From 650a51bb30a4c8c97898648f72d826fbc1a8a59a Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期六, 16 五月 2020 16:27:13 +0800
Subject: [PATCH] 未测试,修改成多次丢失才切换模式

---
 源码/核心板/Src/application/dw_app.c | 1179 ++++++++++++++++++++++++++++++++++++----------------------
 1 files changed, 725 insertions(+), 454 deletions(-)

diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
index 7a0a4fc..3f127fc 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
@@ -1,89 +1,11 @@
-
-/*! ----------------------------------------------------------------------------
- *  @file    main.c
- *  @brief   Double-sided two-way ranging (DS TWR) initiator example code
- *
- *           This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll"
- *           frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example
- *           code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to
- *           complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX
- *           time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air
- *           and, thus, the estimated distance between the two devices.
- *
- * @attention
- *
- * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland.
- *
- * All rights reserved.
- *
- * @author Decawave
- */
-
-#include <string.h>
 #include "dw_app.h"
-#include "deca_device_api.h"
-#include "deca_regs.h"
-#include "dw_driver.h"
-#include "Spi.h"
-#include "led.h"
-#include "serial_at_cmd_app.h"
-#include "Usart.h"
-#include "global_param.h"
-#include "filters.h"
-#include <stdio.h>
-#include "beep.h"
-
-
-/*------------------------------------ Marcos ------------------------------------------*/
-/* Inter-ranging delay period, in milliseconds. */
-#define RNG_DELAY_MS 100
-
-/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */
-#define TX_ANT_DLY 0
-#define RX_ANT_DLY 32899
-
-/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor.
- * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */
-#define UUS_TO_DWT_TIME 65536
-
-/* Delay between frames, in UWB microseconds. See NOTE 4 below. */
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define POLL_TX_TO_RESP_RX_DLY_UUS 150
-/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
- * frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500
-/* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 2700
-
-#define POLL_RX_TO_RESP_TX_DLY_UUS 420
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define RESP_TX_TO_FINAL_RX_DLY_UUS 200
-/* Receive final timeout. See NOTE 5 below. */
-#define FINAL_RX_TIMEOUT_UUS 4300
-
-#define SPEED_OF_LIGHT 299702547
-
-/* Indexes to access some of the fields in the frames defined above. */
-#define FINAL_MSG_POLL_TX_TS_IDX 10
-#define FINAL_MSG_RESP_RX_TS_IDX 14
-#define FINAL_MSG_FINAL_TX_TS_IDX 18
-#define FINAL_MSG_TS_LEN 4
-
-#define GROUP_ID_IDX   				0
-#define ANCHOR_ID_IDX    			1
-#define TAG_ID_IDX    				5
-#define MESSAGE_TYPE_IDX 			9	
-#define DIST_IDX 							10
-#define ANC_TYPE_IDX 					14
-#define BATTARY_IDX						15
-#define BUTTON_IDX						16
-
-#define POLL     					0x01
-#define RESPONSE 					0x02
-#define FINAL   					0x03
-
-/*------------------------------------ Variables ------------------------------------------*/
-/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
+#include "ADC.h"
+enum enumtagstate
+{
+	DISCPOLL,
+	GETNEARMSG,
+	NEARPOLL,
+}tag_state;
 static dwt_config_t config = {
 	2,               /* Channel number. */
 	DWT_PRF_64M,     /* Pulse repetition frequency. */
@@ -96,66 +18,36 @@
 	DWT_PHRMODE_STD, /* PHY header mode. */
 	(129 + 8 - 8)    /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
 };
+static uint8_t tx_poll_msg[20] = {0};
+static uint8_t tx_sync_msg[14] = {0};
+static uint8_t tx_final_msg[60] = {0};
+static uint8_t tx_resp_msg[22] = {0};
+static uint8_t tx_nearpoll_msg[80] = {0};
+static uint8_t tx_nearresp_msg[80] = {0};
+static uint8_t tx_nearfinal_msg[80] = {0};
 
-/* Frames used in the ranging process. See NOTE 2 below. */
-static uint8_t tx_poll_msg[18] = {0};
-//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-	
-//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-	
-/* Frame sequence number, incremented after each transmission. */
 static uint32_t frame_seq_nb = 0;	
-	
-/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
 static uint32_t status_reg = 0;
-	
-/* Buffer to store received response message.
- * Its size is adjusted to longest frame that this example code is supposed to handle. */
-#define RX_BUF_LEN 		24
-static uint8_t rx_buffer[RX_BUF_LEN];
-	
-/* Time-stamps of frames transmission/reception, expressed in device time units.
- * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
+static uint8_t rx_buffer[100];
 static uint64_t poll_tx_ts;
 static uint64_t resp_rx_ts;
 static uint64_t final_tx_ts;
-	
-/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
 static uint64_t poll_rx_ts;
 static uint64_t resp_tx_ts;
 static uint64_t final_rx_ts;
-
 static double tof;
-	
-uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS];	
+int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS];	;	
 uint32_t tag_id = 0;
 uint32_t tag_id_recv = 0;
+uint32_t anc_id_recv = 0;
 uint8_t random_delay_tim = 0;
-
 double distance, dist_no_bias, dist_cm;
-
 uint32_t g_UWB_com_interval = 0; 
 float dis_after_filter;				//当前距离值
 LPFilter_Frac* p_Dis_Filter;		//测距用的低通滤波器
-
-uint16_t g_Tagdist[TOTAL_TAG_NUM];
+uint16_t g_Tagdist[TAG_NUM_IN_SYS];
 uint8_t g_flag_Taggetdist[256];
-/*------------------------------------ Functions ------------------------------------------*/
 
