From f3a6daa409dfb287e517cf792a425435038e44df Mon Sep 17 00:00:00 2001 From: zhyinch <zhyinch@gmail.com> Date: 星期二, 18 五月 2021 16:26:09 +0800 Subject: [PATCH] 修改基站类型未附值BUG --- 源码/核心板/Src/application/dw_app.c | 592 +++++++++++++++++++++++++++++++++++++--------------------- 1 files changed, 378 insertions(+), 214 deletions(-) diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" index 91bdfa4..daa6f7b 100644 --- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" +++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" @@ -3,12 +3,7 @@ * @file main.c * @brief Double-sided two-way ranging (DS TWR) initiator example code * - * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" - * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example - * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to - * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX - * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air - * and, thus, the estimated distance between the two devices. + * * * @attention * @@ -26,7 +21,13 @@ #include "dw_driver.h" #include "Spi.h" #include "led.h" - +#include "serial_at_cmd_app.h" +#include "Usart.h" +#include "global_param.h" +#include "filters.h" +#include <stdio.h> +#include "beep.h" +#include "modbus.h" /*------------------------------------ Marcos ------------------------------------------*/ /* Inter-ranging delay period, in milliseconds. */ @@ -45,91 +46,109 @@ #define POLL_TX_TO_RESP_RX_DLY_UUS 150 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the * frame length of approximately 2.66 ms with above configuration. */ -#define RESP_RX_TO_FINAL_TX_DLY_UUS 4100 +#define RESP_RX_TO_FINAL_TX_DLY_UUS 400 /* Receive response timeout. See NOTE 5 below. */ -#define RESP_RX_TIMEOUT_UUS 14700 +#define RESP_RX_TIMEOUT_UUS 600 -#define POLL_RX_TO_RESP_TX_DLY_UUS 3600 +#define POLL_RX_TO_RESP_TX_DLY_UUS 420 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ -#define RESP_TX_TO_FINAL_RX_DLY_UUS 500 +#define RESP_TX_TO_FINAL_RX_DLY_UUS 200 /* Receive final timeout. See NOTE 5 below. */ #define FINAL_RX_TIMEOUT_UUS 4300 #define SPEED_OF_LIGHT 299702547 /* Indexes to access some of the fields in the frames defined above. */ -#define ALL_MSG_SN_IDX 2 #define FINAL_MSG_POLL_TX_TS_IDX 10 #define FINAL_MSG_RESP_RX_TS_IDX 14 #define FINAL_MSG_FINAL_TX_TS_IDX 18 #define FINAL_MSG_TS_LEN 4 +#define SYNC_SEQ_IDX 5 +//common #define GROUP_ID_IDX 0 -#define SOURCE_ID_IDX 1 -#define MESSAGE_TYPE_IDX 3 +#define ANCHOR_ID_IDX 1 +#define TAG_ID_IDX 5 +#define MESSAGE_TYPE_IDX 9 + +//Poll +#define ANC_TYPE_IDX 14 +#define BATTARY_IDX 15 +#define BUTTON_IDX 16 +#define SEQUENCE_IDX 17 +//respose +#define DIST_IDX 10 +#define ANCTIMEMS 14 +#define ANCTIMEUS 16 +#define ANCSEND_INTERVAL 18 #define POLL 0x01 #define RESPONSE 0x02 #define FINAL 0x03 +#define SYNC 0x04 /*------------------------------------ Variables ------------------------------------------*/ /* Default communication configuration. We use here EVK1000's default mode (mode 3). */ -static dwt_config_t config = -{ - 2, /* Channel number. */ - DWT_PRF_64M, /* Pulse repetition frequency. */ - DWT_PLEN_1024, /* Preamble length. */ - DWT_PAC32, /* Preamble acquisition chunk size. Used in RX only. */ - 9, /* TX preamble code. Used in TX only. */ - 9, /* RX preamble code. Used in RX only. */ - 1, /* Use non-standard SFD (Boolean) */ - DWT_BR_110K, /* Data rate. */ - DWT_PHRMODE_STD, /* PHY header mode. */ - (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ +static dwt_config_t config = { + 2, /* Channel number. */ + DWT_PRF_64M, /* Pulse repetition frequency. */ + DWT_PLEN_128, /* Preamble length. */ + DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ + 9, /* TX preamble code. Used in TX only. */ + 9, /* RX preamble code. Used in RX only. */ + 1, /* Use non-standard SFD (Boolean) */ + DWT_BR_6M8, /* Data rate. */ + DWT_PHRMODE_STD, /* PHY header mode. */ + (129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ }; /* Frames used in the ranging process. See NOTE 2 below. */ -static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -//static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -static uint8 tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; +static uint8_t tx_poll_msg[20] = {0}; +static uint8_t tx_sync_msg[14] = {0}; +//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; +static