From 92b08120ac577b151dc0ea315c87593c5508cc70 Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期三, 13 十一月 2019 08:30:50 +0800
Subject: [PATCH] 武汉天汉达测距V1.6
---
源码/核心板/Src/application/dw_app.c | 382 ++++++++++++++++++++++++++++++++++-------------------
1 files changed, 244 insertions(+), 138 deletions(-)
diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
index b28421b..82c7da6 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
@@ -3,12 +3,7 @@
* @file main.c
* @brief Double-sided two-way ranging (DS TWR) initiator example code
*
- * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll"
- * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example
- * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to
- * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX
- * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air
- * and, thus, the estimated distance between the two devices.
+ *
*
* @attention
*
@@ -31,7 +26,7 @@
#include "global_param.h"
#include "filters.h"
#include <stdio.h>
-
+#include "beep.h"
/*------------------------------------ Marcos ------------------------------------------*/
@@ -51,9 +46,9 @@
#define POLL_TX_TO_RESP_RX_DLY_UUS 150
/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
* frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500
+#define RESP_RX_TO_FINAL_TX_DLY_UUS 400
/* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 2700
+#define RESP_RX_TIMEOUT_UUS 600
#define POLL_RX_TO_RESP_TX_DLY_UUS 420
/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
@@ -64,26 +59,37 @@
#define SPEED_OF_LIGHT 299702547
/* Indexes to access some of the fields in the frames defined above. */
-#define ALL_MSG_SN_IDX 2
#define FINAL_MSG_POLL_TX_TS_IDX 10
#define FINAL_MSG_RESP_RX_TS_IDX 14
#define FINAL_MSG_FINAL_TX_TS_IDX 18
#define FINAL_MSG_TS_LEN 4
+#define SYNC_SEQ_IDX 5
+
#define GROUP_ID_IDX 0
#define ANCHOR_ID_IDX 1
-#define TAG_ID_IDX 3
-#define MESSAGE_TYPE_IDX 5
-#define DIST_IDX 6
+#define TAG_ID_IDX 5
+#define MESSAGE_TYPE_IDX 9
+#define DIST_IDX 10
+//Poll
+#define ANC_TYPE_IDX 14
+#define BATTARY_IDX 15
+#define BUTTON_IDX 16
+#define SEQUENCE_IDX 17
+//respose
+#define ANCTIMEMS 14
+#define ANCTIMEUS 16
+#define TAGSLOTPOS 18
#define POLL 0x01
#define RESPONSE 0x02
#define FINAL 0x03
+#define SYNC 0x04
/*------------------------------------ Variables ------------------------------------------*/
/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
static dwt_config_t config = {
- 5, /* Channel number. */
+ 2, /* Channel number. */
DWT_PRF_64M, /* Pulse repetition frequency. */
DWT_PLEN_128, /* Preamble length. */
DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */
@@ -96,12 +102,13 @@
};
/* Frames used in the ranging process. See NOTE 2 below. */
-static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
+static uint8_t tx_poll_msg[20] = {0};
+static uint8_t tx_sync_msg[14] = {0};
//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
+static uint8_t tx_resp_msg[22] = {0};
//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/* Frame sequence number, incremented after each transmission. */
@@ -128,9 +135,9 @@
static double tof;
-uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS];
-uint8_t tag_id = 0;
-uint8_t tag_id_recv = 0;
+int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ;
+uint32_t tag_id = 0;
+uint32_t tag_id_recv = 0;
uint8_t random_delay_tim = 0;
double distance, dist_no_bias, dist_cm;
@@ -139,7 +146,7 @@
float dis_after_filter; //当前距离值
LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器
-uint16_t g_Tagdist[256];
+uint16_t g_Tagdist[TAG_NUM_IN_SYS];
uint8_t g_flag_Taggetdist[256];
/*------------------------------------ Functions ------------------------------------------*/
@@ -259,53 +266,102 @@
/* Set expected response's delay and timeout. See NOTE 4 and 5 below.
