From a58107e9dcf49b7bf0b31cf201d29069550fd6cd Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期二, 05 十一月 2019 08:26:13 +0800
Subject: [PATCH] 机场发货

---
 源码/核心板/Src/application/dw_app.c |  334 +++++++++++++++++++++++++++++++++----------------------
 1 files changed, 200 insertions(+), 134 deletions(-)

diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
index 450a384..44c881a 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
@@ -3,12 +3,7 @@
  *  @file    main.c
  *  @brief   Double-sided two-way ranging (DS TWR) initiator example code
  *
- *           This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll"
- *           frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example
- *           code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to
- *           complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX
- *           time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air
- *           and, thus, the estimated distance between the two devices.
+ *         
  *
  * @attention
  *
@@ -51,9 +46,9 @@
 #define POLL_TX_TO_RESP_RX_DLY_UUS 150
 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
  * frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500
+#define RESP_RX_TO_FINAL_TX_DLY_UUS 400
 /* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 2700
+#define RESP_RX_TIMEOUT_UUS 600
 
 #define POLL_RX_TO_RESP_TX_DLY_UUS 420
 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
@@ -64,21 +59,31 @@
 #define SPEED_OF_LIGHT 299702547
 
 /* Indexes to access some of the fields in the frames defined above. */
-#define ALL_MSG_SN_IDX 2
 #define FINAL_MSG_POLL_TX_TS_IDX 10
 #define FINAL_MSG_RESP_RX_TS_IDX 14
 #define FINAL_MSG_FINAL_TX_TS_IDX 18
 #define FINAL_MSG_TS_LEN 4
 
+#define SYNC_SEQ_IDX    			5
+
 #define GROUP_ID_IDX   				0
 #define ANCHOR_ID_IDX    			1
-#define TAG_ID_IDX    				3
-#define MESSAGE_TYPE_IDX 			5
-#define DIST_IDX 							6
+#define TAG_ID_IDX    				5
+#define MESSAGE_TYPE_IDX 			9	
+#define DIST_IDX 							10
+//Poll
+#define ANC_TYPE_IDX 					14
+#define BATTARY_IDX						15
+#define BUTTON_IDX						16
+#define SEQUENCE_IDX					17
+//respose
+#define ANCTIMEMS             14
+#define ANCTIMEUS             16
 
 #define POLL     					0x01
 #define RESPONSE 					0x02
 #define FINAL   					0x03
+#define SYNC   						0x04
 
 /*------------------------------------ Variables ------------------------------------------*/
 /* Default communication configuration. We use here EVK1000's default mode (mode 3). */
@@ -96,12 +101,13 @@
 };
 
 /* Frames used in the ranging process. See NOTE 2 below. */
-static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
+static uint8_t tx_poll_msg[20] = {0};
+static uint8_t tx_sync_msg[14] = {0};
 //static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
 static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 	
 //static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
+static uint8_t tx_resp_msg[20] = {0};
 //static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 	
 /* Frame sequence number, incremented after each transmission. */
@@ -128,9 +134,9 @@
 
 static double tof;
 	
-uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS];	
-uint8_t tag_id = 0;
-uint8_t tag_id_recv = 0;
+uint32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS];	;	
+uint32_t tag_id = 0;
+uint32_t tag_id_recv = 0;
 uint8_t random_delay_tim = 0;
 
 double distance, dist_no_bias, dist_cm;
@@ -139,7 +145,7 @@
 float dis_after_filter;				//当前距离值
 LPFilter_Frac* p_Dis_Filter;		//测距用的低通滤波器
 
-uint16_t g_Tagdist[256];
+uint16_t g_Tagdist[TAG_NUM_IN_SYS];
 uint8_t g_flag_Taggetdist[256];
 /*------------------------------------ Functions ------------------------------------------*/
 
@@ -245,8 +251,9 @@
      * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum
      * performance. */
     Reset_DW1000();//重启DW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */
+	Spi_ChangePrescaler(SPIx_PRESCALER_SLOW);	//设置为快速模式
     dwt_initialise(DWT_LOADUCODE);//初始化DW1000
-	Spi_ChangePrescaler(SPIx_PRESCALER_FAST);	//设置为快速模式
+	Spi_ChangePrescaler(SPI_BaudRatePrescaler_8);	//设置为快速模式
 