uint8_t tx_final_msg[24] = {0}; -//static uint8 rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -//static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; +//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; +static uint8_t tx_resp_msg[22] = {0}; +//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* Frame sequence number, incremented after each transmission. */ -static uint32 frame_seq_nb = 0; +static uint32_t frame_seq_nb = 0,frame_seq_nb2=0; /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ -static uint32 status_reg = 0; +static uint32_t status_reg = 0; /* Buffer to store received response message. * Its size is adjusted to longest frame that this example code is supposed to handle. */ #define RX_BUF_LEN 24 -static uint8 rx_buffer[RX_BUF_LEN]; +static uint8_t rx_buffer[RX_BUF_LEN]; /* Time-stamps of frames transmission/reception, expressed in device time units. * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */ -typedef unsigned long long uint64; -static uint64 poll_tx_ts; -static uint64 resp_rx_ts; -static uint64 final_tx_ts; +static uint64_t poll_tx_ts; +static uint64_t resp_rx_ts; +static uint64_t final_tx_ts; /* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */ -typedef signed long long int64; -static uint64 poll_rx_ts; -static uint64 resp_tx_ts; -static uint64 final_rx_ts; +static uint64_t poll_rx_ts; +static uint64_t resp_tx_ts; +static uint64_t final_rx_ts; static double tof; -uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS]; -uint8_t tag_id = 0; -uint8_t tag_id_recv = 0; +int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ; +uint32_t tag_id = 0; +uint32_t tag_id_recv = 0; uint8_t random_delay_tim = 0; double distance, dist_no_bias, dist_cm; +uint32_t g_UWB_com_interval = 0; +float dis_after_filter; //当前距离值 +LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器 + +int32_t g_Tagdist[TAG_NUM_IN_SYS]; +uint8_t g_flag_Taggetdist[256]; /*------------------------------------ Functions ------------------------------------------*/ @@ -143,10 +162,10 @@ * * @return 64-bit value of the read time-stamp. */ -static uint64 get_tx_timestamp_u64(void) +static uint64_t get_tx_timestamp_u64(void) { - uint8 ts_tab[5]; - uint64 ts = 0; + uint8_t ts_tab[5]; + uint64_t ts = 0; int i; dwt_readtxtimestamp(ts_tab); for (i = 4; i >= 0; i--) @@ -167,10 +186,10 @@ * * @return 64-bit value of the read time-stamp. */ -static uint64 get_rx_timestamp_u64(void) +static uint64_t get_rx_timestamp_u64(void) { - uint8 ts_tab[5]; - uint64 ts = 0; + uint8_t ts_tab[5]; + uint64_t ts = 0; int i; dwt_readrxtimestamp(ts_tab); for (i = 4; i >= 0; i--) @@ -192,17 +211,17 @@ * * @return none */ -static void final_msg_set_ts(uint8 *ts_field, uint64 ts) +static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts) { int i; for (i = 0; i < FINAL_MSG_TS_LEN; i++) { - ts_field[i] = (uint8) ts; + ts_field[i] = (uint8_t) ts; ts >>= 8; } } -static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts) +static void final_msg_get_ts(const uint8_t *ts_field, uint32_t *ts) { int i; *ts = 0; @@ -211,7 +230,25 @@ *ts += ts_field[i] << (i * 8); } } - +void TagDistClear(void) +{ + static uint16_t clear_judge_cnt; + uint16_t i; + if(clear_judge_cnt++>1000) //设定1S分频,每秒进一次。判断标志位大于等于2,2s没收到数据就把数据变成0xffff,不触发警报。 + { + clear_judge_cnt=0; + for(i=0;i<100;i++) + { + g_flag_Taggetdist[i]++; + if(g_flag_Taggetdist[i]>=5) + { + g_Tagdist[i]=0xffff; + Modbus_HoldReg[i*2]=1; + Modbus_HoldReg[i*2+1]=0xffff; + } + } + } +} void Dw1000_Init(void) { /* Reset and initialise DW1000. @@ -223,37 +260,120 @@ /* Configure DW1000. See NOTE 6 below. */ dwt_configure(&config);//配置DW1000 + + /* Apply default antenna delay value. See NOTE 1 below. */ dwt_setrxantennadelay(RX_ANT_DLY); //设置接收天线延迟 dwt_settxantennadelay(TX_ANT_DLY); //设置发射天线延迟 /* Set expected response's delay and timeout. See NOTE 4 and 5 below. * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ - dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 - dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间 + //设置接收超时时间 +} +void Dw1000_App_Init(void) +{ +//g_com_map[DEV_ID] = 0x0b; + tx_poll_msg[MESSAGE_TYPE_IDX]=POLL; + tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE; + tx_final_msg[MESSAGE_TYPE_IDX]=FINAL; + tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC; + + memcpy(&tx_poll_msg[GROUP_ID_IDX], &group_id, 