-
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_tx_timestamp_u64()
- *
- * @brief Get the TX time-stamp in a 64-bit variable.
- *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param  none
- *
- * @return  64-bit value of the read time-stamp.
- */
 static uint64_t get_tx_timestamp_u64(void)
 {
     uint8_t ts_tab[5];
@@ -170,16 +62,6 @@
     return ts;
 }
 
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_rx_timestamp_u64()
- *
- * @brief Get the RX time-stamp in a 64-bit variable.
- *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param  none
- *
- * @return  64-bit value of the read time-stamp.
- */
 static uint64_t get_rx_timestamp_u64(void)
 {
     uint8_t ts_tab[5];
@@ -194,17 +76,6 @@
     return ts;
 }
 
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn final_msg_set_ts()
- *
- * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final
- *        message, the least significant byte is at the lower address.
- *
- * @param  ts_field  pointer on the first byte of the timestamp field to fill
- *         ts  timestamp value
- *
- * @return none
- */
 static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts)
 {
     int i;
@@ -261,8 +132,7 @@
 
     /* Set expected response's delay and timeout. See NOTE 4 and 5 below.
      * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
-    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
-    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);						//设置接收超时时间
+				//设置接收超时时间
 }
 void Dw1000_App_Init(void)
 {
@@ -270,137 +140,16 @@
 	tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
 	tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
 	tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
-	memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
-	memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
-	memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
+	tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
 	
+	memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 2);
+	memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 2);
+	memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 2);
+	memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 2);
+	memcpy(&tx_nearresp_msg[ANCHOR_ID_IDX], &dev_id, 2);
+	memcpy(&tx_nearpoll_msg[TAG_ID_IDX], &dev_id, 2);
+	memcpy(&tx_nearfinal_msg[TAG_ID_IDX], &dev_id, 2);
 }	
-void tag_sleep_configuraion(void)
-{
-	dwt_configuresleep(0x940, 0x7);
-	dwt_entersleep();
-}
-uint16_t g_Resttimer;
-uint8_t result;
-u8 tag_succ_times=0;
-void Tag_App(void)//发送模式(TAG标签)
-{
-	uint32_t frame_len;
-	uint32_t final_tx_time;
-	u32 start_poll;
-	u8 i;
-	
-	g_Resttimer=0;
-	UART_CheckReceive();
-	GPIO_ResetBits(SPIx_GPIO, SPIx_CS);
-	delay_us(2500);
-	GPIO_SetBits(SPIx_GPIO, SPIx_CS);
-	tag_succ_times = 0;
-	for(i=0;i<REPOET_ANC_NUM;i++)
-	{
-	/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
-	tx_poll_msg[ANC_TYPE_IDX] = i;
-		
-	dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
-	dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
-
-	/* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
-	 * set by dwt_setrxaftertxdelay() has elapsed. */
-	dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-	start_poll = time32_incr;
-	/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
-	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
-	{ if(time32_incr - start_poll>20)
-		NVIC_SystemReset();
-	
-	};
-
-	/* Increment frame sequence number after transmission of the poll message (modulo 256). */
-	frame_seq_nb++;
-	if(status_reg==0xffffffff)
-	{
-		NVIC_SystemReset();
-	}
-
-	if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
-	{
-		/* Clear good RX frame event and TX frame sent in the DW1000 status register. */
-		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
-
-		/* A frame has been received, read it into the local buffer. */
-		frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;	//获得接收到的数据长度
-
-		dwt_readrxdata(rx_buffer, frame_len, 0);   //读取接收数据
-
-
-		/* Check that the frame is the expected response from the companion "DS TWR responder" example.
-		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-		
-		if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据
-		{
-			/* Retrieve poll transmission and response reception timestamp. */
-			poll_tx_ts = get_tx_timestamp_u64();										//获得POLL发送时间T1
-			resp_rx_ts = get_rx_timestamp_u64();										//获得RESPONSE接收时间T4
-			
-			memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2);
-			memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2);
-			/* Compute final message transmission time. See NOTE 9 below. */
-			final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
-			dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
-
-			/* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
-			final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
-
-			/* Write all timestamps in the final message. See NOTE 10 below. */
-			final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
-			final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts);
-			final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
-
-			/* Write and send final message. See NOTE 7 below. */
-		
-			dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
-			dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
-			result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
-			
-			tag_succ_times++;
-			
-			/* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
-			if(result==0)
-			{while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
-			{ };
-		}
-			/* Clear TXFRS event. */
-			dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
-
-			/* Increment frame sequence number after transmission of the final message (modulo 256). */
-			frame_seq_nb++;		
-			random_delay_tim = 0;
-		}
-		else
-		{
-			random_delay_tim = DFT_RAND_DLY_TIM_MS; //如果通讯失败,将间隔时间增加5ms,避开因为多标签同时发送引起的冲突。
-		}
-	}
-	else
-	{
-		/* Clear RX error events in the DW1000 status register. */
-		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
-		random_delay_tim = DFT_RAND_DLY_TIM_MS;
-	}
-//	deca_sleep(10);
-}
-	if(tag_succ_times!=REPOET_ANC_NUM)
-	{
-	random_delay_tim =time32_incr&0x8f+7;
-	}else{
-		random_delay_tim=0;
-	}
-	LED0_BLINK;
-	deca_sleep(random_delay_tim);
-	RTC_SET_ALARM(1);
-	/* Execute a delay between ranging exchanges. */
-	dwt_entersleep();
-}
 uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) 
 {
     uint16_t sum = 0;
@@ -411,117 +160,504 @@
     return sum;
 }
 
