From a249d25e6f162ea7e17478010864193de4681b74 Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期三, 08 四月 2020 21:36:30 +0800
Subject: [PATCH] v1.20

---
 源码/核心板/Src/main.c |  795 +++++++++++++-------------------------------------------
 1 files changed, 186 insertions(+), 609 deletions(-)

diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c"
index 640c1b3..2ea73e6 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/main.c"
@@ -1,120 +1,120 @@
-/*! ----------------------------------------------------------------------------
- *  @file    main.c
- *  @brief   Double-sided two-way ranging (DS TWR) initiator example code
- *
- *           This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll"
- *           frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example
- *           code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to
- *           complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX
- *           time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air
- *           and, thus, the estimated distance between the two devices.
- *
- * @attention
- *
- * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland.
- *
- * All rights reserved.
- *
- * @author Decawave
- */
-#include <string.h>
-#include <stdio.h>
+
+#include "Rcc_Nvic_Systick.h"
+#include "Usart.h"
+#include "Spi.h"
+#include "led.h"
+#include "beep.h"
+#include "dw_driver.h"
+#include "dw_app.h"
+#include "stm32f10x_it.h"
+#include "serial_at_cmd_app.h"
+#include "global_param.h"
+#include "ADC.h"
+#include "modbus.h"
 #include "deca_device_api.h"
-#include "deca_regs.h"
-#include "deca_sleep.h"
-#include "lcd.h"
-#include "port.h"
+#include "Flash.h"
+//#define DEBUG_MODE
 
-/* Example application name and version to display on LCD screen. */
-#define APP_NAME "DS TWR INIT v1.1"
+void Device_Init(void)
+{
+	RCC_Configuration();
+	//SystemInit();
+	NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x5000);
+	Nvic_Init();
+//	Systick_Init();
+	TIM3_Int_Init();
+	Led_Init();
+	Beep_Init();
+	DW_GPIO_Init();
+	Uart1_Init();
+	Spi_Init();
+	ADC_Configuration();
+	
+	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
+}
+u8 anchor_type;
+u32 dev_id;
+u8 hbsend[16];
+void HeartBeatInit(void)
+{
+	u16 checksum;
+	hbsend[0]=0x55;
+	hbsend[1]=0xAA;
+	hbsend[2]=0x2;
+	hbsend[3]=0xc;
+	memcpy(&hbsend[4],&g_com_map[DEV_ID],2);
+	checksum = Checksum_u16(&hbsend[2],12);
+	memcpy(&hbsend[14],&checksum,2);
+}
+u16 tyncpoll_time;
+TrackingDiffClass *pUWBDistanceTrackingDiff;
+u8 group_id,sync_mainbase=0,synclost_timer=0;
+uint16_t vel_factor,pos_factor;
 
-/* Inter-ranging delay period, in milliseconds. */
-#define RNG_DELAY_MS 100
+extern u8 module_power;
+void Program_Init(void)
+{uint16_t i;
+	float temp;
+	u16 temp2;
+	Usart1ParseDataCallback = UsartParseDataHandler;
+	parameter_init();
+	//deca_sleep(1000);
+	HeartBeatInit();
+//	g_com_map[DEV_ROLE]=1;
+//		g_com_map[DEV_ID]=1;
+//	g_com_map[COM_INTERVAL]=10;
+	OUT485_ENABLE;
 