1); + memcpy(&tx_final_msg[GROUP_ID_IDX], &group_id, 1); + memcpy(&tx_resp_msg[GROUP_ID_IDX], &group_id, 1); + + memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4); + memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4); + + memcpy(&tx_resp_msg[ANCSEND_INTERVAL], &g_com_map[COM_INTERVAL], 2); +} +uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) +{ + uint16_t sum = 0; + uint32_t i; + for(i=0; i<len; i++) + sum += pdata[i]; + sum = ~sum; + return sum; } +u16 tag_time_recv[TAG_NUM_IN_SYS]; +u8 usart_send[25]; +u8 battary,button; +extern uint8_t g_pairstart; +void tag_sleep_configuraion(void) +{ + dwt_configuresleep(0x940, 0x7); + dwt_entersleep(); +} +extern uint8_t g_start_send_flag; +u8 g_start_sync_flag; +void SyncPoll(u8 sync_seq) +{ + g_start_sync_flag=1; + dwt_forcetrxoff(); + tx_sync_msg[SYNC_SEQ_IDX]=sync_seq; + dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE); +} +uint16_t g_Resttimer; +uint8_t result; +u8 tag_succ_times=0; +int32_t hex_dist,hex_dist2; +u16 checksum; +int8_t tag_delaytime; +extern uint16_t sync_timer; +u16 tmp_time; +extern float dw_vbat; +extern u16 slottime,max_slotnum,current_slotpos,tyncpoll_time; void Tag_App(void)//发送模式(TAG标签) { - uint32 frame_len; - uint32 final_tx_time; - + uint32_t frame_len; + uint32_t final_tx_time; + u32 start_poll; + u8 i,getsync_flag=0; + u8 bat_percent; + //LED0_ON; + dwt_forcetrxoff(); + dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 + dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); + tag_succ_times = 0; + bat_percent=(dw_vbat-2.8)/0.5*100; + if(bat_percent>100) + bat_percent=100; + tx_poll_msg[BATTARY_IDX] = bat_percent;//Get_Battary(); + tx_poll_msg[BUTTON_IDX] = !READ_KEY0; + tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++; + GPIO_WriteBit(GPIOA, GPIO_Pin_9, Bit_RESET); + for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++) + { /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ - tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + tx_poll_msg[ANC_TYPE_IDX] = i; + dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度 /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay * set by dwt_setrxaftertxdelay() has elapsed. */ dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 - + start_poll = time32_incr; /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 - { }; + { if(time32_incr - start_poll>20) + NVIC_SystemReset(); + IdleTask(); + + }; /* Increment frame sequence number after transmission of the poll message (modulo 256). */ - frame_seq_nb++; + if(status_reg==0xffffffff) + { + NVIC_SystemReset(); + } if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 { @@ -268,21 +388,45 @@ /* Check that the frame is the expected response from the companion "DS TWR responder" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[9] == 0x10) //判断接收到的数据是否是response数据 - { + + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据 + { u16 anc_id_recv,rec_com_interval; /* Retrieve poll transmission and response reception timestamp. */ poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 - - memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[11], 2); - + + if(getsync_flag==0&&g_com_map[DEV_ROLE]) + { + getsync_flag=1; + memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2); + memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2); + tmp_time=tmp_time+450; + if(tmp_time>999) + { + tmp_time-=999; + sync_timer++; + if(sync_timer>=1010) + {sync_timer=0;} + } + TIM3->CNT=tmp_time; + } + memcpy(&hex_dist2, &rx_buffer[DIST_IDX], 4); + memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4); + memcpy(&rec_com_interval,&rx_buffer[ANCSEND_INTERVAL], 2); + if(rec_com_interval>4&&rec_com_interval!