     /* Configure DW1000. See NOTE 6 below. */
     dwt_configure(&config);//配置DW1000
@@ -259,53 +266,100 @@
 
     /* Set expected response's delay and timeout. See NOTE 4 and 5 below.
      * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
-    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
-    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);						//设置接收超时时间
+				//设置接收超时时间
 }
 void Dw1000_App_Init(void)
 {
-//	g_com_map[DEV_ID] = 0x02;
+//g_com_map[DEV_ID] = 0x0b;
 	tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
 	tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
 	tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
-	memcpy(&tx_poll_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2);
-	memcpy(&tx_final_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2);
-	memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &g_com_map[DEV_ID], 2);
+	tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
 	
+	memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4);
+	memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4);
+	memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4);
+	memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4);
 }	
+uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) 
+{
+    uint16_t sum = 0;
+    uint32_t i;
+    for(i=0; i<len; i++)
+        sum += pdata[i];
+    sum = ~sum;
+    return sum;
+}
+
+u16 tag_time_recv[TAG_NUM_IN_SYS];
+u8 usart_send[25];
+u8 battary,button;
+extern uint8_t g_pairstart;
 void tag_sleep_configuraion(void)
 {
 	dwt_configuresleep(0x940, 0x7);
 	dwt_entersleep();
 }
+extern uint8_t g_start_send_flag;
+u8 g_start_sync_flag;
+void SyncPoll(u8 sync_seq)
+{
+	g_start_sync_flag=1;
+	dwt_forcetrxoff();
+	tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
+	dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+	dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度
+	dwt_starttx(DWT_START_TX_IMMEDIATE);
+}
 uint16_t g_Resttimer;
 uint8_t result;
+u8 tag_succ_times=0;
+int32_t hex_dist;
+u16 checksum;
+int8_t tag_delaytime;
+extern uint16_t sync_timer;
+u16 tmp_time;
 void Tag_App(void)//发送模式(TAG标签)
 {
 	uint32_t frame_len;
 	uint32_t final_tx_time;
-	
+	u32 start_poll;
+	u8 i,getsync_flag=0;
+	//LED0_ON;
+	dwt_forcetrxoff();
 	g_Resttimer=0;
-	UART_CheckReceive();
-	GPIO_ResetBits(SPIx_GPIO, SPIx_CS);
-	delay_us(2500);
-	GPIO_SetBits(SPIx_GPIO, SPIx_CS);
-	
+    dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS);			//设置发送后开启接收,并设定延迟时间
+    dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);		
+	tag_succ_times = 0;
+	tx_poll_msg[BATTARY_IDX] = Get_Battary();
+	tx_poll_msg[BUTTON_IDX] = !READ_KEY0;
+	tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++;
+	GPIO_WriteBit(GPIOA, GPIO_Pin_9, Bit_RESET);
+	for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++)
+	{
 	/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
-	tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+	tx_poll_msg[ANC_TYPE_IDX] = i;
+		
 	dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
 	dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
 
 	/* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
 	 * set by dwt_setrxaftertxdelay() has elapsed. */
 	dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-
+	start_poll = time32_incr;
 	/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
 	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
-	{ };
+	{ if(time32_incr - start_poll>20)
+		NVIC_SystemReset();
+		UART_CheckReceive();
+		
+	};
 
 	/* Increment frame sequence number after transmission of the poll message (modulo 256). */
-	frame_seq_nb++;
+	if(status_reg==0xffffffff)
+	{
+		NVIC_SystemReset();
+	}
 
 	if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
 	{
@@ -320,15 +374,30 @@
 
 		/* Check that the frame is the expected response from the companion "DS TWR responder" example.
 		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-		rx_buffer[ALL_MSG_SN_IDX] = 0;
-		if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE) //判断接收到的数据是否是response数据
+		
+		if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据
 		{
 			/* Retrieve poll transmission and response reception timestamp. */
 			poll_tx_ts = get_tx_timestamp_u64();										//获得POLL发送时间T1
 			resp_rx_ts = get_rx_timestamp_u64();										//获得RESPONSE接收时间T4
 			
