From 92ffaba03621e312b0620f22cd1f184522ee8f3e Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期六, 22 六月 2019 16:21:20 +0800
Subject: [PATCH] 32位ID

---
 源码/核心板/Src/application/dw_app.c |  355 +++++++++++++++++++++++++++++++++++++---------------------
 1 files changed, 226 insertions(+), 129 deletions(-)

diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
index 91bdfa4..7a0a4fc 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
@@ -26,6 +26,12 @@
 #include "dw_driver.h"
 #include "Spi.h"
 #include "led.h"
+#include "serial_at_cmd_app.h"
+#include "Usart.h"
+#include "global_param.h"
+#include "filters.h"
+#include <stdio.h>
+#include "beep.h"
 
 
 /*------------------------------------ Marcos ------------------------------------------*/
@@ -45,28 +51,32 @@
 #define POLL_TX_TO_RESP_RX_DLY_UUS 150
 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
  * frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 4100
+#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500
 /* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 14700
+#define RESP_RX_TIMEOUT_UUS 2700
 
-#define POLL_RX_TO_RESP_TX_DLY_UUS 3600
+#define POLL_RX_TO_RESP_TX_DLY_UUS 420
 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define RESP_TX_TO_FINAL_RX_DLY_UUS 500
+#define RESP_TX_TO_FINAL_RX_DLY_UUS 200
 /* Receive final timeout. See NOTE 5 below. */
 #define FINAL_RX_TIMEOUT_UUS 4300
 
 #define SPEED_OF_LIGHT 299702547
 
 /* Indexes to access some of the fields in the frames defined above. */
-#define ALL_MSG_SN_IDX 2
 #define FINAL_MSG_POLL_TX_TS_IDX 10
 #define FINAL_MSG_RESP_RX_TS_IDX 14
 #define FINAL_MSG_FINAL_TX_TS_IDX 18
 #define FINAL_MSG_TS_LEN 4
 
 #define GROUP_ID_IDX   				0
-#define SOURCE_ID_IDX    			1
-#define MESSAGE_TYPE_IDX 			3
+#define ANCHOR_ID_IDX    			1
+#define TAG_ID_IDX    				5
+#define MESSAGE_TYPE_IDX 			9	
+#define DIST_IDX 							10
+#define ANC_TYPE_IDX 					14
+#define BATTARY_IDX						15
+#define BUTTON_IDX						16
 
 #define POLL     					0x01
 #define RESPONSE 					0x02
@@ -74,62 +84,65 @@
 
 /*------------------------------------ Variables ------------------------------------------*/
 /* Default communication configuration. We use here EVK1000's default mode (mode 3). */
-static dwt_config_t config =
-{
-    2,               /* Channel number. */
-    DWT_PRF_64M,     /* Pulse repetition frequency. */
-    DWT_PLEN_1024,   /* Preamble length. */
-    DWT_PAC32,       /* Preamble acquisition chunk size. Used in RX only. */
-    9,               /* TX preamble code. Used in TX only. */
-    9,               /* RX preamble code. Used in RX only. */
-    1,               /* Use non-standard SFD (Boolean) */
-    DWT_BR_110K,     /* Data rate. */
-    DWT_PHRMODE_STD, /* PHY header mode. */
-    (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
+static dwt_config_t config = {
+	2,               /* Channel number. */
+	DWT_PRF_64M,     /* Pulse repetition frequency. */
+	DWT_PLEN_128,    /* Preamble length. */
+	DWT_PAC8,        /* Preamble acquisition chunk size. Used in RX only. */
+	9,               /* TX preamble code. Used in TX only. */
+	9,               /* RX preamble code. Used in RX only. */
+	0,               /* Use non-standard SFD (Boolean) */
+	DWT_BR_6M8,      /* Data rate. */
+	DWT_PHRMODE_STD, /* PHY header mode. */
+	(129 + 8 - 8)    /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
 };
 