-u16 tag_time_recv[TOTAL_TAG_NUM];
-u8 usart_send[25];
+u16 tag_time_recv[TAG_NUM_IN_SYS];
+u8 usart_send[100],usart_send_anc[100];
 u8 battary,button;
 extern uint8_t g_pairstart;
-void Anchor_App(void)
+void tag_sleep_configuraion(void)
 {
-	uint32_t frame_len;
-	uint32_t resp_tx_time;
+	dwt_configuresleep(0x940, 0x7);
+	dwt_entersleep();
+}
+extern uint8_t g_start_send_flag;
+u8 g_start_sync_flag;
+void SyncPoll(u8 sync_seq,uint32_t sync_baseid)
+{u8 result;
+	g_start_sync_flag=1;   //中断模式,退出终端后,需要重新来过
+	dwt_forcetrxoff();   	//关闭接收,以防在RX ON 状态
 	
-	/* Clear reception timeout to start next ranging process. */
-	dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
-
-	/* Activate reception immediately. */
-	dwt_rxenable(0);//打开接收
-
-	/* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
-	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
-	{ 
-		UART_CheckReceive();
-		UART_CheckSend();
-		g_Resttimer=0;
-	};
-
-	if (status_reg & SYS_STATUS_RXFCG)//成功接收
-	{ u16 tag_recv_interval;
-		/* Clear good RX frame event in the DW1000 status register. */
-		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
-
-		/* A frame has been received, read it into the local buffer. */
-		frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度
-
-		dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-
-
-		/* Check that the frame is a poll sent by "DS TWR initiator" example.
-		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
 	