-/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
-static dwt_config_t config = {
-    2,               /* Channel number. */
-    DWT_PRF_64M,     /* Pulse repetition frequency. */
-    DWT_PLEN_1024,   /* Preamble length. */
-    DWT_PAC32,       /* Preamble acquisition chunk size. Used in RX only. */
-    9,               /* TX preamble code. Used in TX only. */
-    9,               /* RX preamble code. Used in RX only. */
-    1,               /* Use non-standard SFD (Boolean) */
-    DWT_BR_110K,     /* Data rate. */
-    DWT_PHRMODE_STD, /* PHY header mode. */
-    (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
-};
-/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */
-#define TX_ANT_DLY 0
-#define RX_ANT_DLY 32899
-static uint8 rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8 tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-static uint8 rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+#ifdef DEBUG_MODE
+	
+//	g_com_map[COM_INTERVAL]=50;
+//	g_com_map[MAX_REPORT_ANC_NUM]=3;
+//	g_com_map[DEV_ID]=1;
+//	g_com_map[ANC_POLL]=0;
+//	g_com_map[ALARM_DISTANCE1]=100;
+	g_com_map[FILTER_COEFFICIENT]=12;
+#endif
+		//pUWBDistanceTrackingDiff = NewTrackingDiffClass(2, 4, 0.03);
+		dev_id = g_com_map[DEV_ID];
+		group_id=g_com_map[GROUP_ID];
+		vel_factor=g_com_map[FILTER_COEFFICIENT];
+		pos_factor=g_com_map[FILTER_COEFFICIENT];
+		if(dev_id==0)
+			sync_mainbase=1;
+		module_power = g_com_map[POWER];
+		if(module_power>67)
+		{
+			module_power=67;
+		}
+		g_com_map[VERSION] = 0x0114;	
+	temp=(float)g_com_map[MAX_REPORT_ANC_NUM]*4/3;	
+	temp2=g_com_map[DEV_ID]*g_com_map[MAX_REPORT_ANC_NUM]*4/3;
+	if(temp2<temp)
+	{
+		temp2++;
+	}
+		tyncpoll_time=g_com_map[DEV_ID]*(temp2);
+	if(g_com_map[DEV_ROLE])
+	{
+	printf("标签ID: %d .\r\n",dev_id);
+	printf("通讯间隔: %d ms.\r\n",g_com_map[COM_INTERVAL]);
+	printf("单次通讯基站数量: %d个.\r\n",g_com_map[MAX_REPORT_ANC_NUM]);
+	}else{
+	anchor_type = dev_id%g_com_map[MAX_REPORT_ANC_NUM];
+	printf("基站ID: %x .\r\n",dev_id);
+	printf("基站类型: %c .\r\n",anchor_type+0x41);
+	printf("单次通讯基站数量: %d个.\r\n",g_com_map[MAX_REPORT_ANC_NUM]);
+	}
+	OUT485_DISABLE;
+//	printf("DEVICE PAIRID: %d .\r\n",g_com_map[PAIR_ID]);
+//	printf("DEVICE ALARM DISTANCE: 1.%d 2.%d 3.%d .\r\n",g_com_map[ALARM_DISTANCE1],g_com_map[ALARM_DISTANCE2],g_com_map[ALARM_DISTANCE3]);
 
 	
-/* Frames used in the ranging process. See NOTE 2 below. */
-static uint8 tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8 rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-static uint8 tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
-typedef signed long long int64;
-typedef unsigned long long uint64;
-static uint64 poll_rx_ts;
-static uint64 resp_tx_ts;
-static uint64 final_rx_ts;
-
-static double tof;
-static double distance,dist2;
-int16_t dist[8];
-#define ALL_MSG_COMMON_LEN 10
-/* Indexes to access some of the fields in the frames defined above. */
-#define ALL_MSG_SN_IDX 2
-#define FINAL_MSG_POLL_TX_TS_IDX 10
-#define FINAL_MSG_RESP_RX_TS_IDX 14
-#define FINAL_MSG_FINAL_TX_TS_IDX 18
-#define FINAL_MSG_TS_LEN 4
-/* Frame sequence number, incremented after each transmission. */
-static uint32 frame_seq_nb = 0;
-
-/* Buffer to store received response message.
- * Its size is adjusted to longest frame that this example code is supposed to handle. */
-#define RX_BUF_LEN 20
-#define RX_BUF_LEN2 24
-static uint8 rx_buffer[RX_BUF_LEN+4];
-
-/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
-static uint32 status_reg = 0;
-
-/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor.
- * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */
-#define UUS_TO_DWT_TIME 65536
-
-/* Delay between frames, in UWB microseconds. See NOTE 4 below. */
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define POLL_TX_TO_RESP_RX_DLY_UUS 150
-/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
- * frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 4100
-/* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 14700
-
-#define POLL_RX_TO_RESP_TX_DLY_UUS 3600
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define RESP_TX_TO_FINAL_RX_DLY_UUS 500
-/* Receive final timeout. See NOTE 5 below. */
-#define FINAL_RX_TIMEOUT_UUS 4300
-#define SPEED_OF_LIGHT 299702547
-/* Time-stamps of frames transmission/reception, expressed in device time units.
- * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
-typedef unsigned long long uint64;
-static uint64 poll_tx_ts;
-static uint64 resp_rx_ts;
-static uint64 final_tx_ts;
-
-/* Declaration of static functions. */
-static uint64 get_tx_timestamp_u64(void);
-static uint64 get_rx_timestamp_u64(void);
-static void final_msg_set_ts(uint8 *ts_field, uint64 ts);
+	for(i=0;i<255;i++)
+	{
+		g_Tagdist[i]=0xffff;
+	}
+}
 