 /* Frames used in the ranging process. See NOTE 2 below. */
-static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-//static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-static uint8 tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+static uint8_t tx_poll_msg[18] = {0};
+//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
+static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 	
-//static uint8 rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-//static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
+static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
+//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 	
 /* Frame sequence number, incremented after each transmission. */
-static uint32 frame_seq_nb = 0;	
+static uint32_t frame_seq_nb = 0;	
 	
 /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
-static uint32 status_reg = 0;
+static uint32_t status_reg = 0;
 	
 /* Buffer to store received response message.
  * Its size is adjusted to longest frame that this example code is supposed to handle. */
 #define RX_BUF_LEN 		24
-static uint8 rx_buffer[RX_BUF_LEN];
+static uint8_t rx_buffer[RX_BUF_LEN];
 	
 /* Time-stamps of frames transmission/reception, expressed in device time units.
  * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
-typedef unsigned long long uint64;
-static uint64 poll_tx_ts;
-static uint64 resp_rx_ts;
-static uint64 final_tx_ts;
+static uint64_t poll_tx_ts;
+static uint64_t resp_rx_ts;
+static uint64_t final_tx_ts;
 	
 /* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
-typedef signed long long int64;
-static uint64 poll_rx_ts;
-static uint64 resp_tx_ts;
-static uint64 final_rx_ts;
+static uint64_t poll_rx_ts;
+static uint64_t resp_tx_ts;
+static uint64_t final_rx_ts;
 
 static double tof;
 	
 uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS];	
-uint8_t tag_id = 0;
-uint8_t tag_id_recv = 0;
+uint32_t tag_id = 0;
+uint32_t tag_id_recv = 0;
 uint8_t random_delay_tim = 0;
 
 double distance, dist_no_bias, dist_cm;
 
+uint32_t g_UWB_com_interval = 0; 
+float dis_after_filter;				//当前距离值
+LPFilter_Frac* p_Dis_Filter;		//测距用的低通滤波器
+
+uint16_t g_Tagdist[TOTAL_TAG_NUM];
+uint8_t g_flag_Taggetdist[256];
 /*------------------------------------ Functions ------------------------------------------*/
 
 
@@ -143,10 +156,10 @@
  *
  * @return  64-bit value of the read time-stamp.
  */
-static uint64 get_tx_timestamp_u64(void)
+static uint64_t get_tx_timestamp_u64(void)
 {
-    uint8 ts_tab[5];
-    uint64 ts = 0;
+    uint8_t ts_tab[5];
+    uint64_t ts = 0;
     int i;
     dwt_readtxtimestamp(ts_tab);
     for (i = 4; i >= 0; i--)
@@ -167,10 +180,10 @@
  *
  * @return  64-bit value of the read time-stamp.
  */
-static uint64 get_rx_timestamp_u64(void)
+static uint64_t get_rx_timestamp_u64(void)
 {
-    uint8 ts_tab[5];
-    uint64 ts = 0;
+    uint8_t ts_tab[5];
+    uint64_t ts = 0;
     int i;
     dwt_readrxtimestamp(ts_tab);
     for (i = 4; i >= 0; i--)
@@ -192,17 +205,17 @@
  *
  * @return none
  */
-static void final_msg_set_ts(uint8 *ts_field, uint64 ts)
+static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts)
 {
     int i;
     for (i = 0; i < FINAL_MSG_TS_LEN; i++)
     {
-        ts_field[i] = (uint8) ts;
+        ts_field[i] = (uint8_t) ts;
         ts >>= 8;
     }
 }
 