* As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
- dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
- dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间
+ //设置接收超时时间
}
void Dw1000_App_Init(void)
{
-// g_com_map[DEV_ID] = 0x02;
+//g_com_map[DEV_ID] = 0x0b;
tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
- memcpy(&tx_poll_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2);
- memcpy(&tx_final_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2);
- memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &g_com_map[DEV_ID], 2);
+ tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
+ memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
+ memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
+ memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
+ memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4);
}
+uint16_t Checksum_u16(uint8_t* pdata, uint32_t len)
+{
+ uint16_t sum = 0;
+ uint32_t i;
+ for(i=0; i<len; i++)
+ sum += pdata[i];
+ sum = ~sum;
+ return sum;
+}
+
+u16 tag_time_recv[TAG_NUM_IN_SYS];
+u8 usart_send[25];
+u8 battary,button;
+extern uint8_t g_pairstart;
void tag_sleep_configuraion(void)
{
dwt_configuresleep(0x940, 0x7);
dwt_entersleep();
}
+extern uint8_t g_start_send_flag;
+u8 g_start_sync_flag;
+void SyncPoll(u8 sync_seq)
+{
+ g_start_sync_flag=1;
+ dwt_forcetrxoff();
+ tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
+ dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+ dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度
+ dwt_starttx(DWT_START_TX_IMMEDIATE);
+}
uint16_t g_Resttimer;
uint8_t result;
+u8 tag_succ_times=0;
+int32_t hex_dist;
+u16 checksum;
+int8_t tag_delaytime;
+extern uint16_t sync_timer;
+u16 tmp_time;
+int32_t temp_dist;
+u16 tagslotpos;
void Tag_App(void)//发送模式(TAG标签)
{
uint32_t frame_len;
uint32_t final_tx_time;
-
+ u32 start_poll;
+ u8 i,getsync_flag=0;
+ //LED0_ON;
+ dwt_forcetrxoff();
g_Resttimer=0;
- UART_CheckReceive();
- GPIO_ResetBits(SPIx_GPIO, SPIx_CS);
- delay_us(2500);
- GPIO_SetBits(SPIx_GPIO, SPIx_CS);
-
+ dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
+ dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
+ tag_succ_times = 0;
+ tx_poll_msg[BATTARY_IDX] = Get_Battary();
+ tx_poll_msg[BUTTON_IDX] = !READ_KEY0;
+ tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++;
+ GPIO_WriteBit(GPIOA, GPIO_Pin_9, Bit_RESET);
+ for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++)
+ {
/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
- tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+ tx_poll_msg[ANC_TYPE_IDX] = i;
+
dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
/* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
* set by dwt_setrxaftertxdelay() has elapsed. */
dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-
+ start_poll = time32_incr;
/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
- { };
+ { if(time32_incr - start_poll>20)
+ NVIC_SystemReset();
+ UART_CheckReceive();
+
+ };
/* Increment frame sequence number after transmission of the poll message (modulo 256). */
- frame_seq_nb++;
+ if(status_reg==0xffffffff)
+ {
+ NVIC_SystemReset();
+ }
if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
{
@@ -320,15 +376,34 @@
/* Check that the frame is the expected response from the companion "DS TWR responder" example.
* As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
- if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE) //判断接收到的数据是否是response数据
+
+ if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据
{
/* Retrieve poll transmission and response reception timestamp. */
poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1
resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4
- memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2);
- memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2);
+ if(getsync_flag==0)
+ {
+ getsync_flag=1;
+ memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
+ memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
+ memcpy(&tagslotpos,&rx_buffer[TAGSLOTPOS],2);
+ tmp_time=tmp_time+450;
+ if(tmp_time>999)
+ {
+ tmp_time-=999;
+ sync_timer++;
+ if(sync_timer>=1010)
+ {sync_timer=0;}
+ }
+ TIM3->CNT=tmp_time;
+ if(tagslotpos>max_slotpos)
+ tagslotpos=tagslotpos%(max_slotpos+1);
+ tyncpoll_time=(tagslotpos-1)*slottime;
+ }
+ memcpy(&anchor_dist_last_frm[0], &rx_buffer[DIST_IDX], 4);
+ memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4);
/* Compute final message transmission time. See NOTE 9 below. */
final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
@@ -342,12 +417,36 @@
final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
/* Write and send final message. See NOTE 7 below. */
- tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+
dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+ tag_succ_times++;
+ LED0_BLINK;
+// temp_dist=anchor_dist_last_frm[0];
+// if(anchor_dist_last_frm[0]>1000000)
+// {
+// temp_dist=anchor_dist_last_frm[0]-0xffffffff;
+// temp_dist+=0xffff;
+// anchor_dist_last_frm[0]=temp_dist;
+// }
+
+
+ usart_send[2] = 1;//正常模式
+ usart_send[3] = 17;//数据段长度
+ usart_send[4] = frame_seq_nb;//数据段长度
+ memcpy(&usart_send[5],&dev_id,2);
+ memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2);
+ hex_dist = anchor_dist_last_frm[0]+(int16_t)g_com_map[DIST_OFFSET];
+ memcpy(&usart_send[9],&hex_dist,4);
+ usart_send[13] = battary;
+ usart_send[14] = button;
+ checksum = Checksum_u16(&usart_send[2],17);
+ memcpy(&usart_send[19],&checksum,2);
+ UART_PushFrame(usart_send,21);
+
/* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
if(result==0)
{while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
@@ -357,7 +456,7 @@
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
/* Increment frame sequence number after transmission of the final message (modulo 256). */
- frame_seq_nb++;
+
random_delay_tim = 0;
}
else
@@ -371,12 +470,48 @@
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
random_delay_tim = DFT_RAND_DLY_TIM_MS;
}
- LED0_BLINK;
- /* Execute a delay between ranging exchanges. */
- dwt_entersleep();
+}
+
+if(getsync_flag==0)
+{
+tagslotpos--;
+ if(tagslotpos==0||tagslotpos>max_slotpos)
+ {
+ tagslotpos=max_slotpos;
+ }
+ tyncpoll_time=(tagslotpos-1)*slottime;
+}
}
-extern uint8_t g_pairstart;
+
+int8_t correction_time;
+extern uint8_t sync_seq;
+u16 taglist_num=0,taglist_pos;
+u16 tagid_list[TAG_NUM_IN_SYS];
+u8 tagofflinetime[TAG_NUM_IN_SYS];
+void TagListUpdate(void)
+{
+ u16 i,j=0,temp[TAG_NUM_IN_SYS];
+ for(i=0;i<taglist_num;i++)
+ {
+ if(tagofflinetime[i]++<QUIT_SLOT_TIME)
+ {
+ tagid_list[j]=tagid_list[i];
+ tagofflinetime[j++]=tagofflinetime[i];
+ }
+ }
+ taglist_num=j;
+}
+u16 CmpTagInList(u16 tagid)
+{u16 i;
+ for(i=0;i<taglist_num;i++)
+ {
+ if(memcmp(&tagid,&tagid_list[i],2)==0)
+ return i+1;
+ }
+ return 0;
+}
+
void Anchor_App(void)
{
uint32_t frame_len;
@@ -389,14 +524,14 @@
dwt_rxenable(0);//打开接收
/* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
- while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误
{
- UART_CheckReceive();
+ IdleTask();
g_Resttimer=0;
};
if (status_reg & SYS_STATUS_RXFCG)//成功接收
- {
+ { u16 tag_recv_interval;
/* Clear good RX frame event in the DW1000 status register. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
@@ -408,15 +543,28 @@
/* Check that the frame is a poll sent by "DS TWR initiator" example.
* As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
+
//将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
- tag_id_recv = rx_buffer[TAG_ID_IDX];
- tx_resp_msg[TAG_ID_IDX] = tag_id_recv;
-
-
- if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&tag_id_recv!= g_com_map[PAIR_ID]) //判断是否是poll包数据
+ //tag_id_recv = rx_buffer[TAG_ID_IDX];
+ memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4);
+ memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4);
+ taglist_pos=CmpTagInList(tag_id_recv);
+ if(taglist_pos==0)
{
+ tagid_list[taglist_num++]=tag_id_recv;
+ taglist_pos=taglist_num;
+ }
+ tagofflinetime[taglist_pos-1]=0;
+ if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据
+ {
+ tmp_time=TIM3->CNT;
+ memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2);
+ memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2);
+ memcpy(&tx_resp_msg[TAGSLOTPOS],&taglist_pos,2);
+// if(correction_time>10)
+// {correction_time++;}
+
/* Retrieve poll reception timestamp. */
poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
@@ -429,12 +577,16 @@
dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
/* Write and send the response message. See NOTE 9 below.*/
- memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2);
- tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+ if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS)
+ memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv-TAG_ID_START], 4);
+
dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
+ battary = rx_buffer[BATTARY_IDX];
+ button = rx_buffer[BUTTON_IDX];
+ frame_seq_nb = rx_buffer[SEQUENCE_IDX];
/* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
* See NOTE 7 below. */
if(result==0)
@@ -443,7 +595,6 @@
{ };
}
/* Increment frame sequence number after transmission of the response message (modulo 256). */
- frame_seq_nb++;
if (status_reg & SYS_STATUS_RXFCG)//接收成功
{
@@ -458,14 +609,14 @@
/* Check that the frame is a final message sent by "DS TWR initiator" example.
