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 + // result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 + //dwt_writetxdata(4,&tx_near_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4], FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4);//将发送数据写入DW1000 + } + } + } + }else{ + dwt_write32bitreg(SYS_STATUS_ID,SYS_STATUS_RXFCG| SYS_STATUS_ALL_RX_ERR); + if(flag_rxon) + {dwt_rxenable(0); + } + } + } + GPIO_WriteBit(GPIOA, GPIO_Pin_10, Bit_RESET); +// if(result==0) +// { +// while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 +// { }; +// } +// dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位 + + dwt_write32bitreg(SYS_STATUS_ID,SYS_STATUS_RXFCG| SYS_STATUS_ALL_RX_ERR); + nearbase_num=recbase_num; + j=0; + if(exsistbase_list[0]==0) + { + u8 temp_adc,random_value; + random_value=0; + for(i=0;i<8;i++) + { + temp_adc=Get_ADC_Value(); + random_value=random_value|((temp_adc&0x01)<<i); + } + tyncpoll_time=(random_value%max_slotpos)*slottime; + } + next_nearbase_num=0; + for(i=0;i<last_nearbase_num;i++) + { + if(exsistbase_list[i]-->0) + { + next_nearbase_num++; + true_nearbase_idlist[j]=nearbaseid_list[i]; + true_nearbase_distlist[j++]=nearbase_distlist[i]; + } + + } + + for(i=0;i<last_nearbase_num-1;i++) + { + for(j=0;j<last_nearbase_num-1;j++) + { + if(true_nearbase_distlist[j]>true_nearbase_distlist[j+1]) + { + u32 temp_dist,temp_id; + temp_dist=true_nearbase_distlist[j]; + temp_id = true_nearbase_idlist[j]; + true_nearbase_distlist[j]=true_nearbase_distlist[j+1]; + true_nearbase_idlist[j]=true_nearbase_idlist[j+1]; + true_nearbase_distlist[j+1]=temp_dist; + true_nearbase_idlist[j+1]=temp_id; + } + } + } + report_num=0; + for (i=0;i<nearbase_num;i++) + { + nearbaseid_list[i]=true_nearbase_idlist[i]; + nearbase_distlist[i]=true_nearbase_distlist[i]; + if(nearbase_distlist[i]!=0x1ffff) + { + memcpy(&usart_send[4+6*report_num],&nearbaseid_list[i],2); + memcpy(&usart_send[6+6*report_num],&nearbase_distlist[i],4); + report_num++; + } + } + for(i=0;i<MAX_NEARBASE_NUM;i++) + { + nearbase_distlist[i]=0x1ffff; + } + // printf("%d,%d",temp_sync_timer2,temp_sync_timer1); + #ifdef USART_INTEGRATE_OUTPUT + usart_send[2] = 4;//正常模式 + usart_send[3] = report_num*6+2;//正常模式 + checksum = Checksum_u16(&usart_send[2],report_num*6+2); + memcpy(&usart_send[4+report_num*6],&checksum,2); + UART_PushFrame(usart_send,6+report_num*6); + #endif +// if(mainbase_lost_count>5) +// { +// //tag_state=DISCPOLL; +// } +// NearAncSelect(); +// if(recbase_num<g_com_map[MIN_REPORT_ANC_NUM] ) +// { +// anclost_times++; +// if(anclost_times>3) +// { +// tagslotpos=poll_tx_ts%(max_slotpos+1); +// } +// }else{ +// anclost_times=0; +// } + + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); + + } -extern uint8_t g_pairstart; -void Anchor_App(void) + +//void GetNearMsg(void) +//{ +// u32 start_poll,frame_len; +// memcpy(&tx_near_msg[ANCHOR_ID_IDX],&mainbase_id,2); +// memcpy(&tx_near_msg[TAG_ID_IDX],&dev_id,2); +// tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG; +// +// dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 +// dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); +// dwt_writetxdata(12, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 +// dwt_writetxfctrl(12, 0);//设置超宽带发送数据长度 +// dwt_starttx(DWT_START_TX_IMMEDIATE| DWT_RESPONSE_EXPECTED); +// start_poll = time32_incr; +// /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ +// while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 +// { if(time32_incr - start_poll>20) +// NVIC_SystemReset(); +// }; +// if(status_reg==0xffffffff) +// { +// NVIC_SystemReset(); +// } +// if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 +// { +// dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 +// frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 +// dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 +// if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_MSG&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据 +// { +// nearbase_num=rx_buffer[NEARBASENUM_INDEX]; +// tagslotpos=rx_buffer[TAGSLOTPOS]; +// memcpy(nearbaseid_list,&rx_buffer[NEARBASEID_INDEX],nearbase_num*2); +// slottime=ceil((nearbase_num+2)*0.3)+1; +// tyncpoll_time=tagslotpos*slottime; +// tag_state=NEARPOLL; +// } +// } +//} + +void Tag_App(void)//发送模式(TAG标签) { - uint32_t frame_len; - uint32_t resp_tx_time; - - /* Clear reception timeout to start next ranging process. */ - dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 + //LED0_ON; + g_Resttimer=0; + NearPoll(); +} - /* Activate reception immediately. */ - dwt_rxenable(0);//打开接收 - - /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误 - { - UART_CheckReceive(); - g_Resttimer=0; - }; - - if (status_reg & SYS_STATUS_RXFCG)//成功接收 +int8_t correction_time,new_tagid=0; +extern uint8_t sync_seq; +u16 taglist_num=0,taglist_pos; +u16 tagid_list[TAG_NUM_IN_SYS]; +u8 tagofflinetime[TAG_NUM_IN_SYS]; +int32_t tagdist_list[TAG_NUM_IN_SYS]; +void TagListUpdate(void) +{ + u16 i,j=0,temp[TAG_NUM_IN_SYS]; + for(i=0;i<taglist_num;i++) { - /* Clear good RX frame event in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位 - - /* A frame has been received, read it into the local buffer. */ - frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度 - - dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 - - - /* Check that the frame is a poll sent by "DS TWR initiator" example. - * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - - //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 - tag_id_recv = rx_buffer[TAG_ID_IDX]; - tx_resp_msg[TAG_ID_IDX] = tag_id_recv; - - - if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&tag_id_recv!