-static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts)
+static void final_msg_get_ts(const uint8_t *ts_field, uint32_t *ts)
 {
     int i;
     *ts = 0;
@@ -211,7 +224,23 @@
         *ts += ts_field[i] << (i * 8);
     }
 }
-
+void TagDistClear(void)
+{
+	static uint16_t clear_judge_cnt;
+	uint16_t i;
+	if(clear_judge_cnt++>1000)  //设定1S分频,每秒进一次。判断标志位大于等于2,2s没收到数据就把数据变成0xffff,不触发警报。
+	{
+		clear_judge_cnt=0;
+		for(i=0;i<255;i++)
+		{
+			g_flag_Taggetdist[i]++;
+			if(g_flag_Taggetdist[i]>=2)
+			{
+				g_Tagdist[i]=0xffff;
+			}
+		}
+	}
+}
 void Dw1000_Init(void)
 {
 	/* Reset and initialise DW1000.
@@ -223,7 +252,9 @@
 
     /* Configure DW1000. See NOTE 6 below. */
     dwt_configure(&config);//配置DW1000
+	
 
+	
     /* Apply default antenna delay value. See NOTE 1 below. */
     dwt_setrxantennadelay(RX_ANT_DLY);		//设置接收天线延迟
     dwt_settxantennadelay(TX_ANT_DLY);		//设置发射天线延迟
@@ -233,27 +264,63 @@
     dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
     dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);						//设置接收超时时间
 }
-
+void Dw1000_App_Init(void)
+{
+//g_com_map[DEV_ID] = 0x0b;
+	tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
+	tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
+	tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
+	memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
+	memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
+	memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
+	
+}	
+void tag_sleep_configuraion(void)
+{
+	dwt_configuresleep(0x940, 0x7);
+	dwt_entersleep();
+}
+uint16_t g_Resttimer;
+uint8_t result;
+u8 tag_succ_times=0;
 void Tag_App(void)//发送模式(TAG标签)
 {
-	uint32 frame_len;
-	uint32 final_tx_time;
+	uint32_t frame_len;
+	uint32_t final_tx_time;
+	u32 start_poll;
+	u8 i;
 	
+	g_Resttimer=0;
+	UART_CheckReceive();
+	GPIO_ResetBits(SPIx_GPIO, SPIx_CS);
+	delay_us(2500);
+	GPIO_SetBits(SPIx_GPIO, SPIx_CS);
+	tag_succ_times = 0;
+	for(i=0;i<REPOET_ANC_NUM;i++)
+	{
 	/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
-	tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+	tx_poll_msg[ANC_TYPE_IDX] = i;
+		
 	dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
 	dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
 
 	/* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
 	 * set by dwt_setrxaftertxdelay() has elapsed. */
 	dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-
+	start_poll = time32_incr;
 	/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
 	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
-	{ };
+	{ if(time32_incr - start_poll>20)
+		NVIC_SystemReset();
+	
+	};
 
 	/* Increment frame sequence number after transmission of the poll message (modulo 256). */
 	frame_seq_nb++;
+	if(status_reg==0xffffffff)
+	{
+		NVIC_SystemReset();
+	}
 
 	if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
 	{
@@ -268,21 +335,21 @@
 
 		/* Check that the frame is the expected response from the companion "DS TWR responder" example.
 		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-		rx_buffer[ALL_MSG_SN_IDX] = 0;
-		if (rx_buffer[9] == 0x10) //判断接收到的数据是否是response数据
+		
+		if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据
 		{
 			/* Retrieve poll transmission and response reception timestamp. */
 			poll_tx_ts = get_tx_timestamp_u64();										//获得POLL发送时间T1
 			resp_rx_ts = get_rx_timestamp_u64();										//获得RESPONSE接收时间T4
-
-			memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[11], 2);
-
+			
+			memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2);
+			memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2);
 			/* Compute final message transmission time. See NOTE 9 below. */
 			final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
 			dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
 
 			/* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
-			final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
+			final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
 
 			/* Write all timestamps in the final message. See NOTE 10 below. */
 			final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
@@ -290,40 +357,23 @@
 			final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
 