-		
-		//将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
-		//tag_id_recv = rx_buffer[TAG_ID_IDX];
-		memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4);
-		memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4);
-		//tx_resp_msg[TAG_ID_IDX] = tag_id_recv;
-//		if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START])
-//		{	tag_recv_interval =  tag_recv_timer - tag_time_recv[tag_id_recv];
-//		}else{
-//			tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv];
-//		}
-		
-		if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据
+	tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
+	memcpy(&tx_sync_msg[ANCHOR_ID_IDX],&sync_baseid,4);
+	dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+	dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度
+	dwt_starttx(DWT_START_TX_IMMEDIATE);
+	if(result==0)
+			{
+			 while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
+                { };
+		}
+			 dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位
+}
+uint16_t g_Resttimer;
+uint8_t result;
+u8 tag_succ_times=0;
+int32_t hex_dist;
+u16 checksum;
+int8_t tag_delaytime;
+extern uint16_t sync_timer;
+u16 tmp_time;
+int32_t temp_dist;
+u16 tagslotpos;
+
+u16 anclist_num=0,anclist_pos; //list 总数量和当前位置
+u16 ancid_list[TAG_NUM_IN_SYS];
+u8 nearbase_num=0,last_nearbase_num,next_nearbase_num;
+u16 nearbaseid_list[MAX_NEARBASE_NUM],mainbase_id,true_nearbase_idlist[MAX_NEARBASE_NUM];
+int32_t mainbase_dist,nearbase_distlist[MAX_NEARBASE_NUM],true_nearbase_distlist[MAX_NEARBASE_NUM];
+uint8_t trygetnearmsg_times;
+
+u8 FindNearBasePos(u16 baseid)
+{
+	u8 i;
+	for(i=0;i<=nearbase_num;i++)
+	{
+		if(baseid==nearbaseid_list[i])
+			return i;
+	}
+	return i+1;
+}
+u8 recbase_num=0;
+#define CHANGE_BASE_THRESHOLD  5
+void NearAncSelect(void)
+{static u16 last_mainbase_id,change_base_count;
+	int32_t nearbase_mindist=99999, nearbase_minpos;
+	u8 i;
+	for(i=0;i<recbase_num-1;i++)
+	{
+		if(nearbase_mindist>nearbase_distlist[i])
 		{
-			/* Retrieve poll reception timestamp. */
+			nearbase_mindist=nearbase_distlist[i];
+			nearbase_minpos=i;
+		}
+	}
+	if(nearbase_mindist<mainbase_dist-THRESHOLD_CHANGE_MAINBASE_DIST)
+	{
+		if(last_mainbase_id==nearbaseid_list[nearbase_minpos])
+		{
+			change_base_count++;
+			if(change_base_count>CHANGE_BASE_THRESHOLD)
+			{
+				mainbase_id=last_mainbase_id;
+				tag_state=GETNEARMSG;
+			}
+		}else{
+			change_base_count=0;
+		}
+		last_mainbase_id=nearbaseid_list[nearbase_minpos];		
+	}else{
+		change_base_count=0;
+	}
+}
+u8 anclost_times=0;
+u8 exsistbase_list[MAX_NEARBASE_NUM],report_num;
+u16 temp_sync_timer1,temp_sync_timer2;
+void NearPoll(void)
+{
+	static u8 mainbase_lost_count=0,flag_finalsend,flag_rxon;
+	uint32_t temp1,temp2,dw_systime;
+	uint32_t frame_len;
+	uint32_t final_tx_time;
+	u32 start_poll;
+	u8 i,j,getsync_flag=0,timeout;
+//	printf("%d",sync_timer);
+		dwt_forcetrxoff();
+    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
+    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);		
+	tag_succ_times = 0;
+	GPIO_WriteBit(GPIOA, GPIO_Pin_10, Bit_SET);
+	if(next_nearbase_num>=MAX_NEARBASE_NUM)
+	{
+		next_nearbase_num = MAX_NEARBASE_NUM-1;
+	}
+	//nearbase_num=0;
+	last_nearbase_num=next_nearbase_num;
+	recbase_num=0;
+	tx_nearpoll_msg[BATTARY_IDX] = Get_Battary();
+	tx_nearpoll_msg[BUTTON_IDX] = !READ_KEY0;
+	tx_nearpoll_msg[SEQUENCE_IDX] = frame_seq_nb++;
+	tx_nearpoll_msg[NEARBASENUM_INDEX] = nearbase_num;
+	memcpy(&tx_nearpoll_msg[NEARBASEID_INDEX],&nearbaseid_list,nearbase_num*2);
+	tx_nearpoll_msg[MESSAGE_TYPE_IDX] = NEAR_POLL;	
+	memcpy(&tx_nearpoll_msg[ANCHOR_ID_IDX],&mainbase_id,2);	
+	dwt_writetxdata(13+2*nearbase_num, tx_nearpoll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+	dwt_writetxfctrl(13+2*nearbase_num, 0);//设置超宽带发送数据长度
+	dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
+	
+	flag_finalsend=0;
+	flag_rxon=1;
+	neartimout_timer=0;
+
+	timeout=ceil((float)nearbase_num/4)+2;
+	//timeout=5;
+	mainbase_dist=100000;
+	mainbase_lost_count++;
+			while(neartimout_timer<timeout)
+			{
+					while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
+					{
+						if(flag_finalsend)
+						{
+							dw_systime=dwt_readsystimestamphi32();
+							if(dw_systime>temp1&&dw_systime<temp2)
+							{
+								flag_finalsend=0;
+								flag_rxon=0;
+								dwt_forcetrxoff();
+								dwt_setdelayedtrxtime(final_tx_time);
+								result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送	
+								break;
+							}
+						}
+						 if(neartimout_timer>timeout)
+								break;
+					};
+					if(status_reg==0xffffffff)
+					{
+						NVIC_SystemReset();
+					}
+					if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
+						{
+							dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
+							frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;	//获得接收到的数据长度
+							dwt_readrxdata(rx_buffer, frame_len, 0);   //读取接收数据
+							dwt_setrxtimeout(0);//DELAY_BETWEEN_TWO_FRAME_UUS*(nearbase_num+1-recbase_num)+10);//设定接收超时时间,0位没有超时时间
+							dwt_rxenable(0);//打开接收
+							if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据