 /*! ------------------------------------------------------------------------------------------------------------------
  * @fn main()
@@ -125,515 +125,92 @@
  *
  * @return none
  */
- static void final_msg_get_ts(const uint8 *ts_field, uint32 *ts)
-{
-    int i;
-    *ts = 0;
-    for (i = 0; i < FINAL_MSG_TS_LEN; i++)
-    {
-        *ts += ts_field[i] << (i * 8);
-    }
+void HeatBeat(void)
+{ 
+UART_PushFrame(hbsend,16);
 }
- void GPIO_Toggle(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+extern u8 g_start_sync_flag;
+u16 heartbeat_timer,poll_timer,sync_timer;
+void IdleTask(void)
 {
-	GPIO_WriteBit(GPIOx, GPIO_Pin, (BitAction)!GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin));
-}
-int fputc(int ch, FILE *f)
-
-{
-
-USART_SendData(USART1, (unsigned char) ch);// USART1 ???? USART2 ?
-
-while (!(USART1->SR & USART_FLAG_TXE));
-
-return (ch);
-
-
-}
-
-void USART_putc(char c)
-{
-	//while(!(USART2->SR & 0x00000040));
-	//USART_SendData(USART2,c);
-	/* e.g. write a character to the USART */
-	USART_SendData(USART1, c);
-
-	/* Loop until the end of transmission */
-	while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET)	;
-}
-
-void USART_puts(uint8_t *s,uint8_t len)
-{
-	int i;
-	for(i=0; i<len; i++)
+	g_start_sync_flag=0;
+			UART_CheckReceive();
+		UART_CheckSend();
+	if(heartbeat_timer>1000)
 	{
-		USART_putc(s[i]);
+		heartbeat_timer=0;
+		if(g_com_map[HEARTBEAT]&&g_com_map[DEV_ROLE]==0)
+		HeatBeat();
 	}
-}
-int ld[100];
-int LP(int tmp,uint8_t channel)
-{
-int data;
-	data = 0.7*ld[channel]+0.3*tmp;
-	ld[channel]=data;
-	return data;
-}
-uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) 
-{
-    uint16_t sum = 0;
-    uint32_t i;
-    for(i=0; i<len; i++)
-        sum += pdata[i];
-    sum = ~sum;
-    return sum;
-}
-void LED_blink(void)
-{
-	uint8_t ii;
-	for (ii=0;ii<10;ii++)
-{
-	GPIO_Toggle(GPIOA,LED_PIN);
-	deca_sleep(100);
-}
-}
-extern volatile unsigned long time32_reset;
-extern uint8_t Work_Mode;
-uint32 frame_len;
-uint8_t send[9];
-char dist_str[16] = {0};
-int32_t dis;
-double dID;
-uint8_t TAG_ID,ANCHOR_ID, jumptime=0;
-uint32_t rec_dist,hex_dist;
-uint16_t check;
+
+	if(g_com_map[CNT_UPDATE]==1)
+	{
+		uint32_t result = 0;
+		u16 tmp = 0xAAAA;
+		__disable_irq();
+		result = FLASH_Prepare(0x8004A38, 2);
+		if(result)
+			result = FLASH_Write(0x8004A38, (const uint8_t*)&tmp, 2); 
+		__enable_irq();
+			printf("进入升级模式\r\n");
+		g_com_map[CNT_UPDATE]=0;
+		save_com_map_to_flash();
+		delay_ms(100);
+			//	STMFLASH_Write_NoCheck(0x8004A38,0xAAAA);
+			//	Delay_ms(100);
+				SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader   
+	}
+		if(g_com_map[CNT_REBOOT]==1)
+		{
+			g_com_map[CNT_REBOOT]=0;
+			g_com_map[MAP_SIGN_INDEX]=0;
+			save_com_map_to_flash();