 			/* Write and send final message. See NOTE 7 below. */
-			tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+		
 			dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
 			dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
-			dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
-
-			//这里为串口输出
-//			if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式
-//			{
-//				dID = TAG_ID;
-//				printf("TAG_ID: %2.0f		", dID);
-//				dID = ANCHOR_ID;
-//				printf("ANCHOR_ID: %2.0f		", dID);
-//				printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]);
-//			}
-//			else
-//			{
-//				send[2] = ANCHOR_ID;
-//				send[3] = TAG_ID;
-
-//				memcpy(&send[4], &dist[TAG_ID], 2);
-//				check = Checksum_u16(&send[2], 6);
-//				memcpy(&send[8], &check, 2);
-//				USART_puts(send, 10);
-//			}
+			result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+			
+			tag_succ_times++;
 			
 			/* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
-			while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
+			if(result==0)
+			{while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
 			{ };
-
+		}
 			/* Clear TXFRS event. */
 			dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
 
 			/* Increment frame sequence number after transmission of the final message (modulo 256). */
-			frame_seq_nb++;
+			frame_seq_nb++;		
 			random_delay_tim = 0;
 		}
 		else
@@ -337,15 +387,38 @@
 		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
 		random_delay_tim = DFT_RAND_DLY_TIM_MS;
 	}
+//	deca_sleep(10);
+}
+	if(tag_succ_times!=REPOET_ANC_NUM)
+	{
+	random_delay_tim =time32_incr&0x8f+7;
+	}else{
+		random_delay_tim=0;
+	}
 	LED0_BLINK;
+	deca_sleep(random_delay_tim);
+	RTC_SET_ALARM(1);
 	/* Execute a delay between ranging exchanges. */
-	deca_sleep(RNG_DELAY_MS + random_delay_tim); //休眠固定时间
+	dwt_entersleep();
+}
+uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) 
+{
+    uint16_t sum = 0;
+    uint32_t i;
+    for(i=0; i<len; i++)
+        sum += pdata[i];
+    sum = ~sum;
+    return sum;
 }
 
+u16 tag_time_recv[TOTAL_TAG_NUM];
+u8 usart_send[25];
+u8 battary,button;
+extern uint8_t g_pairstart;
 void Anchor_App(void)
 {
-	uint32 frame_len;
-	uint32 resp_tx_time;
+	uint32_t frame_len;
+	uint32_t resp_tx_time;
 	
 	/* Clear reception timeout to start next ranging process. */
 	dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
@@ -355,10 +428,14 @@
 
 	/* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
 	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
-	{ };
+	{ 
+		UART_CheckReceive();
+		UART_CheckSend();
+		g_Resttimer=0;
+	};
 
 	if (status_reg & SYS_STATUS_RXFCG)//成功接收
-	{
+	{ u16 tag_recv_interval;
 		/* Clear good RX frame event in the DW1000 status register. */
 		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
 
@@ -370,14 +447,20 @@
 
 		/* Check that the frame is a poll sent by "DS TWR initiator" example.
 		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-		rx_buffer[ALL_MSG_SN_IDX] = 0;
+	
 		
 		//将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
-		tag_id_recv = rx_buffer[5];
-		tx_resp_msg[5] = tag_id_recv;
-
+		//tag_id_recv = rx_buffer[TAG_ID_IDX];
+		memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4);
+		memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4);
+		//tx_resp_msg[TAG_ID_IDX] = tag_id_recv;
+//		if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START])
+//		{	tag_recv_interval =  tag_recv_timer - tag_time_recv[tag_id_recv];
+//		}else{
+//			tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv];
+//		}
 		
-		if (rx_buffer[9] == 0x21) //判断是否是poll包数据
+		if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据
 		{
 			/* Retrieve poll reception timestamp. */
 			poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
@@ -391,17 +474,19 @@
 			dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
 
 			/* Write and send the response message. See NOTE 9 below.*/
-			memcpy(&tx_resp_msg[11], &anchor_dist_last_frm[tag_id_recv], 2);
-			tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+			memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2);
+		
 			dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
 			dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
-			dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
+			result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
 
