From 7f53552cf8d33444254e46d1be482825e7d6a578 Mon Sep 17 00:00:00 2001 From: zhyinch <zhyinch@gmail.com> Date: 星期三, 13 十一月 2019 14:59:33 +0800 Subject: [PATCH] v1.7 --- 源码/核心板/Src/main.c | 788 ++++++++++---------------------------------------------- 1 files changed, 141 insertions(+), 647 deletions(-) diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c" index 8d90fc3..5214f75 100644 --- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c" +++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c" @@ -1,124 +1,100 @@ -/*! ---------------------------------------------------------------------------- - * @file main.c - * @brief Double-sided two-way ranging (DS TWR) initiator example code - * - * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" - * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example - * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to - * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX - * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air - * and, thus, the estimated distance between the two devices. - * - * @attention - * - * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland. - * - * All rights reserved. - * - * @author Decawave - */ -#include <string.h> -#include <stdio.h> -#include "deca_device_api.h" -#include "deca_regs.h" + #include "Rcc_Nvic_Systick.h" #include "Usart.h" #include "Spi.h" -#include "dw_driver.h" #include "led.h" #include "beep.h" +#include "dw_driver.h" +#include "dw_app.h" +#include "stm32f10x_it.h" +#include "serial_at_cmd_app.h" +#include "global_param.h" +#include "ADC.h" -/* Example application name and version to display on LCD screen. */ -#define APP_NAME "DS TWR INIT v1.1" +//#define DEBUG_MODE -/* Inter-ranging delay period, in milliseconds. */ -#define RNG_DELAY_MS 100 - -/* Default communication configuration. We use here EVK1000's default mode (mode 3). */ -static dwt_config_t config = +void Device_Init(void) { - 2, /* Channel number. */ - DWT_PRF_64M, /* Pulse repetition frequency. */ - DWT_PLEN_1024, /* Preamble length. */ - DWT_PAC32, /* Preamble acquisition chunk size. Used in RX only. */ - 9, /* TX preamble code. Used in TX only. */ - 9, /* RX preamble code. Used in RX only. */ - 1, /* Use non-standard SFD (Boolean) */ - DWT_BR_110K, /* Data rate. */ - DWT_PHRMODE_STD, /* PHY header mode. */ - (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ -}; -/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */ -#define TX_ANT_DLY 0 -#define RX_ANT_DLY 32899 -static uint8 rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; + RCC_Configuration(); + //SystemInit(); + NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x5000); + Nvic_Init(); +// Systick_Init(); + TIM3_Int_Init(); + Led_Init(); + Beep_Init(); + DW_GPIO_Init(); + Uart1_Init(); + Spi_Init(); + ADC_Configuration(); + + GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); +} +u8 anchor_type; +u32 dev_id; +u8 hbsend[16]; +void HeartBeatInit(void) +{ + u16 checksum; + hbsend[0]=0x55; + hbsend[1]=0xAA; + hbsend[2]=0x2; + hbsend[3]=0xc; + memcpy(&hbsend[4],&g_com_map[DEV_ID],2); + checksum = Checksum_u16(&hbsend[2],12); + memcpy(&hbsend[14],&checksum,2); +} +u16 tyncpoll_time; +u16 slottime,max_slotpos; +void Program_Init(void) +{ float temp; + u16 temp2; + uint16_t i; + Usart1ParseDataCallback = UsartParseDataHandler; + parameter_init(); + //deca_sleep(1000); + HeartBeatInit(); +#ifdef DEBUG_MODE + g_com_map[DEV_ROLE]=1; + g_com_map[DEV_ID]=4; + g_com_map[COM_INTERVAL]=100; + g_com_map[MAX_REPORT_ANC_NUM]=3; +#endif + OUT485_ENABLE; + g_com_map[VERSION] = 0x0107; + dev_id = g_com_map[DEV_ID]; + temp=(float)g_com_map[MAX_REPORT_ANC_NUM]*4/3; + temp2=g_com_map[MAX_REPORT_ANC_NUM]*4/3; + if(temp2<temp) + { + temp2++; + } + slottime=temp2; + max_slotpos=g_com_map[COM_INTERVAL]/slottime; + tyncpoll_time=(g_com_map[DEV_ID]%max_slotpos)*slottime; + + if(g_com_map[DEV_ROLE]) + { + printf("标签ID: %d .\r\n",dev_id); + printf("通讯间隔: %d ms.\r\n",g_com_map[COM_INTERVAL]); + printf("单次通讯基站数量: %d个.\r\n",g_com_map[MAX_REPORT_ANC_NUM]); + }else{ + + anchor_type = dev_id%g_com_map[MAX_REPORT_ANC_NUM]; + printf("基站ID: %x .\r\n",dev_id); + printf("基站类型: %c .\r\n",anchor_type+0x41); + printf("单次通讯基站数量: %d个.\r\n",g_com_map[MAX_REPORT_ANC_NUM]); + } + OUT485_DISABLE; +// printf("DEVICE PAIRID: %d .\r\n",g_com_map[PAIR_ID]); +// printf("DEVICE ALARM DISTANCE: 1.%d 2.%d 3.%d .