+			delay_ms(100);
+			SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader   
+		}
+		if(g_com_map[CNT_RESTART]==1)
+		{
+			g_com_map[CNT_RESTART]=0;
+			save_com_map_to_flash();
+			delay_ms(100);
+				SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader   
+		}
+
+	}
+uint16_t temp;
+float dw_vbat;
 int main(void)
 {
-   RCC_ClocksTypeDef  RCC_Clocks;  /* Start with board specific hardware init. */
-    peripherals_init();//初始化外设
-RCC_GetClocksFreq(&RCC_Clocks); 
-    /* Display application name on LCD. */
-  //  lcd_display_str(APP_NAME);
-
-    /* Reset and initialise DW1000.
-     * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum
-     * performance. */
-    reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */
-    spi_set_rate_low();//降低SPI频率
-    dwt_initialise(DWT_LOADUCODE);//初始化DW1000
-    spi_set_rate_high();//回复SPI频率
-
-    /* Configure DW1000. See NOTE 6 below. */
-    dwt_configure(&config);//配置DW1000
-
-    /* Apply default antenna delay value. See NOTE 1 below. */
-    dwt_setrxantennadelay(RX_ANT_DLY);		//设置接收天线延迟
-    dwt_settxantennadelay(TX_ANT_DLY);		//设置发射天线延迟
-
-    /* Set expected response's delay and timeout. See NOTE 4 and 5 below.
-     * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
-    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);//设置发送后开启接收,并设定延迟时间
-    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);						//设置接收超时时间
-
-		send[0]=0x6D;											//串口数据
-		send[1]=0xD6;											//串口数据
-
-		tx_poll_msg[6] = ANCHOR_ID;	//UWB POLL 包数据
-		rx_resp_msg[6] = ANCHOR_ID;	//UWB RESPONSE 包数据
-		tx_final_msg[6] = ANCHOR_ID;//UWB Fianl 包数据
-		
-		rx_poll_msg[6] = ANCHOR_ID;
-		tx_resp_msg[6] = ANCHOR_ID;
-		rx_final_msg[6] = ANCHOR_ID;
-		
-		tx_poll_msg[5] = TAG_ID;//UWB POLL 包数据
-		rx_resp_msg[5] = TAG_ID;//UWB RESPONSE 包数据
-		tx_final_msg[5] = TAG_ID;//UWB Fianl 包数据
+ 
+	Device_Init();
+	Program_Init();
+	Dw1000_Init();
+  delay_ms(10);	
+	Dw1000_App_Init();
     /* Loop forever initiating ranging exchanges. */
-	LED_blink();
-		if(!Work_Mode)   //选择发送模式(TAG标签)还是接收模式(ANCHOR基站)
-		{
-    while (1)			//发送模式(TAG标签)
-    {
-        /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
-        tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
-        dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
-        dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
+	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
+	usart_send[0]=0x55;
+	usart_send[1]=0xAA;
+	Modbus_RegMap();
+	while(1)
+	{
+	if(g_start_send_flag)
+	{
+		g_start_send_flag = 0;	
+		temp=dwt_readtempvbat(1);
+		dw_vbat=(float)(temp&0xff-173)/173+3.3;	
+		if(dw_vbat>2.8)		
+		Tag_App();
+	}//else{
+	IdleTask();	
+//	}
+//	
+if(g_com_map[DEV_ROLE]==0)
+		Anchor_App();
 