+							{	u16 rec_nearbaseid,rec_nearbasepos;
+								int32_t temp_dist;
+								poll_tx_ts = get_tx_timestamp_u64();										//获得POLL发送时间T1
+								resp_rx_ts = get_rx_timestamp_u64();										//获得RESPONSE接收时间T4	
+								recbase_num++;
+								memcpy(&rec_nearbaseid,&rx_buffer[ANCHOR_ID_IDX],2);
+								if(nearbase_num==0)
+								{
+									nearbaseid_list[0]=rec_nearbaseid;
+									nearbase_num=1;
+									memcpy(&tx_nearfinal_msg[ANCHOR_ID_IDX],&rec_nearbaseid,2);
+								}
+								if(rec_nearbaseid==nearbaseid_list[0])
+								{
+									//////////////////////////////////时间同步
+									temp_sync_timer2=sync_timer;
+									memcpy(&temp_sync_timer1,&rx_buffer[ANCTIMEMS],2);
+									memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
+									sync_timer=temp_sync_timer1;
+									exsistbase_list[0]=10;
+////									memcpy(&tagslotpos,&rx_buffer[TAGSLOTPOS],2);		
+//									
+									tmp_time=tmp_time+450;
+									if(tmp_time>999)
+									{
+										tmp_time-=999;
+										sync_timer++;
+										if(sync_timer>=1010)
+											{sync_timer=0;}
+									}
+									TIM3->CNT=tmp_time;
+									
+//									if(tagslotpos>max_slotpos)
+//										tagslotpos=tagslotpos%(max_slotpos+1);
+//										tyncpoll_time=(tagslotpos-1)*slottime;
+									////////////////////////////
+									rec_nearbasepos=0;
+									exsistbase_list[rec_nearbasepos]=10;
+									memcpy(&temp_dist,&rx_buffer[DIST_IDX],4);
+									nearbase_distlist[rec_nearbasepos]=temp_dist;
+									
+									mainbase_lost_count=0;
+									flag_finalsend=1;
+									final_tx_time = (resp_rx_ts + ((RESP_RX_TO_FINAL_TX_DLY_UUS+DELAY_BETWEEN_TWO_FRAME_UUS*nearbase_num+500) * UUS_TO_DWT_TIME)) >> 8;
+									temp1=final_tx_time-((350*UUS_TO_DWT_TIME)>>8);
+									temp2=final_tx_time+((100*UUS_TO_DWT_TIME)>>8);
+								//	dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
+									final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
+									final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
+									final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX], resp_rx_ts);
+									final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
+									tx_nearfinal_msg[MESSAGE_TYPE_IDX]=NEAR_FINAL;
+									dwt_writetxdata(28+nearbase_num*4, tx_nearfinal_msg, 0);//将发送数据写入DW1000
+									dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度
+									if(temp_dist!=0x1ffff)
+									{
+									#ifndef USART_INTEGRATE_OUTPUT
+										usart_send[2] = 1;//正常模式
+										usart_send[3] = 17;//数据段长度
+										usart_send[4] = frame_seq_nb;//数据段长度
+										memcpy(&usart_send[5],&dev_id,2);
+										memcpy(&usart_send[7],&rec_nearbaseid,2);				
+										memcpy(&usart_send[9],&rx_buffer[DIST_IDX],4);
+										usart_send[13] = battary;
+										usart_send[14] = button;
+										checksum = Checksum_u16(&usart_send[2],17);
+										memcpy(&usart_send[19],&checksum,2);
+										UART_PushFrame(usart_send,21);
+									#endif
+									}
+									//result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送			
+								}else{
+									rec_nearbasepos=FindNearBasePos(rec_nearbaseid);
+									if(rec_nearbasepos>nearbase_num)          //发现新的基站
+									{
+										nearbase_num++;
+										nearbaseid_list[nearbase_num] = rec_nearbaseid;
+										memcpy(&tx_nearfinal_msg[ANCHOR_ID_IDX],&rec_nearbaseid,2);
+									}
+									
+									exsistbase_list[rec_nearbasepos]=10;
+									memcpy(&temp_dist,&rx_buffer[DIST_IDX],4);
+									nearbase_distlist[rec_nearbasepos]=temp_dist;
+									
+									final_msg_set_ts(&tx_nearfinal_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos)*4], resp_rx_ts);								
+									dwt_writetxdata(28+nearbase_num*4, tx_nearfinal_msg, 0);//将发送数据写入DW1000
+									dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度
+									LED0_BLINK;
+									if(temp_dist!=0x1ffff)
+									{
+										#ifndef USART_INTEGRATE_OUTPUT
+										usart_send[2] = 1;//正常模式
+										usart_send[3] = 17;//数据段长度
+										usart_send[4] = frame_seq_nb;//数据段长度
+										memcpy(&usart_send[5],&dev_id,2);
+										memcpy(&usart_send[7],&rec_nearbaseid,2);				
+										memcpy(&usart_send[9],&rx_buffer[DIST_IDX],4);
+										usart_send[13] = battary;
+										usart_send[14] = button;
+										checksum = Checksum_u16(&usart_send[2],17);
+										memcpy(&usart_send[19],&checksum,2);
+										UART_PushFrame(usart_send,21);
+										#endif
+
+									//dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
+								//	result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送			
+									//dwt_writetxdata(4,&tx_near_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4], FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4);//将发送数据写入DW1000
+								}
+							}									
+							}
+						}else{
+						dwt_write32bitreg(SYS_STATUS_ID,SYS_STATUS_RXFCG| SYS_STATUS_ALL_RX_ERR);
+						if(flag_rxon)
+							{dwt_rxenable(0);	
+							}								
+						}							
+			}
+				GPIO_WriteBit(GPIOA, GPIO_Pin_10, Bit_RESET);