\r\n",g_com_map[ALARM_DISTANCE1],g_com_map[ALARM_DISTANCE2],g_com_map[ALARM_DISTANCE3]); - -/* Frames used in the ranging process. See NOTE 2 below. */ -static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -static uint8 tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; -/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */ -typedef signed long long int64; -typedef unsigned long long uint64; -static uint64 poll_rx_ts; -static uint64 resp_tx_ts; -static uint64 final_rx_ts; - -static double tof; -static double distance, dist2; -int16_t dist[8]; -#define ALL_MSG_COMMON_LEN 10 -/* Indexes to access some of the fields in the frames defined above. */ -#define ALL_MSG_SN_IDX 2 -#define FINAL_MSG_POLL_TX_TS_IDX 10 -#define FINAL_MSG_RESP_RX_TS_IDX 14 -#define FINAL_MSG_FINAL_TX_TS_IDX 18 -#define FINAL_MSG_TS_LEN 4 -/* Frame sequence number, incremented after each transmission. */ -static uint32 frame_seq_nb = 0; - -/* Buffer to store received response message. - * Its size is adjusted to longest frame that this example code is supposed to handle. */ -#define RX_BUF_LEN 20 -#define RX_BUF_LEN2 24 -static uint8 rx_buffer[RX_BUF_LEN + 4]; - -/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ -static uint32 status_reg = 0; - -/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor. - * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */ -#define UUS_TO_DWT_TIME 65536 - -/* Delay between frames, in UWB microseconds. See NOTE 4 below. */ -/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ -#define POLL_TX_TO_RESP_RX_DLY_UUS 150 -/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the - * frame length of approximately 2.66 ms with above configuration. */ -#define RESP_RX_TO_FINAL_TX_DLY_UUS 4100 -/* Receive response timeout. See NOTE 5 below. */ -#define RESP_RX_TIMEOUT_UUS 14700 - -#define POLL_RX_TO_RESP_TX_DLY_UUS 3600 -/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ -#define RESP_TX_TO_FINAL_RX_DLY_UUS 500 -/* Receive final timeout. See NOTE 5 below. */ -#define FINAL_RX_TIMEOUT_UUS 4300 -#define SPEED_OF_LIGHT 299702547 -/* Time-stamps of frames transmission/reception, expressed in device time units. - * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */ -typedef unsigned long long uint64; -static uint64 poll_tx_ts; -static uint64 resp_rx_ts; -static uint64 final_tx_ts; - -/* Declaration of static functions. */ -static uint64 get_tx_timestamp_u64(void); -static uint64 get_rx_timestamp_u64(void); -static void final_msg_set_ts(uint8 *ts_field, uint64 ts); + + for(i=0;i<255;i++) + { + g_Tagdist[i]=0xffff; + } +} /*! ------------------------------------------------------------------------------------------------------------------ * @fn main() @@ -129,551 +105,69 @@ * * @return none */ -static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts) -{ - int i; - *ts = 0; - for (i = 0; i < FINAL_MSG_TS_LEN; i++) - { - *ts += ts_field[i] << (i * 8); - } +void HeatBeat(void) +{ +UART_PushFrame(hbsend,16); } -//void GPIO_Toggle(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) -//{ -// GPIO_WriteBit(GPIOx, GPIO_Pin, (BitAction)!GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin)); -//} -int fputc(int ch, FILE *f) - +extern u8 g_start_sync_flag; +u16 heartbeat_timer,poll_timer,sync_timer; +void IdleTask(void) { + g_start_sync_flag=0; + UART_CheckReceive(); + UART_CheckSend(); + if(heartbeat_timer>1000) + { + heartbeat_timer=0; + if(g_com_map[HEARTBEAT]&&g_com_map[DEV_ROLE]==0) + HeatBeat(); + } - USART_SendData(USART1, (unsigned char) ch);// USART1 ???? USART2 ? + if(g_com_map[CNT_UPDATE]==1) + { + uint32_t result = 0; + u16 tmp = 0xAAAA; + __disable_irq(); + result = FLASH_Prepare(0x8004A38, 2); + if(result) + result = FLASH_Write(0x8004A38, (const uint8_t*)&tmp, 2); + __enable_irq(); + printf("进入升级模式\r\n"); + g_com_map[CNT_UPDATE]=0; + save_com_map_to_flash(); + delay_ms(100); + // STMFLASH_Write_NoCheck(0x8004A38,0xAAAA); + // Delay_ms(100); + SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader + } - while (!(USART1->SR & USART_FLAG_TXE)); - - return (ch); - - -} - -void USART_putc(char c) + } +int main(void) { - //while(!(USART2->SR & 0x00000040)); - //USART_SendData(USART2,c); - /* e.g. write a character to the USART */ - USART_SendData(USART1, c); - - /* Loop until the end of transmission */ - while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) ; -} - -void USART_puts(uint8_t *s, uint8_t len) -{ - int i; - for(i = 0; i < len; i++) - { - USART_putc(s[i]); - } -} -int ld[100]; -int LP(int tmp, uint8_t channel) -{ - int data; - data = 0.7 * ld[channel] + 0.3 * tmp; - ld[channel] = data; - return data; -} -uint16_t Checksum_u16(uint8_t *pdata, uint32_t len) -{ - uint16_t sum = 0; - uint32_t i; - for(i = 0; i < len; i++) - sum += pdata[i]; - sum = ~sum; - return sum; -} -//void LED_blink(void) -//{ -// uint8_t ii; -// for (ii = 0; ii < 10; ii++) -// { -// GPIO_Toggle(GPIOA, LED_PIN); -// deca_sleep(100); -// } -//} -//extern volatile unsigned long time32_reset; -uint8_t Work_Mode = 1; -uint32 frame_len; -uint8_t send[9]; -char dist_str[16] = {0}; -int32_t dis; -double dID; -uint8_t TAG_ID, ANCHOR_ID, jumptime = 0; -uint32_t rec_dist, hex_dist; -uint16_t check; - -uint8_t tempaaaa[5] = {0}; - -void Device_Init(void) -{ - Rcc_Init(); - Nvic_Init(); - Systick_Init(); - Led_Init(); - Beep_Init(); - DW_GPIO_Init(); - Usart_Init(); - Spi_Init(); + + Device_Init(); + Program_Init(); + Dw1000_Init(); + delay_ms(10); + Dw1000_App_Init(); + /* Loop forever initiating ranging exchanges. */ + RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); + usart_send[0]=0x55; + usart_send[1]=0xAA; - GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); while(1) { - dwt_readsystime(tempaaaa); - delay_ms(500); -// dwt_readsystime(&tempb); -// delay_ms(500); + + if(g_start_send_flag) + { + g_start_send_flag = 0; + Tag_App(); + } + IdleTask(); +if(g_com_map[DEV_ROLE]==0) + Anchor_App(); } } -int main(void) -{ - - Device_Init(); -// RCC_ClocksTypeDef RCC_Clocks; /* Start with board specific hardware init. */ -// peripherals_init();//初始化外设 -// RCC_GetClocksFreq(&RCC_Clocks); - /* Display application name on LCD. */ - // lcd_display_str(APP_NAME); - - /* Reset and initialise DW1000. - * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum - * performance. */ - Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ -// spi_set_rate_low();//降低SPI频率 - dwt_initialise(DWT_LOADUCODE);//初始化DW1000 -// spi_set_rate_high();//回复SPI频率 - Spi_ChangePrescaler(SPIx_PRESCALER_FAST); //设置为快速模式 - - /* Configure DW1000. See NOTE 6 below. */ - dwt_configure(&config);//配置DW1000 - - /* Apply default antenna delay value. See NOTE 1 below. */ - dwt_setrxantennadelay(RX_ANT_DLY); //设置接收天线延迟 - dwt_settxantennadelay(TX_ANT_DLY); //设置发射天线延迟 - - /* Set expected response's delay and timeout. See NOTE 4 and 5 below. - * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ - dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);//设置发送后开启接收,并设定延迟时间 - dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间 - - send[0] = 0x6D; //串口数据 - send[1] = 0xD6; //串口数据 - - tx_poll_msg[6] = ANCHOR_ID; //UWB POLL 包数据 - rx_resp_msg[6] = ANCHOR_ID; //UWB RESPONSE 包数据 - tx_final_msg[6] = ANCHOR_ID;//UWB Fianl 包数据 - - rx_poll_msg[6] = ANCHOR_ID; - tx_resp_msg[6] = ANCHOR_ID; - rx_final_msg[6] = ANCHOR_ID; - - tx_poll_msg[5] = TAG_ID;//UWB POLL 包数据 - rx_resp_msg[5] = TAG_ID;//UWB RESPONSE 包数据 - tx_final_msg[5] = TAG_ID;//UWB Fianl 包数据 - /* Loop forever initiating ranging exchanges. */ -//LED_blink(); - if(!Work_Mode) //选择发送模式(TAG标签)还是接收模式(ANCHOR基站) - { - while (1) //发送模式(TAG标签) - { - /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ - tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; - dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 - dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度 - - /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay - * set by dwt_setrxaftertxdelay() has elapsed. */ - dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 - - /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 - { }; - - /* Increment frame sequence number after transmission of the poll message (modulo 256). */ - frame_seq_nb++; - - if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 - { - uint32 frame_len; - - /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 - - /* A frame has been received, read it into the local buffer. */ - frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 - - dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 - /* Check that the frame is the expected response from the companion "DS TWR responder" example. - * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[9] == 0x10) //判断接收到的数据是否是response数据 - { - uint32 final_tx_time; - - - /* Retrieve poll transmission and response reception timestamp. */ - poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 - resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 - - memcpy(&dist[TAG_ID], &rx_buffer[11], 2); - - /* Compute final message transmission time. See NOTE 9 below. */ - final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2 - dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 - - /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ - final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay - - /* Write all timestamps in the final message. See NOTE 10 below. */ - final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据 - final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); - final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); - - /* Write and send final message. See NOTE 7 below. */ - tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; - dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000 - dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度 - dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 - -// if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式 -// { -// dID = TAG_ID; -// printf("TAG_ID: %2.0f ", dID); -// dID = ANCHOR_ID; -// printf("ANCHOR_ID: %2.0f ", dID); -// printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); -// } -// else - { - send[2] = ANCHOR_ID; - send[3] = TAG_ID; - - memcpy(&send[4], &dist[TAG_ID], 2); - check = Checksum_u16(&send[2], 6); - memcpy(&send[8], &check, 2); - USART_puts(send, 10); - } - /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ - while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 - { }; - - /* Clear TXFRS event. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位 - - /* Increment frame sequence number after transmission of the final message (modulo 256). */ - frame_seq_nb++; -// time32_reset = 0; -// GPIO_Toggle(GPIOA, LED_PIN); //LED闪烁 - LED0_BLINK; - jumptime = 0; - } - else - { - jumptime = 5; //如果通讯失败,将间隔时间增加5ms,避开因为多标签同时发送引起的冲突。 - } - } - else - { - /* Clear RX error events in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); - jumptime = 5; - } - - /* Execute a delay between ranging exchanges. */ - deca_sleep(RNG_DELAY_MS + jumptime); //休眠固定时间 - } - } - else - { - while (1)//接收模式(ANCHOR基站) - { - /* Clear reception timeout to start next ranging process. */ - dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 - - /* Activate reception immediately. */ - dwt_rxenable(0);//打开接收 - - /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误 - { }; - - if (status_reg & SYS_STATUS_RXFCG)//成功接收 - { - - - /* Clear good RX frame event in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清楚标志位 - - /* A frame has been received, read it into the local buffer. */ - frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度 - - dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 - - - /* Check that the frame is a poll sent by "DS TWR initiator" example. - * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - TAG_ID = rx_buffer[5]; - rx_poll_msg[5] = TAG_ID;//为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 - tx_resp_msg[5] = TAG_ID; - rx_final_msg[5] = TAG_ID; - if (rx_buffer[9] == 0x21) //判断是否是poll包数据 - { - uint32 resp_tx_time; - - /* Retrieve poll reception timestamp. */ - poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 - - /* Set send time for response. See NOTE 8 below. */ - resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。 - dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3 - - /* Set expected delay and timeout for final message reception. */ - dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置发送完成后开启接收延迟时间 - dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 - - /* Write and send the response message. See NOTE 9 below.*/ - memcpy(&tx_resp_msg[11], &dist[TAG_ID], 2); - tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; - dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据 - dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度 - dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 - - /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. - * See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误 - { }; - - /* Increment frame sequence number after transmission of the response message (modulo 256). */ - frame_seq_nb++; - - if (status_reg & SYS_STATUS_RXFCG)//接收成功 - { - /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位 - - /* A frame has been received, read it into the local buffer. */ - frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度 - - dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 - - - /* Check that the frame is a final message sent by "DS TWR initiator" example. - * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[9] == 0x23) //判断是否为Fianl包 - { - uint32 poll_tx_ts, resp_rx_ts, final_tx_ts; - uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; - double Ra, Rb, Da, Db; - int64 tof_dtu; - - /* Retrieve response transmission and final reception timestamps. */ - resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 - final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 - - /* Get timestamps embedded in the final message. */ - final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5 - final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); - final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); - - /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ - poll_rx_ts_32 = (uint32)poll_rx_ts;//使用32位数据计算 - resp_tx_ts_32 = (uint32)resp_tx_ts; - final_rx_ts_32 = (uint32)final_rx_ts; - Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 - Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 - Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 - Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 - tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式 - - tof = tof_dtu * DWT_TIME_UNITS; - distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间 - dist2 = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数 - - dis = dist2 * 100; //dis 为单位为cm的距离 - dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定 -// time32_reset = 0; - LED0_BLINK; -// if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式 -// { -// dID = TAG_ID; -// printf("TAG_ID: %2.0f ", dID); -// dID = ANCHOR_ID; -// printf("ANCHOR_ID: %2.0f ", dID); -// printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); -// } -// else - { - send[2] = ANCHOR_ID; - send[3] = TAG_ID; - - memcpy(&send[4], &dist[TAG_ID], 2); - check = Checksum_u16(&send[2], 6); - memcpy(&send[8], &check, 2); - USART_puts(send, 10); - } - - } - } - else - { - /* Clear RX error events in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); - } - } - } - else - { - /* Clear RX error events in the DW1000 status register. */ - dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); - } - } - - - } -} - -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn get_tx_timestamp_u64() - * - * @brief Get the TX time-stamp in a 64-bit variable. - * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! - * - * @param