-			memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2);
-			memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2);
+			if(getsync_flag==0)
+			{
+				getsync_flag=1;
+			memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
+			memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
+			tmp_time=tmp_time+450;
+			if(tmp_time>999)
+			{
+				tmp_time-=999;
+				sync_timer++;
+				if(sync_timer>=1010)
+					{sync_timer=0;}
+			}
+			TIM3->CNT=tmp_time;
+		}
+			memcpy(&anchor_dist_last_frm[0], &rx_buffer[DIST_IDX], 4);
+			memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4);
 			/* Compute final message transmission time. See NOTE 9 below. */
 			final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
 			dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
@@ -342,12 +411,29 @@
 			final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
 
 			/* Write and send final message. See NOTE 7 below. */
-			tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+		
 			dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
 			dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
 			result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
 			
+			tag_succ_times++;
 			
+				LED0_BLINK;
+			
+					
+					usart_send[2] = 1;//正常模式
+					usart_send[3] = 17;//数据段长度
+					usart_send[4] = frame_seq_nb;//数据段长度
+					memcpy(&usart_send[5],&dev_id,2);
+					memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2);
+					hex_dist = anchor_dist_last_frm[0]+(int16_t)g_com_map[DIST_OFFSET];
+					memcpy(&usart_send[9],&hex_dist,4);
+					usart_send[13] = battary;
+					usart_send[14] = button;
+					checksum = Checksum_u16(&usart_send[2],17);
+					memcpy(&usart_send[19],&checksum,2);
+					UART_PushFrame(usart_send,21);
+
 			/* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
 			if(result==0)
 			{while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
@@ -357,7 +443,7 @@
 			dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
 
 			/* Increment frame sequence number after transmission of the final message (modulo 256). */
-			frame_seq_nb++;
+
 			random_delay_tim = 0;
 		}
 		else
@@ -371,12 +457,20 @@
 		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
 		random_delay_tim = DFT_RAND_DLY_TIM_MS;
 	}
-	LED0_BLINK;
+//	deca_sleep(10);
+}
+//	dwt_entersleep();
+	if(tag_succ_times<g_com_map[MIN_REPORT_ANC_NUM])
+	{
+	//poll_timer +=time32_incr&0x7+3;
+	}
+
 	/* Execute a delay between ranging exchanges. */
-	dwt_entersleep();
 	
 }
-extern uint8_t g_pairstart;
+int8_t correction_time;
+extern uint8_t sync_seq;
+
 void Anchor_App(void)
 {
 	uint32_t frame_len;
@@ -389,14 +483,14 @@
 	dwt_rxenable(0);//打开接收
 
 	/* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
-	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
+	while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误
 	{ 
-		UART_CheckReceive();
+		IdleTask();
 		g_Resttimer=0;
 	};
 
 	if (status_reg & SYS_STATUS_RXFCG)//成功接收
-	{
+	{ u16 tag_recv_interval;
 		/* Clear good RX frame event in the DW1000 status register. */
 		dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
 
@@ -408,15 +502,28 @@
 
 		/* Check that the frame is a poll sent by "DS TWR initiator" example.
 		 * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
-		rx_buffer[ALL_MSG_SN_IDX] = 0;
+	
 		
 		//将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
-		tag_id_recv = rx_buffer[TAG_ID_IDX];
-		tx_resp_msg[TAG_ID_IDX] = tag_id_recv;
-
+		//tag_id_recv = rx_buffer[TAG_ID_IDX];
+		memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4);
+		memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4);
+		//tx_resp_msg[TAG_ID_IDX] = tag_id_recv;
+//		if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START])
+//		{	tag_recv_interval =  tag_recv_timer - tag_time_recv[tag_id_recv];
+//		}else{
+//			tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv];
+//		}
 		
-		if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&tag_id_recv!= g_com_map[PAIR_ID]) //判断是否是poll包数据
+		if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据
 		{
+			tmp_time=TIM3->CNT;
+			memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2);
+			memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2);
+
+//							if(correction_time>10)
+//							{correction_time++;}
+							
 			/* Retrieve poll reception timestamp. */
 			poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
 
@@ -429,12 +536,16 @@
 			dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
 
 			/* Write and send the response message. See NOTE 9 below.*/
-			memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2);
-			tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+			if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS)
+			memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv-TAG_ID_START], 4);
+		
 			dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
 			dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
 			result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
 