-        /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
-         * set by dwt_setrxaftertxdelay() has elapsed. */
-        dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-
-        /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
-        while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
-        { };
-
-        /* Increment frame sequence number after transmission of the poll message (modulo 256). */
-        frame_seq_nb++;
-
-        if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
-        {
-            uint32 frame_len;
-
-            /* Clear good RX frame event and TX frame sent in the DW1000 status register. */
-            dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
-
-            /* A frame has been received, read it into the local buffer. */
-            frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;	//获得接收到的数据长度
-
-                dwt_readrxdata(rx_buffer, frame_len, 0);   //读取接收数据
-
-
-            /* Check that the frame is the expected response from the companion "DS TWR responder" example.
-             * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-            rx_buffer[ALL_MSG_SN_IDX] = 0;
-            if (rx_buffer[9]==0x10)//判断接收到的数据是否是response数据
-            {
-                uint32 final_tx_time;
-
-							
-                /* Retrieve poll transmission and response reception timestamp. */
-                poll_tx_ts = get_tx_timestamp_u64();										//获得POLL发送时间T1
-                resp_rx_ts = get_rx_timestamp_u64();										//获得RESPONSE接收时间T4
-
-								memcpy(&dist[TAG_ID],&rx_buffer[11],2);
-							
-                /* Compute final message transmission time. See NOTE 9 below. */
-                final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
-                dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
-
-                /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
-                final_tx_ts = (((uint64)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
-
-                /* Write all timestamps in the final message. See NOTE 10 below. */
-                final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
-                final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts);
-                final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
-
-                /* Write and send final message. See NOTE 7 below. */
-                tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
-                dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
-                dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
-                dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
-
-								if (GPIO_ReadInputDataBit(GPIOA,SW2) != RESET)  //通过拨码开关判断数据输出格式
-											{
-												dID=TAG_ID;
-												printf("TAG_ID: %2.0f		", dID);
-												dID=ANCHOR_ID;
-												printf("ANCHOR_ID: %2.0f		", dID);
-                        printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]);
-											}else{
-												send[2] = ANCHOR_ID;
-												send[3] = TAG_ID;
-												
-												memcpy(&send[4],&dist[TAG_ID],2);
-											check=Checksum_u16(&send[2],6);
-												memcpy(&send[8],&check,2);
-												USART_puts(send,10);
-											}
-                /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
-                while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
-                { };
-
-                /* Clear TXFRS event. */
-                dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清楚标志位
-
-                /* Increment frame sequence number after transmission of the final message (modulo 256). */
-                frame_seq_nb++;
-								time32_reset = 0;
-								GPIO_Toggle(GPIOA,LED_PIN);//LED闪烁
-								jumptime = 0;
-            }else{
-							jumptime =5;//如果通讯失败,将间隔时间增加5ms,避开因为多标签同时发送引起的冲突。
-						}
-        }
-        else
-        {
-            /* Clear RX error events in the DW1000 status register. */
-            dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
-						jumptime =5;
-        }
-
-        /* Execute a delay between ranging exchanges. */
-        deca_sleep(RNG_DELAY_MS+jumptime);//休眠固定时间
-    }
-	}else{
-		while (1)//接收模式(ANCHOR基站)
-    {
-        /* Clear reception timeout to start next ranging process. */
-        dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
-
-        /* Activate reception immediately. */
-        dwt_rxenable(0);//打开接收
-
-        /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
-        while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
-        { };
-
-        if (status_reg & SYS_STATUS_RXFCG)//成功接收
-        {
-           
-
-            /* Clear good RX frame event in the DW1000 status register. */
-            dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清楚标志位
-
-            /* A frame has been received, read it into the local buffer. */
-            frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度
-
-                dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-            
-
-            /* Check that the frame is a poll sent by "DS TWR initiator" example.
-             * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-            rx_buffer[ALL_MSG_SN_IDX] = 0;
-							TAG_ID = rx_buffer[5];
-							rx_poll_msg[5] = TAG_ID;//为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