=g_com_map[COM_INTERVAL]) + { + g_com_map[COM_INTERVAL]=rec_com_interval; + save_com_map_to_flash(); + delay_ms(100); + SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader + } + /* Compute final message transmission time. See NOTE 9 below. */ final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2 dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ - final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay + final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay /* Write all timestamps in the final message. See NOTE 10 below. */ final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据 @@ -290,40 +434,51 @@ final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); /* Write and send final message. See NOTE 7 below. */ - tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000 dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度 - dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 - - //这里为串口输出 -// if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式 -// { -// dID = TAG_ID; -// printf("TAG_ID: %2.0f ", dID); -// dID = ANCHOR_ID; -// printf("ANCHOR_ID: %2.0f ", dID); -// printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); -// } -// else -// { -// send[2] = ANCHOR_ID; -// send[3] = TAG_ID; - -// memcpy(&send[4], &dist[TAG_ID], 2); -// check = Checksum_u16(&send[2], 6); -// memcpy(&send[8], &check, 2); -// USART_puts(send, 10); -// } + result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 - /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ - while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 - { }; + tag_succ_times++; + + LED0_BLINK; + g_Resttimer=0; + memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2); + if(hex_dist2!=0xffff) + { + g_Tagdist[anc_id_recv]= hex_dist2; + g_flag_Taggetdist[anc_id_recv]=0; + if(!g_com_map[MODBUS_MODE]) + { + hex_dist2 = hex_dist2; + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb;//数据段长度 + memcpy(&usart_send[5],&dev_id,2); + memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2); + + memcpy(&usart_send[9],&hex_dist2,4); + usart_send[13] = bat_percent; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + } + } + // memcpy(&Modbus_HoldReg[anc_id_recv*2],&hex_dist,4); + /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ + if(result==0) + { + + while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 + { }; + } /* Clear TXFRS event. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位 /* Increment frame sequence number after transmission of the final message (modulo 256). */ - frame_seq_nb++; + random_delay_tim = 0; } else @@ -337,16 +492,28 @@ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); random_delay_tim = DFT_RAND_DLY_TIM_MS; } - LED0_BLINK; - /* Execute a delay between ranging exchanges. */ - deca_sleep(RNG_DELAY_MS + random_delay_tim); //休眠固定时间 +// deca_sleep(10); } +// dwt_entersleep(); + if(tag_succ_times<1) + { + tyncpoll_time=(current_slotpos--%max_slotnum)*slottime; + } + /* Execute a delay between ranging exchanges. */ + +} +int8_t correction_time; +extern uint8_t sync_seq; +#define TDFILTER +//#define CHECK_UID +extern uint8_t UID_ERROR; +extern u16 dist_threshold; +u8 misdist_num[TAG_NUM_IN_SYS]; void Anchor_App(void) { - uint32 frame_len; - uint32 resp_tx_time; - + uint32_t frame_len; + uint32_t resp_tx_time; /* Clear reception timeout to start next ranging process. */ dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 @@ -354,11 +521,13 @@ dwt_rxenable(0);//打开接收 /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误 - { }; + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误 + { + IdleTask(); + }; if (status_reg & SYS_STATUS_RXFCG)//成功接收 - { + { u16 tag_recv_interval; /* Clear good RX frame event in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位 @@ -370,15 +539,28 @@ /* Check that the frame is a poll sent by "DS TWR initiator" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; + //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 - tag_id_recv = rx_buffer[5]; - tx_resp_msg[5] = tag_id_recv; - + //tag_id_recv = rx_buffer[TAG_ID_IDX]; + memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4); + memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4); + //tx_resp_msg[TAG_ID_IDX] = tag_id_recv; +// if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START]) +// { tag_recv_interval = tag_recv_timer - tag_time_recv[tag_id_recv]; +// }else{ +// tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv]; +// } - if (rx_buffer[9] == 0x21) //判断是否是poll包数据 + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据 { + tmp_time=TIM3->CNT; + memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2); + memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2); + +// if(correction_time>10) +// {correction_time++;} + /* Retrieve poll reception timestamp. */ poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 @@ -391,19 +573,24 @@ dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 /* Write and send the response message. See NOTE 9 below.