none - * - * @return 64-bit value of the read time-stamp. - */ -static uint64 get_tx_timestamp_u64(void) -{ - uint8 ts_tab[5]; - uint64 ts = 0; - int i; - dwt_readtxtimestamp(ts_tab); - for (i = 4; i >= 0; i--) - { - ts <<= 8; - ts |= ts_tab[i]; - } - return ts; -} - -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn get_rx_timestamp_u64() - * - * @brief Get the RX time-stamp in a 64-bit variable. - * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! - * - * @param none - * - * @return 64-bit value of the read time-stamp. - */ -static uint64 get_rx_timestamp_u64(void) -{ - uint8 ts_tab[5]; - uint64 ts = 0; - int i; - dwt_readrxtimestamp(ts_tab); - for (i = 4; i >= 0; i--) - { - ts <<= 8; - ts |= ts_tab[i]; - } - return ts; -} - -/*! ------------------------------------------------------------------------------------------------------------------ - * @fn final_msg_set_ts() - * - * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final - * message, the least significant byte is at the lower address. - * - * @param ts_field pointer on the first byte of the timestamp field to fill - * ts timestamp value - * - * @return none - */ -static void final_msg_set_ts(uint8 *ts_field, uint64 ts) -{ - int i; - for (i = 0; i < FINAL_MSG_TS_LEN; i++) - { - ts_field[i] = (uint8) ts; - ts >>= 8; - } -} - -/***************************************************************************************************************************************************** - * NOTES: - * - * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value - * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing - * range measurements. - * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE - * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: - * - a poll message sent by the initiator to trigger the ranging exchange. - * - a response message sent by the responder allowing the initiator to go on with the process - * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the - * time-of-flight (distance) estimate. - * The first 10 bytes of those frame are common and are composed of the following fields: - * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). - * - byte 2: sequence number, incremented for each new frame. - * - byte 3/4: PAN TAG_ID (0xDECA). - * - byte 5/6: destination address, see NOTE 3 below. - * - byte 7/8: source address, see NOTE 3 below. - * - byte 9: function code (specific values to indicate which message it is in the ranging process). - * The remaining bytes are specific to each message as follows: - * Poll message: - * - no more data - * Response message: - * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). - * - byte 11/12: activity parameter, not used here for activity code 0x02. - * Final message: - * - byte 10 -> 13: poll message transmission timestamp. - * - byte 14 -> 17: response message reception timestamp. - * - byte 18 -> 21: final message transmission timestamp. - * All messages end with a 2-byte checksum automatically set by DW1000. - * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a - * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only - * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. - * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator - * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more - * details about the timings involved in the ranging process. - * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value - * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the - * 110k data rate used (around 3 ms). - * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using - * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. - * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is - * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not - * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using - * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the - * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, - * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have - * been carefully defined to avoid this situation. - * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please - * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we - * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 - * bytes. - * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 - * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to - * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the - * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower - * 8 bits. - * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by - * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the - * time-of-flight computation) can be handled by a 32-bit subtraction. - * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the - * DW1000 API Guide for more details on the DW1000 driver functions. - ****************************************************************************************************************************************************/ -- Gitblit v1.9.3