* As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
- if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&rx_buffer[TAG_ID_IDX]==tag_id_recv&&rx_buffer[ANCHOR_ID_IDX]==g_com_map[DEV_ID]) //判断是否为Final包
+
+ if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包
{
uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
double Ra, Rb, Da, Db;
int64_t tof_dtu;
-
+
/* Retrieve response transmission and final reception timestamps. */
resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
@@ -493,27 +644,45 @@
// dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定
/*--------------------------以下为非测距逻辑------------------------*/
+ //dist_cm=33000;
+
LED0_BLINK; //每成功一次通讯则闪烁一次
- g_UWB_com_interval = 0;
dis_after_filter=dist_cm;
- g_Tagdist[tag_id_recv]=dist_cm;
- if(g_pairstart==1&&dist_cm<20)
+ hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET];
+ if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS)
+ if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000)
{
- g_pairstart=0;
- g_com_map[PAIR_ID]=tag_id_recv;
- save_com_map_to_flash();
- printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]);
+ g_Tagdist[tag_id_recv-TAG_ID_START] = hex_dist;
+ anchor_dist_last_frm[tag_id_recv-TAG_ID_START] = hex_dist;
}
- g_flag_Taggetdist[tag_id_recv]=0;
- printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter);
- //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm);
-
+ his_dist[tag_id_recv-TAG_ID_START]=hex_dist;
+
+ usart_send[2] = 1;//正常模式
+ usart_send[3] = 17;//数据段长度
+ usart_send[4] = frame_seq_nb;//数据段长度
+ memcpy(&usart_send[5],&tag_id_recv,2);
+ memcpy(&usart_send[7],&dev_id,2);
+
+ memcpy(&usart_send[9],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4);
+ usart_send[13] = battary;
+ usart_send[14] = button;
+ checksum = Checksum_u16(&usart_send[2],17);
+ memcpy(&usart_send[19],&checksum,2);
+ UART_PushFrame(usart_send,21);
}
- }
- else
- {
+ }else{
/* Clear RX error events in the DW1000 status register. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+ }
+ }else if(rx_buffer[MESSAGE_TYPE_IDX] == SYNC)
+ {
+ if(rx_buffer[SYNC_SEQ_IDX]<sync_seq)
+ // if(rx_buffer[SYNC_SEQ_IDX]==2)
+ {
+ sync_seq=rx_buffer[SYNC_SEQ_IDX]+1;
+ TIM3->CNT = sync_seq*325%1000+15;
+ sync_timer = sync_seq*325/1000;
+ SyncPoll(sync_seq);
}
}
}
@@ -524,66 +693,3 @@
}
}
-/*****************************************************************************************************************************************************
- * NOTES:
- *
- * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value
- * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing
- * range measurements.
- * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE
- * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are:
- * - a poll message sent by the initiator to trigger the ranging exchange.
- * - a response message sent by the responder allowing the initiator to go on with the process
- * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the
- * time-of-flight (distance) estimate.
- * The first 10 bytes of those frame are common and are composed of the following fields:
- * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing).
- * - byte 2: sequence number, incremented for each new frame.
- * - byte 3/4: PAN TAG_ID (0xDECA).
- * - byte 5/6: destination address, see NOTE 3 below.
- * - byte 7/8: source address, see NOTE 3 below.
- * - byte 9: function code (specific values to indicate which message it is in the ranging process).
- * The remaining bytes are specific to each message as follows:
- * Poll message:
- * - no more data
- * Response message:
- * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange).
- * - byte 11/12: activity parameter, not used here for activity code 0x02.
- * Final message:
- * - byte 10 -> 13: poll message transmission timestamp.
- * - byte 14 -> 17: response message reception timestamp.
- * - byte 18 -> 21: final message transmission timestamp.
- * All messages end with a 2-byte checksum automatically set by DW1000.
- * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a
- * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only
- * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange.
- * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator
- * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more
- * details about the timings involved in the ranging process.
- * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value
- * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the
- * 110k data rate used (around 3 ms).
- * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using
- * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory.
- * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is
- * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not
- * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using
- * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the
- * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent,
- * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have
- * been carefully defined to avoid this situation.
- * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please
- * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we
- * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5
- * bytes.
- * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000
- * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to
- * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the
- * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower
- * 8 bits.
- * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by
- * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the
- * time-of-flight computation) can be handled by a 32-bit subtraction.
- * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the
- * DW1000 API Guide for more details on the DW1000 driver functions.
- ****************************************************************************************************************************************************/
--
Gitblit v1.9.3