*/ - memcpy(&tx_resp_msg[11], &anchor_dist_last_frm[tag_id_recv], 2); - tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) + memcpy(&tx_resp_msg[DIST_IDX], &g_Tagdist[tag_id_recv], 4); + dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据 dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度 - dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 + result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 + battary = rx_buffer[BATTARY_IDX]; + button = rx_buffer[BUTTON_IDX]; + frame_seq_nb2 = rx_buffer[SEQUENCE_IDX]; /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. * See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误 + if(result==0) + { + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误 { }; - + } /* Increment frame sequence number after transmission of the response message (modulo 256). */ - frame_seq_nb++; if (status_reg & SYS_STATUS_RXFCG)//接收成功 { @@ -418,14 +605,14 @@ /* Check that the frame is a final message sent by "DS TWR initiator" example. * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[9] == 0x23) //判断是否为Final包 + + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包 { - uint32 poll_tx_ts, resp_rx_ts, final_tx_ts; - uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; + uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts; + uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; double Ra, Rb, Da, Db; int64_t tof_dtu; - + /* Retrieve response transmission and final reception timestamps. */ resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 @@ -435,50 +622,90 @@ final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); + #ifdef CHECK_UID + if(UID_ERROR==1) + poll_rx_ts=0; + #endif /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ - poll_rx_ts_32 = (uint32)poll_rx_ts;//使用32位数据计算 - resp_tx_ts_32 = (uint32)resp_tx_ts; - final_rx_ts_32 = (uint32)final_rx_ts; + poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算 + resp_tx_ts_32 = (uint32_t)resp_tx_ts; + final_rx_ts_32 = (uint32_t)final_rx_ts; Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1 Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4 Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2 - tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式 + tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式 tof = tof_dtu * DWT_TIME_UNITS; distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间 dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数 - dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离 + dist_cm = dist_no_bias * 1000; //dis 为单位为cm的距离 // dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定 + /*--------------------------以下为非测距逻辑------------------------*/ LED0_BLINK; //每成功一次通讯则闪烁一次 - //这里供串口输出 -// if (GPIO_ReadInputDataBit(GPIOA, SW2) != RESET) //通过拨码开关判断数据输出格式 -// { -// dID = TAG_ID; -// printf("TAG_ID: %2.0f ", dID); -// dID = ANCHOR_ID; -// printf("ANCHOR_ID: %2.0f ", dID); -// printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]); -// } -// else -// { -// send[2] = ANCHOR_ID; -// send[3] = TAG_ID; - -// memcpy(&send[4], &dist[TAG_ID], 2); -// check = Checksum_u16(&send[2], 6); -// memcpy(&send[8], &check, 2); -// USART_puts(send, 10); -// } - + g_UWB_com_interval = 0; + g_Resttimer=0; + hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET]*10; + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) + { + if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<dist_threshold||misdist_num[tag_id_recv-TAG_ID_START]>4) + { + int32_t filter_dist; + misdist_num[tag_id_recv-TAG_ID_START]=0; + if(hex_dist<1000000&&hex_dist>-10000) + { + #ifdef TDFILTER + NewTrackingDiffUpdate(tag_id_recv-TAG_ID_START, (float)hex_dist); + filter_dist=pos_predict[tag_id_recv-TAG_ID_START]/10; + #else + filter_dist=hex_dist/10; + #endif + anchor_dist_last_frm[tag_id_recv-TAG_ID_START]=filter_dist; + g_Tagdist[tag_id_recv]= filter_dist; + + his_dist[tag_id_recv-TAG_ID_START]=hex_dist; + g_flag_Taggetdist[tag_id_recv]=0; + if(!g_com_map[MODBUS_MODE]) + { + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb2;//数据段长度 + memcpy(&usart_send[5],&tag_id_recv,2); + memcpy(&usart_send[7],&dev_id,2); + + memcpy(&usart_send[9],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + } + // memcpy(&Modbus_HoldReg[tag_id_recv*2],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4); + Modbus_HoldReg[tag_id_recv*2]=g_Tagdist[tag_id_recv-TAG_ID_START]>>16; + Modbus_HoldReg[tag_id_recv*2+1]=g_Tagdist[tag_id_recv-TAG_ID_START]; + //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm); + } + + } + else{ + misdist_num[tag_id_recv-TAG_ID_START]++; + } } - } - else - { + } + }else{ /* Clear RX error events in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); + } + }else if(rx_buffer[MESSAGE_TYPE_IDX] == SYNC) + { + if(rx_buffer[SYNC_SEQ_IDX]<sync_seq&&sync_mainbase==0) + { + sync_seq=rx_buffer[SYNC_SEQ_IDX]+1; + TIM3->CNT = sync_seq*325%1000+15; + sync_timer = sync_seq*325/1000; + SyncPoll(sync_seq); } } } @@ -489,66 +716,3 @@ } } -/***************************************************************************************************************************************************** - * NOTES: - * - * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value - * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing - * range measurements. - * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE - * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: - * - a poll message sent by the initiator to trigger the ranging exchange. - * - a response message sent by the responder allowing the initiator to go on with the process - * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the - * time-of-flight (distance) estimate. - * The first 10 bytes of those frame are common and are composed of the following fields: - * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). - * - byte 2: sequence number, incremented for each new frame. - * - byte 3/4: PAN TAG_ID (0xDECA). - * - byte 5/6: destination address, see NOTE 3 below. - * - byte 7/8: source address, see NOTE 3 below. - * - byte 9: function code (specific values to indicate which message it is in the ranging process). - * The remaining bytes are specific to each message as follows: - * Poll message: - * - no more data - * Response message: - * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). - * - byte 11/12: activity parameter, not used here for activity code 0x02. - * Final message: - * - byte 10 -> 13: poll message transmission timestamp. - * - byte 14 -> 17: response message reception timestamp. - * - byte 18 -> 21: final message transmission timestamp. - * All messages end with a 2-byte checksum automatically set by DW1000. - * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a - * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only - * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. - * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator - * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more - * details about the timings involved in the ranging process. - * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value - * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the - * 110k data rate used (around 3 ms). - * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using - * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. - * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is - * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not - * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using - * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the - * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, - * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have - * been carefully defined to avoid this situation. - * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please - * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we - * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 - * bytes. - * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 - * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to - * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the - * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower - * 8 bits. - * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by - * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the - * time-of-flight computation) can be handled by a 32-bit subtraction. - * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the - * DW1000 API Guide for more details on the DW1000 driver functions. - ****************************************************************************************************************************************************/ -- Gitblit v1.9.3