+//			if(result==0)
+//			{
+//			 while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
+//                { };
+//		}
+//			 dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位
+	
+			dwt_write32bitreg(SYS_STATUS_ID,SYS_STATUS_RXFCG| SYS_STATUS_ALL_RX_ERR);
+			nearbase_num=recbase_num;
+			j=0;
+			if(exsistbase_list[0]==0)
+			{
+			 u8 temp_adc,random_value;
+				random_value=0;
+				for(i=0;i<8;i++)
+				{
+					temp_adc=Get_ADC_Value();
+					random_value=random_value|((temp_adc&0x01)<<i);
+				}
+				tyncpoll_time=(random_value%max_slotpos)*slottime;	
+			}
+			next_nearbase_num=0;
+			for(i=0;i<last_nearbase_num;i++)
+			{
+				if(exsistbase_list[i]-->0)
+				{
+					next_nearbase_num++;
+					true_nearbase_idlist[j]=nearbaseid_list[i];			
+					true_nearbase_distlist[j++]=nearbase_distlist[i];
+				}
+			
+			}
+		
+			for(i=0;i<last_nearbase_num-1;i++)
+			{
+				for(j=0;j<last_nearbase_num-1;j++)
+				{
+					if(true_nearbase_distlist[j]>true_nearbase_distlist[j+1])
+					{
+						u32 temp_dist,temp_id;
+						temp_dist=true_nearbase_distlist[j];
+						temp_id = true_nearbase_idlist[j];
+						true_nearbase_distlist[j]=true_nearbase_distlist[j+1];
+						true_nearbase_idlist[j]=true_nearbase_idlist[j+1];
+						true_nearbase_distlist[j+1]=temp_dist;
+						true_nearbase_idlist[j+1]=temp_id;
+					}			
+				}
+			}
+			report_num=0;
+	for (i=0;i<nearbase_num;i++)
+			{
+				nearbaseid_list[i]=true_nearbase_idlist[i];
+				nearbase_distlist[i]=true_nearbase_distlist[i];
+				if(nearbase_distlist[i]!=0x1ffff)
+				{
+					memcpy(&usart_send[4+6*report_num],&nearbaseid_list[i],2);
+					memcpy(&usart_send[6+6*report_num],&nearbase_distlist[i],4);
+					report_num++;
+				}
+			}
+			for(i=0;i<MAX_NEARBASE_NUM;i++)
+			{
+				nearbase_distlist[i]=0x1ffff;
+			}
+		//	printf("%d,%d",temp_sync_timer2,temp_sync_timer1);
+			#ifdef USART_INTEGRATE_OUTPUT		
+				usart_send[2] = 4;//正常模式
+				usart_send[3] = report_num*6+2;//正常模式
+				checksum = Checksum_u16(&usart_send[2],report_num*6+2);
+				memcpy(&usart_send[4+report_num*6],&checksum,2);
+				UART_PushFrame(usart_send,6+report_num*6);
+			#endif
+//			if(mainbase_lost_count>5)
+//			{
+//				//tag_state=DISCPOLL;
+//			}
+//			NearAncSelect();
+//			if(recbase_num<g_com_map[MIN_REPORT_ANC_NUM] )
+//			{
+//				anclost_times++;
+//				if(anclost_times>3)
+//				{
+//					tagslotpos=poll_tx_ts%(max_slotpos+1);
+//				}
+//			}else{
+//				anclost_times=0;
+//			}
+
+	dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+
+
+}
+
+//void GetNearMsg(void)
+//{
+//	u32 start_poll,frame_len;
+//	memcpy(&tx_near_msg[ANCHOR_ID_IDX],&mainbase_id,2);
+//	memcpy(&tx_near_msg[TAG_ID_IDX],&dev_id,2);
+//	tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG;
+//	
+//	dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
+//  dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);	
+//	dwt_writetxdata(12, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+//	dwt_writetxfctrl(12, 0);//设置超宽带发送数据长度
+//	dwt_starttx(DWT_START_TX_IMMEDIATE| DWT_RESPONSE_EXPECTED);
+//	start_poll = time32_incr;
+//	/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
+//	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
+//	{ if(time32_incr - start_poll>20)
+//		NVIC_SystemReset();
+//	};
+//	if(status_reg==0xffffffff)
+//	{
+//		NVIC_SystemReset();
+//	}
+//	if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
+//	{
+//		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
+//		frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;	//获得接收到的数据长度
+//		dwt_readrxdata(rx_buffer, frame_len, 0);   //读取接收数据
+//		if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_MSG&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据
+//		{
+//			nearbase_num=rx_buffer[NEARBASENUM_INDEX];
+//			tagslotpos=rx_buffer[TAGSLOTPOS];
+//			memcpy(nearbaseid_list,&rx_buffer[NEARBASEID_INDEX],nearbase_num*2);
+//			slottime=ceil((nearbase_num+2)*0.3)+1;
+//			tyncpoll_time=tagslotpos*slottime;
+//			tag_state=NEARPOLL;
+//		}
+//	}
+//}
+
+void Tag_App(void)//发送模式(TAG标签)
+{
+	//LED0_ON;
+	g_Resttimer=0;
+	NearPoll();
+}
+
+int8_t correction_time,new_tagid=0;
+extern uint8_t sync_seq;
+u16 taglist_num=0,taglist_pos;
+u16 tagid_list[TAG_NUM_IN_SYS];
+u8 tagofflinetime[TAG_NUM_IN_SYS];
+int32_t tagdist_list[TAG_NUM_IN_SYS];
+void TagListUpdate(void)
+{
+	u16 i,j=0,temp[TAG_NUM_IN_SYS];
+	for(i=0;i<taglist_num;i++)
+	{
+		if(tagofflinetime[i]++<QUIT_SLOT_TIME)
+		{
+			tagid_list[j]=tagid_list[i];
+			tagofflinetime[j++]=tagofflinetime[i];
+		}
+	}
+	taglist_num=j;
+}
+u16 CmpTagInList(u16 tagid)
+{u16 i;
+	for(i=0;i<taglist_num;i++)
+	{
+		if(memcmp(&tagid,&tagid_list[i],2)==0)
+			return i+1;
+	}
+	return 0;
+}
+uint32_t frame_len;
+uint32_t resp_tx_time;
+uint8_t rec_nearbase_num,anc_report_num;
+void Anchor_RecPoll(void)
+{
+			tmp_time=TIM3->CNT;
+			memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2);
+			memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2);
+			memcpy(&tx_resp_msg[TAGSLOTPOS],&taglist_pos,1);
+			
 			poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
 