= g_com_map[PAIR_ID]) //判断是否是poll包数据 + if(tagofflinetime[i]++<QUIT_SLOT_TIME) { - /* Retrieve poll reception timestamp. */ + tagid_list[j]=tagid_list[i]; + tagofflinetime[j++]=tagofflinetime[i]; + } + } + taglist_num=j; +} +u16 CmpTagInList(u16 tagid) +{u16 i; + for(i=0;i<taglist_num;i++) + { + if(memcmp(&tagid,&tagid_list[i],2)==0) + return i+1; + } + return 0; +} +uint32_t frame_len; +uint32_t resp_tx_time; +uint8_t rec_nearbase_num,anc_report_num; +void Anchor_RecPoll(void) +{ + tmp_time=TIM3->CNT; + memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2); + memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2); + memcpy(&tx_resp_msg[TAGSLOTPOS],&taglist_pos,1); + poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 - /* Set send time for response. See NOTE 8 below. */ resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。 dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3 - - /* Set expected delay and timeout for final message reception. */ dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置发送完成后开启接收延迟时间 dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 - - /* Write and send the response message. See NOTE 9 below.*/ - memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2); - tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + + memcpy(&tx_resp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4); + memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,2); + dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据 dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度 result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 - /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. - * See NOTE 7 below. */ + battary = rx_buffer[BATTARY_IDX]; + button = rx_buffer[BUTTON_IDX]; + frame_seq_nb = rx_buffer[SEQUENCE_IDX]; if(result==0) { while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误 { }; } - /* Increment frame sequence number after transmission of the response message (modulo 256). */ - frame_seq_nb++; - if (status_reg & SYS_STATUS_RXFCG)//接收成功 { - /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位 - - /* A frame has been received, read it into the local buffer. */ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度 - dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 - - - /* Check that the frame is a final message sent by "DS TWR initiator" example. - * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&rx_buffer[TAG_ID_IDX]==tag_id_recv&&rx_buffer[ANCHOR_ID_IDX]==g_com_map[DEV_ID]) //判断是否为Final包 + if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包 { uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts; uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; double Ra, Rb, Da, Db; int64_t tof_dtu; - - /* Retrieve response transmission and final reception timestamps. */ resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 - - /* Get timestamps embedded in the final message. */ final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5 final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); - - /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算 resp_tx_ts_32 = (uint32_t)resp_tx_ts; final_rx_ts_32 = (uint32_t)final_rx_ts; @@ -484,108 +666,257 @@ Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式 - tof = tof_dtu * DWT_TIME_UNITS; distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间 dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数 - - dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离 -// dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定 - + dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离 /*--------------------------以下为非测距逻辑------------------------*/ + //dist_cm=33000; + LED0_BLINK; //每成功一次通讯则闪烁一次 - g_UWB_com_interval = 0; dis_after_filter=dist_cm; - g_Tagdist[tag_id_recv]=dist_cm; - if(g_pairstart==1&&dist_cm<20) - { - g_pairstart=0; - g_com_map[PAIR_ID]=tag_id_recv; - save_com_map_to_flash(); - BEEP2_ON; - delay_ms(1000); - printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]); - } - g_flag_Taggetdist[tag_id_recv]=0; - printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter); - //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm); - + hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET]; + if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000) + { + tagdist_list[taglist_pos] = hex_dist; + } + his_dist[taglist_pos]=hex_dist; } - } - else - { - /* Clear RX error events in the DW1000 status register. */ + }else{ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); } +} +u8 misdist_num,seize_anchor; +u8 Anchor_RecNearPoll(u8 ancrec_nearbasepos) //0 mainbase 1 first near_base +{ + tmp_time=TIM3->CNT; + memcpy(&tx_nearresp_msg[ANCTIMEMS],&sync_timer,2); + memcpy(&tx_nearresp_msg[ANCTIMEUS],&tmp_time,2); + memcpy(&tx_nearresp_msg[TAGSLOTPOS],&taglist_pos,2); + memcpy(&tx_nearresp_msg[TAG_ID_IDX],&tag_id_recv,2); + poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 + + resp_tx_time = (poll_rx_ts + ((POLL_RX_TO_RESP_TX_DLY_UUS+ancrec_nearbasepos*DELAY_BETWEEN_TWO_FRAME_UUS) * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。 + dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3 + dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS+(rec_nearbase_num+1-ancrec_nearbasepos)*DELAY_BETWEEN_TWO_FRAME_UUS);//设置发送完成后开启接收延迟时间 + dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 + + if(new_tagid) + { + tagdist_list[taglist_pos]=0x1ffff; + memcpy(&tx_nearresp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4); + }else{ + memcpy(&tx_nearresp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4); + } + + tx_nearresp_msg[MESSAGE_TYPE_IDX]=NEAR_RESPONSE; + dwt_writetxdata(20, tx_nearresp_msg, 0);//写入发送数据 + dwt_writetxfctrl(20, 0);//设定发送长度 + result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 + + battary = rx_buffer[BATTARY_IDX]; + button = rx_buffer[BUTTON_IDX]; + frame_seq_nb = rx_buffer[SEQUENCE_IDX]; + if(result==0) + { + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_sync_flag)///不断查询芯片状态直到接收成功或者出现错误 + { }; + }else{ + result++; } + + if (status_reg & SYS_STATUS_RXFCG)//接收成功 + { + + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位 + frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度 + dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 + if(seize_anchor&&memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,2)) //抢占anchor 失败 + { + return 1; + } + if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包 + { + uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts; + uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; + double Ra, Rb, Da, Db; + int64_t tof_dtu; + resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 + final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 + final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5 + final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_NEARBASE_IDX+ancrec_nearbasepos*4], &resp_rx_ts); + final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); + + poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算 + resp_tx_ts_32 = (uint32_t)resp_tx_ts; + final_rx_ts_32 = (uint32_t)final_rx_ts; + Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 + Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 + Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 + Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 + tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式 + tof = tof_dtu * DWT_TIME_UNITS; + distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间 + dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数 + dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离 + /*--------------------------以下为非测距逻辑------------------------*/ + //dist_cm=33000; + + LED0_BLINK; //每成功一次通讯则闪烁一次 + dis_after_filter=dist_cm; + hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET]; + if(hex_dist>-1000&&hex_dist<100000) + { + if(abs(hex_dist-his_dist[taglist_pos])<1500||misdist_num>3) + { + misdist_num=0; + tagdist_list[taglist_pos] = hex_dist; + his_dist[taglist_pos]=hex_dist; + #ifndef USART_INTEGRATE_OUTPUT + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb;//数据段长度 + memcpy(&usart_send[5],&tag_id_recv,2); + memcpy(&usart_send[7],&dev_id,2); + memcpy(&usart_send[9],&tagdist_list[taglist_pos],4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + #else + memcpy(&usart_send_anc[4+6*anc_report_num],&tag_id_recv,2); + memcpy(&usart_send_anc[6+6*anc_report_num],&tagdist_list[taglist_pos],4); + anc_report_num++; + #endif + }else{ + // printf("%d",hex_dist); + misdist_num++; + } + } + } + + }else{ + //printf("%x/n",status_reg); + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); + } + +} +uint32_t current_syncid=0xffffffff,synclost_timer; +extern u8 flag_syncbase; +void Anchor_App(void) +{ + + u8 send_len,i; + u16 tempid; + uint32_t rec_syncid; + + g_start_sync_flag=0; + dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 + dwt_rxenable(0);//打开接收 + + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误 + { + IdleTask(); + g_Resttimer=0; + }; + + if (status_reg & SYS_STATUS_RXFCG)//成功接收 + { u16 tag_recv_interval; + + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位 + frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度 + dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 + //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 + //tag_id_recv = rx_buffer[TAG_ID_IDX]; + memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],2); + memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2); + taglist_pos=CmpTagInList(tag_id_recv); + if(taglist_pos==0) + { + synclost_timer=0; + tagid_list[taglist_num++]=tag_id_recv; + taglist_pos=taglist_num; + new_tagid=1; + }else{ + new_tagid=0; + } + tagofflinetime[taglist_pos-1]=0; + switch(rx_buffer[MESSAGE_TYPE_IDX]) + { +// case POLL: +// if (anchor_type == rx_buffer[ANC_TYPE_IDX]) +// Anchor_RecPoll(); +// break; + case SYNC: + + memcpy(&rec_syncid,&rx_buffer[ANCHOR_ID_IDX],4); + if(rec_syncid<current_syncid) + { + current_syncid=rec_syncid; + flag_syncbase=0; + sync_seq=rx_buffer[SYNC_SEQ_IDX]+1; + TIM3->CNT = sync_seq*325%1000+15; + sync_timer = sync_seq*325/1000; + synclost_timer=0; + SyncPoll(sync_seq,rec_syncid); + }else if(rec_syncid==current_syncid) + { + if(rx_buffer[SYNC_SEQ_IDX]<sync_seq) + { + flag_syncbase=0; + sync_seq=rx_buffer[SYNC_SEQ_IDX]+1; + TIM3->CNT = sync_seq*325%1000+15; + sync_timer = sync_seq*325/1000; + synclost_timer=0; + SyncPoll(sync_seq,rec_syncid); + } + + } + break; +// case NEAR_MSG: +// if(anc_id_recv==dev_id) +// { +// rx_buffer[TAGSLOTPOS]=taglist_pos; +// tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG; +// memcpy(&tx_near_msg[TAG_ID_IDX],&tag_id_recv,2); +// tx_near_msg[NEARBASENUM_INDEX]=g_com_map[NEARBASE_NUM]; +// memcpy(&tx_near_msg[NEARBASEID_INDEX],&g_com_map[NEARBASE_ID1],g_com_map[NEARBASE_NUM]*2); +// send_len=11+g_com_map[NEARBASE_NUM]*2+2; +// dwt_writetxdata(send_len, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 +// dwt_writetxfctrl(send_len, 0);//设置超宽带发送数据长度 +// dwt_starttx(DWT_START_TX_IMMEDIATE); +// } +// break; +// + case NEAR_POLL: + + rec_nearbase_num=rx_buffer[NEARBASENUM_INDEX]; + + for(i=0;i<rec_nearbase_num;i++) + { + memcpy(&tempid,&rx_buffer[NEARBASEID_INDEX+i*2],2); + if(tempid==dev_id) + { + seize_anchor=0; //非抢占。已存在列表中 + Anchor_RecNearPoll(i); + break; + } + } + if(i==rec_nearbase_num) + { + seize_anchor=1; //抢占anchor + Anchor_RecNearPoll(i); + } + + break; + + } + } else { - /* Clear RX error events in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); } } -/***************************************************************************************************************************************************** - * NOTES: - * - * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value - * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing - * range measurements. - * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE - * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: - * - a poll message sent by the initiator to trigger the ranging exchange. - * - a response message sent by the responder allowing the initiator to go on with the process - * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the - * time-of-flight (distance) estimate. - * The first 10 bytes of those frame are common and are composed of the following fields: - * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). - * - byte 2: sequence number, incremented for each new frame. - * - byte 3/4: PAN TAG_ID (0xDECA). - * - byte 5/6: destination address, see NOTE 3 below. - * - byte 7/8: source address, see NOTE 3 below. - * - byte 9: function code (specific values to indicate which message it is in the ranging process). - * The remaining bytes are specific to each message as follows: - * Poll message: - * - no more data - * Response message: - * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). - * - byte 11/12: activity parameter, not used here for activity code 0x02. - * Final message: - * - byte 10 -> 13: poll message transmission timestamp. - * - byte 14 -> 17: response message reception timestamp. - * - byte 18 -> 21: final message transmission timestamp. - * All messages end with a 2-byte checksum automatically set by DW1000. - * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a - * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only - * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. - * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator - * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more - * details about the timings involved in the ranging process. - * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value - * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the - * 110k data rate used (around 3 ms). - * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using - * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. - * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is - * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not - * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using - * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the - * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, - * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have - * been carefully defined to avoid this situation. - * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please - * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we - * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 - * bytes. - * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 - * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to - * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the - * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower - * 8 bits. - * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by - * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the - * time-of-flight computation) can be handled by a 32-bit subtraction. - * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the - * DW1000 API Guide for more details on the DW1000 driver functions. - ****************************************************************************************************************************************************/ -- Gitblit v1.9.3