-							tx_resp_msg[5] = TAG_ID;
-							rx_final_msg[5] = TAG_ID;
-            if (rx_buffer[9]==0x21)//判断是否是poll包数据
-            {
-                uint32 resp_tx_time;
-
-                /* Retrieve poll reception timestamp. */
-                poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
-
-                /* Set send time for response. See NOTE 8 below. */
-                resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。
-                dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3
-
-                /* Set expected delay and timeout for final message reception. */
-                dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置发送完成后开启接收延迟时间
-                dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
-
-                /* Write and send the response message. See NOTE 9 below.*/
-								memcpy(&tx_resp_msg[11],&dist[TAG_ID],2);
-                tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
-                dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
-                dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
-                dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
-
-                /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
-                 * See NOTE 7 below. */
-                while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
-                { };
-
-                /* Increment frame sequence number after transmission of the response message (modulo 256). */
-                frame_seq_nb++;
-
-                if (status_reg & SYS_STATUS_RXFCG)//接收成功
-                {
-                    /* Clear good RX frame event and TX frame sent in the DW1000 status register. */
-                    dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位
-
-                    /* A frame has been received, read it into the local buffer. */
-                    frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度
-
-                        dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-                    
-
-                    /* Check that the frame is a final message sent by "DS TWR initiator" example.
-                     * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
-                    rx_buffer[ALL_MSG_SN_IDX] = 0;
-                    if (rx_buffer[9]==0x23)//判断是否为Fianl包
-                    {
-                        uint32 poll_tx_ts, resp_rx_ts, final_tx_ts;
-                        uint32 poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
-                        double Ra, Rb, Da, Db;
-                        int64 tof_dtu;
-
-                        /* Retrieve response transmission and final reception timestamps. */
-                        resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
-                        final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
-
-                        /* Get timestamps embedded in the final message. */
-                        final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5
-                        final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts);
-                        final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
-
-                        /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */
-                        poll_rx_ts_32 = (uint32)poll_rx_ts;//使用32位数据计算
-                        resp_tx_ts_32 = (uint32)resp_tx_ts;
-                        final_rx_ts_32 = (uint32)final_rx_ts;
-                        Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1  
-                        Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3 
-                        Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4  
-                        Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2  
-                        tof_dtu = (int64)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
-
-                        tof = tof_dtu * DWT_TIME_UNITS;
-                        distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
-												dist2 = distance - dwt_getrangebias(config.chan,(float)distance, config.prf);//距离减去矫正系数
-												
-												dis = dist2*100;//dis 为单位为cm的距离
-												dist[TAG_ID] = LP(dis,TAG_ID);//LP 为低通滤波器,让数据更稳定
-												time32_reset = 0;
-												GPIO_Toggle(GPIOA,LED_PIN);
-											if (GPIO_ReadInputDataBit(GPIOA,SW2) != RESET)  //通过拨码开关判断数据输出格式
-											{
-												dID=TAG_ID;
-												printf("TAG_ID: %2.0f		", dID);
-												dID=ANCHOR_ID;
-												printf("ANCHOR_ID: %2.0f		", dID);
-                        printf("Distance: %5.0f cm\n", (double)dist[TAG_ID]);
-											}else{
-												send[2] = ANCHOR_ID;
-												send[3] = TAG_ID;
-												
-												memcpy(&send[4],&dist[TAG_ID],2);
-											check=Checksum_u16(&send[2],6);
-												memcpy(&send[8],&check,2);
-												USART_puts(send,10);
-											}
-                       
-                    }
-                }
-                else
-                {
-                    /* Clear RX error events in the DW1000 status register. */
-                    dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
-                }
-            }
-        }
-        else
-        {
-            /* Clear RX error events in the DW1000 status register. */
-            dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
-        }
-    }
-		
 		