-			/* Set send time for response. See NOTE 8 below. */
 			resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。
 			dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3
-
-			/* Set expected delay and timeout for final message reception. */
 			dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置发送完成后开启接收延迟时间
 			dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
-
-			/* Write and send the response message. See NOTE 9 below.*/
-			memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2);
-		
+			
+			memcpy(&tx_resp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4);			
+			memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,2);
+			
 			dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
 			dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
 			result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
 
-			/* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
-			 * See NOTE 7 below. */
+			battary = rx_buffer[BATTARY_IDX];
+			button = rx_buffer[BUTTON_IDX];
+			frame_seq_nb = rx_buffer[SEQUENCE_IDX];
 			if(result==0)
 			{
 				while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
 			{ };
 		}
-			/* Increment frame sequence number after transmission of the response message (modulo 256). */
-			frame_seq_nb++;
-
 			if (status_reg & SYS_STATUS_RXFCG)//接收成功
 			{
-				/* Clear good RX frame event and TX frame sent in the DW1000 status register. */
 				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位
-
-				/* A frame has been received, read it into the local buffer. */
 				frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度
-
 				dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-
-
-				/* Check that the frame is a final message sent by "DS TWR initiator" example.
-				 * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
-			
-				if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包
+			if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包
 				{
 					uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
 					uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
 					double Ra, Rb, Da, Db;
 					int64_t tof_dtu;
-					u32 hex_dist;
-					u16 checksum;
-					/* Retrieve response transmission and final reception timestamps. */
 					resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
 					final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
-
-					/* Get timestamps embedded in the final message. */
 					final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5
 					final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts);
 					final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
-
-					/* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */
 					poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算
 					resp_tx_ts_32 = (uint32_t)resp_tx_ts;
 					final_rx_ts_32 = (uint32_t)final_rx_ts;
@@ -530,122 +666,257 @@
 					Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4
 					Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2
 					tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
-
 					tof = tof_dtu * DWT_TIME_UNITS;
 					distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
 					dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数
-
-					dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离
-//					dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定
-					
+					dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离				
 					/*--------------------------以下为非测距逻辑------------------------*/
+					//dist_cm=33000;
+					
 					LED0_BLINK; //每成功一次通讯则闪烁一次
-					g_UWB_com_interval = 0;
 					dis_after_filter=dist_cm;
-		//			g_Tagdist[tag_id_recv-TAG_ID_START]=dist_cm;
-//					if(g_pairstart==1&&dist_cm<20)
-//					{
-//						g_pairstart=0;
-//						g_com_map[PAIR_ID]=tag_id_recv;
-//						save_com_map_to_flash();
-//						BEEP2_ON;
-//						delay_ms(1000);
-//						printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]);
-//					}
-					// tag_time_recv[tag_id_recv] = tag_recv_timer;
-					g_flag_Taggetdist[tag_id_recv]=0;
-					#ifdef HEX_OUTPUT
-					usart_send[2] = frame_seq_nb;
-					//usart_send[6] = tag_id_recv;
-					//usart_send[8] = g_com_map[DEV_ID];
-					memcpy(&usart_send[3],&dev_id,4);
-					memcpy(&usart_send[7],&dev_id,4);
-					hex_dist = dist_cm;
-					memcpy(&usart_send[11],&hex_dist,4);
-					usart_send[15] = battary;
-					usart_send[16] = button;
-					checksum = Checksum_u16(&usart_send[2],19);
-					memcpy(&usart_send[20],&checksum,2);
-					UART_PushFrame(usart_send,23);
-					#else
-					printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter);
-					#endif
-					//dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm);
-
+					hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET];
+					if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000)
+						{
+							tagdist_list[taglist_pos] = hex_dist;
+								}
+						his_dist[taglist_pos]=hex_dist;							
 				}
 			}else{
-				/* Clear RX error events in the DW1000 status register. */
 				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
 			}
+}
+u8 misdist_num,seize_anchor;
+u8 Anchor_RecNearPoll(u8 ancrec_nearbasepos) //0 mainbase  1 first near_base
+{
+			tmp_time=TIM3->CNT;
+			memcpy(&tx_nearresp_msg[ANCTIMEMS],&sync_timer,2);
+			memcpy(&tx_nearresp_msg[ANCTIMEUS],&tmp_time,2);
+			memcpy(&tx_nearresp_msg[TAGSLOTPOS],&taglist_pos,2);
+			memcpy(&tx_nearresp_msg[TAG_ID_IDX],&tag_id_recv,2);
+			poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
+
+			resp_tx_time = (poll_rx_ts + ((POLL_RX_TO_RESP_TX_DLY_UUS+ancrec_nearbasepos*DELAY_BETWEEN_TWO_FRAME_UUS) * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。
+			dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3
+			dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS+(rec_nearbase_num+1-ancrec_nearbasepos)*DELAY_BETWEEN_TWO_FRAME_UUS);//设置发送完成后开启接收延迟时间
+			dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
+
+			if(new_tagid)
+			{
+				tagdist_list[taglist_pos]=0x1ffff;
+				memcpy(&tx_nearresp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4);
+			}else{
+				memcpy(&tx_nearresp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4);
+			}
+	
+			tx_nearresp_msg[MESSAGE_TYPE_IDX]=NEAR_RESPONSE;
+			dwt_writetxdata(20, tx_nearresp_msg, 0);//写入发送数据
+			dwt_writetxfctrl(20, 0);//设定发送长度
+			result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
+
+			battary = rx_buffer[BATTARY_IDX];
+			button = rx_buffer[BUTTON_IDX];
+			frame_seq_nb = rx_buffer[SEQUENCE_IDX];
+			if(result==0)
+			{
+				while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_sync_flag)///不断查询芯片状态直到接收成功或者出现错误
+			{ };
+		}else{
+			result++;
 		}
+	
+			if (status_reg & SYS_STATUS_RXFCG)//接收成功
+			{
+				
+				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位
+				frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度
+				dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
+			if(seize_anchor&&memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,2)) //抢占anchor 失败
+			{
+				return 1;
+			}
+			if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包
+				{
+					uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
+					uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
+					double Ra, Rb, Da, Db;
+					int64_t tof_dtu;
+					resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
+					final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
+					final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5
+					final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_NEARBASE_IDX+ancrec_nearbasepos*4], &resp_rx_ts);
+					final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
+
+					poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算
+					resp_tx_ts_32 = (uint32_t)resp_tx_ts;
+					final_rx_ts_32 = (uint32_t)final_rx_ts;
+					Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1
+					Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3
+					Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4
+					Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2
+					tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
+					tof = tof_dtu * DWT_TIME_UNITS;
+					distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
+					dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数
+					dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离				
+					/*--------------------------以下为非测距逻辑------------------------*/
+					//dist_cm=33000;
+					
+					LED0_BLINK; //每成功一次通讯则闪烁一次
+					dis_after_filter=dist_cm;
+					hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET];
+					if(hex_dist>-1000&&hex_dist<100000)
+					{
+					if(abs(hex_dist-his_dist[taglist_pos])<1500||misdist_num>3)
+					{
+						misdist_num=0;
+					tagdist_list[taglist_pos] = hex_dist;	
+					his_dist[taglist_pos]=hex_dist;	
+				#ifndef USART_INTEGRATE_OUTPUT
+					usart_send[2] = 1;//正常模式
+					usart_send[3] = 17;//数据段长度
+					usart_send[4] = frame_seq_nb;//数据段长度
+					memcpy(&usart_send[5],&tag_id_recv,2);
+					memcpy(&usart_send[7],&dev_id,2);				
+					memcpy(&usart_send[9],&tagdist_list[taglist_pos],4);
+					usart_send[13] = battary;
+					usart_send[14] = button;
+					checksum = Checksum_u16(&usart_send[2],17);
+					memcpy(&usart_send[19],&checksum,2);
+					UART_PushFrame(usart_send,21);
+				#else		
+					memcpy(&usart_send_anc[4+6*anc_report_num],&tag_id_recv,2);
+					memcpy(&usart_send_anc[6+6*anc_report_num],&tagdist_list[taglist_pos],4);
+					anc_report_num++;
+				#endif
+					}else{
+					//	printf("%d",hex_dist);
+						misdist_num++;
+					}
+				}
+			}
+		
+			}else{
+					//printf("%x/n",status_reg);
+				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+			}
+	
+}
+uint32_t current_syncid=0xffffffff,synclost_timer;
+extern u8 flag_syncbase;
+void Anchor_App(void)
+{
+	
+	u8 send_len,i;
+	u16 tempid;
+	uint32_t rec_syncid;
+	
+	g_start_sync_flag=0;
+	dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
+	dwt_rxenable(0);//打开接收
+
+	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误
+	{ 
+		IdleTask();
+		g_Resttimer=0;
+	};
+
+	if (status_reg & SYS_STATUS_RXFCG)//成功接收
+	{ u16 tag_recv_interval;
+
+		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
+		frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度
+		dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
+		//将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
+		//tag_id_recv = rx_buffer[TAG_ID_IDX];
+		memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],2);
+		memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2);
+		taglist_pos=CmpTagInList(tag_id_recv);
+		if(taglist_pos==0)
+		{
+			synclost_timer=0;
+			tagid_list[taglist_num++]=tag_id_recv;
+			taglist_pos=taglist_num;
+			new_tagid=1;
+		}else{
+			new_tagid=0;
+		}
+		tagofflinetime[taglist_pos-1]=0;
+		switch(rx_buffer[MESSAGE_TYPE_IDX])
+		{
+//			case POLL:
+//				if (anchor_type == rx_buffer[ANC_TYPE_IDX])
+//				Anchor_RecPoll();
+//				break;
+			case SYNC:
+				
+				memcpy(&rec_syncid,&rx_buffer[ANCHOR_ID_IDX],4);
+				if(rec_syncid<current_syncid)
+				{
+					current_syncid=rec_syncid;
+					flag_syncbase=0;
+					sync_seq=rx_buffer[SYNC_SEQ_IDX]+1;
+					TIM3->CNT = sync_seq*325%1000+15;
+					sync_timer = sync_seq*325/1000;
+					synclost_timer=0;
+					SyncPoll(sync_seq,rec_syncid);			
+					}else if(rec_syncid==current_syncid)
+				{
+					if(rx_buffer[SYNC_SEQ_IDX]<sync_seq)		
+						{
+							flag_syncbase=0;
+							sync_seq=rx_buffer[SYNC_SEQ_IDX]+1;
+							TIM3->CNT = sync_seq*325%1000+15;
+							sync_timer = sync_seq*325/1000;
+							synclost_timer=0;
+							SyncPoll(sync_seq,rec_syncid);
+						}
+				
+				}
+				break;
+//			case NEAR_MSG:
+//				if(anc_id_recv==dev_id)
+//				{
+//					rx_buffer[TAGSLOTPOS]=taglist_pos;
+//					tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG;
+//					memcpy(&tx_near_msg[TAG_ID_IDX],&tag_id_recv,2);
+//					tx_near_msg[NEARBASENUM_INDEX]=g_com_map[NEARBASE_NUM];
+//					memcpy(&tx_near_msg[NEARBASEID_INDEX],&g_com_map[NEARBASE_ID1],g_com_map[NEARBASE_NUM]*2);
+//					send_len=11+g_com_map[NEARBASE_NUM]*2+2;
+//					dwt_writetxdata(send_len, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+//					dwt_writetxfctrl(send_len, 0);//设置超宽带发送数据长度
+//					dwt_starttx(DWT_START_TX_IMMEDIATE);
+//				}
+//				break;
+//		
+			case NEAR_POLL:
+				
+				rec_nearbase_num=rx_buffer[NEARBASENUM_INDEX];
+			
+				for(i=0;i<rec_nearbase_num;i++)
+				{
+					 memcpy(&tempid,&rx_buffer[NEARBASEID_INDEX+i*2],2);
+					if(tempid==dev_id)
+					{
+						seize_anchor=0;  //非抢占。已存在列表中
+						Anchor_RecNearPoll(i);	
+						break;
+					}						
+				}
+					if(i==rec_nearbase_num)
+					{
+						seize_anchor=1;   //抢占anchor
+						Anchor_RecNearPoll(i);	
+					}
+				
+				break;
+		
+		}
+		
 	}
 	else
 	{
-		/* Clear RX error events in the DW1000 status register. */
 		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
 	}
 }
 