 			/* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
 			 * See NOTE 7 below. */
-			while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
+			if(result==0)
+			{
+				while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
 			{ };
-
+		}
 			/* Increment frame sequence number after transmission of the response message (modulo 256). */
 			frame_seq_nb++;
 
@@ -418,14 +503,15 @@
 
 				/* Check that the frame is a final message sent by "DS TWR initiator" example.
 				 * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
-				rx_buffer[ALL_MSG_SN_IDX] = 0;
-				if (rx_buffer[9] == 0x23) //判断是否为Final包
+			
+				if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包
 				{
-					uint32 poll_tx_ts, resp_rx_ts, final_tx_ts;
-					uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
+					uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
+					uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
 					double Ra, Rb, Da, Db;
 					int64_t tof_dtu;
-
+					u32 hex_dist;
+					u16 checksum;
 					/* Retrieve response transmission and final reception timestamps. */
 					resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
 					final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
@@ -436,14 +522,14 @@
 					final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
 
 					/* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */
-					poll_rx_ts_32 = (uint32)poll_rx_ts;//使用32位数据计算
-					resp_tx_ts_32 = (uint32)resp_tx_ts;
-					final_rx_ts_32 = (uint32)final_rx_ts;
+					poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算
+					resp_tx_ts_32 = (uint32_t)resp_tx_ts;
+					final_rx_ts_32 = (uint32_t)final_rx_ts;
 					Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1
 					Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3
 					Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4
 					Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2
-					tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
+					tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
 
 					tof = tof_dtu * DWT_TIME_UNITS;
 					distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
@@ -452,31 +538,42 @@
 					dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离
 //					dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定
 					
+					/*--------------------------以下为非测距逻辑------------------------*/
 					LED0_BLINK; //每成功一次通讯则闪烁一次
-					//这里供串口输出
-//					if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式
+					g_UWB_com_interval = 0;
+					dis_after_filter=dist_cm;
+		//			g_Tagdist[tag_id_recv-TAG_ID_START]=dist_cm;
+//					if(g_pairstart==1&&dist_cm<20)
 //					{
-//						dID = TAG_ID;
-//						printf("TAG_ID: %2.0f		", dID);
-//						dID = ANCHOR_ID;
-//						printf("ANCHOR_ID: %2.0f		", dID);
-//						printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]);
+//						g_pairstart=0;
+//						g_com_map[PAIR_ID]=tag_id_recv;
+//						save_com_map_to_flash();
+//						BEEP2_ON;
+//						delay_ms(1000);
+//						printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]);
 //					}
-//					else
-//					{
-//						send[2] = ANCHOR_ID;
-//						send[3] = TAG_ID;
-
-//						memcpy(&send[4], &dist[TAG_ID], 2);
-//						check = Checksum_u16(&send[2], 6);
-//						memcpy(&send[8], &check, 2);
-//						USART_puts(send, 10);
-//					}
+					// tag_time_recv[tag_id_recv] = tag_recv_timer;
+					g_flag_Taggetdist[tag_id_recv]=0;
+					#ifdef HEX_OUTPUT
+					usart_send[2] = frame_seq_nb;
+					//usart_send[6] = tag_id_recv;
+					//usart_send[8] = g_com_map[DEV_ID];
+					memcpy(&usart_send[3],&dev_id,4);
+					memcpy(&usart_send[7],&dev_id,4);
+					hex_dist = dist_cm;
+					memcpy(&usart_send[11],&hex_dist,4);
+					usart_send[15] = battary;
+					usart_send[16] = button;
+					checksum = Checksum_u16(&usart_send[2],19);
+					memcpy(&usart_send[20],&checksum,2);
+					UART_PushFrame(usart_send,23);
+					#else
+					printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter);
+					#endif
+					//dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm);
 
 				}
-			}
-			else
-			{
+			}else{
 				/* Clear RX error events in the DW1000 status register. */
 				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
 			}

--
Gitblit v1.9.3