 	}
 }
 
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_tx_timestamp_u64()
- *
- * @brief Get the TX time-stamp in a 64-bit variable.
- *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param  none
- *
- * @return  64-bit value of the read time-stamp.
- */
-static uint64 get_tx_timestamp_u64(void)
-{
-    uint8 ts_tab[5];
-    uint64 ts = 0;
-    int i;
-    dwt_readtxtimestamp(ts_tab);
-    for (i = 4; i >= 0; i--)
-    {
-        ts <<= 8;
-        ts |= ts_tab[i];
-    }
-    return ts;
-}
 
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_rx_timestamp_u64()
- *
- * @brief Get the RX time-stamp in a 64-bit variable.
- *        /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param  none
- *
- * @return  64-bit value of the read time-stamp.
- */
-static uint64 get_rx_timestamp_u64(void)
-{
-    uint8 ts_tab[5];
-    uint64 ts = 0;
-    int i;
-    dwt_readrxtimestamp(ts_tab);
-    for (i = 4; i >= 0; i--)
-    {
-        ts <<= 8;
-        ts |= ts_tab[i];
-    }
-    return ts;
-}
 
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn final_msg_set_ts()
- *
- * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final
- *        message, the least significant byte is at the lower address.
- *
- * @param  ts_field  pointer on the first byte of the timestamp field to fill
- *         ts  timestamp value
- *
- * @return none
- */
-static void final_msg_set_ts(uint8 *ts_field, uint64 ts)
-{
-    int i;
-    for (i = 0; i < FINAL_MSG_TS_LEN; i++)
-    {
-        ts_field[i] = (uint8) ts;
-        ts >>= 8;
-    }
-}
-
-/*****************************************************************************************************************************************************
- * NOTES:
- *
- * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value
- *    but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing
- *    range measurements.
- * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE
- *    802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are:
- *     - a poll message sent by the initiator to trigger the ranging exchange.
- *     - a response message sent by the responder allowing the initiator to go on with the process
- *     - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the
- *       time-of-flight (distance) estimate.
- *    The first 10 bytes of those frame are common and are composed of the following fields:
- *     - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing).
- *     - byte 2: sequence number, incremented for each new frame.
- *     - byte 3/4: PAN TAG_ID (0xDECA).
- *     - byte 5/6: destination address, see NOTE 3 below.
- *     - byte 7/8: source address, see NOTE 3 below.
- *     - byte 9: function code (specific values to indicate which message it is in the ranging process).
- *    The remaining bytes are specific to each message as follows:
- *    Poll message:
- *     - no more data
- *    Response message:
- *     - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange).
- *     - byte 11/12: activity parameter, not used here for activity code 0x02.
- *    Final message:
- *     - byte 10 -> 13: poll message transmission timestamp.
- *     - byte 14 -> 17: response message reception timestamp.
- *     - byte 18 -> 21: final message transmission timestamp.
- *    All messages end with a 2-byte checksum automatically set by DW1000.
- * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a
- *    unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only
- *    after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange.
- * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator
- *    and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more
- *    details about the timings involved in the ranging process.
- * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value
- *    is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the
- *    110k data rate used (around 3 ms).
- * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using
- *    the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory.
- * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is
- *    automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not
- *    work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using
- *    delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the
- *    transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent,
- *    this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have
- *    been carefully defined to avoid this situation.
- * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please
- *    refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we
- *    use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5
- *    bytes.
- * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000
- *    register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to
- *    response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the
- *    lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower
- *    8 bits.
- * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by
- *     more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the
- *     time-of-flight computation) can be handled by a 32-bit subtraction.
- * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the
- *     DW1000 API Guide for more details on the DW1000 driver functions.
- ****************************************************************************************************************************************************/

--
Gitblit v1.9.3