-/*****************************************************************************************************************************************************
- * NOTES:
- *
- * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value
- *    but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing
- *    range measurements.
- * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE
- *    802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are:
- *     - a poll message sent by the initiator to trigger the ranging exchange.
- *     - a response message sent by the responder allowing the initiator to go on with the process
- *     - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the
- *       time-of-flight (distance) estimate.
- *    The first 10 bytes of those frame are common and are composed of the following fields:
- *     - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing).
- *     - byte 2: sequence number, incremented for each new frame.
- *     - byte 3/4: PAN TAG_ID (0xDECA).
- *     - byte 5/6: destination address, see NOTE 3 below.
- *     - byte 7/8: source address, see NOTE 3 below.
- *     - byte 9: function code (specific values to indicate which message it is in the ranging process).
- *    The remaining bytes are specific to each message as follows:
- *    Poll message:
- *     - no more data
- *    Response message:
- *     - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange).
- *     - byte 11/12: activity parameter, not used here for activity code 0x02.
- *    Final message:
- *     - byte 10 -> 13: poll message transmission timestamp.
- *     - byte 14 -> 17: response message reception timestamp.
- *     - byte 18 -> 21: final message transmission timestamp.
- *    All messages end with a 2-byte checksum automatically set by DW1000.
- * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a
- *    unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only
- *    after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange.
- * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator
- *    and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more
- *    details about the timings involved in the ranging process.
- * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value
- *    is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the
- *    110k data rate used (around 3 ms).
- * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using
- *    the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory.
- * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is
- *    automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not
- *    work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using
- *    delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the
- *    transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent,
- *    this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have
- *    been carefully defined to avoid this situation.
- * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please
- *    refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we
- *    use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5
- *    bytes.
- * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000
- *    register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to
- *    response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the
- *    lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower
- *    8 bits.
- * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by
- *     more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the
- *     time-of-flight computation) can be handled by a 32-bit subtraction.
- * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the
- *     DW1000 API Guide for more details on the DW1000 driver functions.
- ****************************************************************************************************************************************************/

--
Gitblit v1.9.3