+			battary = rx_buffer[BATTARY_IDX];
+			button = rx_buffer[BUTTON_IDX];
+			frame_seq_nb = rx_buffer[SEQUENCE_IDX];
 			/* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
 			 * See NOTE 7 below. */
 			if(result==0)
@@ -443,7 +554,6 @@
 			{ };
 		}
 			/* Increment frame sequence number after transmission of the response message (modulo 256). */
-			frame_seq_nb++;
 
 			if (status_reg & SYS_STATUS_RXFCG)//接收成功
 			{
@@ -458,14 +568,14 @@
 
 				/* Check that the frame is a final message sent by "DS TWR initiator" example.
 				 * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
-				rx_buffer[ALL_MSG_SN_IDX] = 0;
-				if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&rx_buffer[TAG_ID_IDX]==tag_id_recv&&rx_buffer[ANCHOR_ID_IDX]==g_com_map[DEV_ID]) //判断是否为Final包
+			
+				if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包
 				{
 					uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
 					uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
 					double Ra, Rb, Da, Db;
 					int64_t tof_dtu;
-
+					
 					/* Retrieve response transmission and final reception timestamps. */
 					resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
 					final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
@@ -496,26 +606,45 @@
 					LED0_BLINK; //每成功一次通讯则闪烁一次
 					g_UWB_com_interval = 0;
 					dis_after_filter=dist_cm;
-					g_Tagdist[tag_id_recv]=dist_cm;
-					if(g_pairstart==1&&dist_cm<20)
+					hex_dist = (int16_t)(dist_cm+g_com_map[DIST_OFFSET]);
+						if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS)
+					if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000)
 					{
-						g_pairstart=0;
-						g_com_map[PAIR_ID]=tag_id_recv;
-						save_com_map_to_flash();
-						BEEP2_ON;
-						delay_ms(1000);
-						printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]);
+						g_Tagdist[tag_id_recv-TAG_ID_START] = hex_dist;
+						anchor_dist_last_frm[tag_id_recv-TAG_ID_START] = hex_dist;
 					}
-					g_flag_Taggetdist[tag_id_recv]=0;
-					printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter);
+					his_dist[tag_id_recv-TAG_ID_START]=hex_dist;
+						
+					usart_send[2] = 1;//正常模式
+					usart_send[3] = 17;//数据段长度
+					usart_send[4] = frame_seq_nb;//数据段长度
+					memcpy(&usart_send[5],&tag_id_recv,2);
+					memcpy(&usart_send[7],&dev_id,2);
+					
+					memcpy(&usart_send[9],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4);
+					usart_send[13] = battary;
+					usart_send[14] = button;
+					checksum = Checksum_u16(&usart_send[2],17);
+					memcpy(&usart_send[19],&checksum,2);
+					UART_PushFrame(usart_send,21);
+
+					
 					//dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm);
 
 				}
-			}
-			else
-			{
+			}else{
 				/* Clear RX error events in the DW1000 status register. */
 				dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+			}
+		}else if(rx_buffer[MESSAGE_TYPE_IDX] == SYNC)
+		{
+			if(rx_buffer[SYNC_SEQ_IDX]<sync_seq)
+		//	if(rx_buffer[SYNC_SEQ_IDX]==2)
+			{
+				sync_seq=rx_buffer[SYNC_SEQ_IDX]+1;
+				TIM3->CNT = sync_seq*325%1000+15;
+				sync_timer = sync_seq*325/1000;
+				SyncPoll(sync_seq);
 			}
 		}
 	}
@@ -526,66 +655,3 @@
 	}
 }
 
-/*****************************************************************************************************************************************************
- * NOTES:
- *
- * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value
- *    but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing
- *    range measurements.
- * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE
- *    802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are:
- *     - a poll message sent by the initiator to trigger the ranging exchange.
- *     - a response message sent by the responder allowing the initiator to go on with the process
- *     - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the
- *       time-of-flight (distance) estimate.
- *    The first 10 bytes of those frame are common and are composed of the following fields:
- *     - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing).
- *     - byte 2: sequence number, incremented for each new frame.
- *     - byte 3/4: PAN TAG_ID (0xDECA).
- *     - byte 5/6: destination address, see NOTE 3 below.
- *     - byte 7/8: source address, see NOTE 3 below.
- *     - byte 9: function code (specific values to indicate which message it is in the ranging process).
- *    The remaining bytes are specific to each message as follows:
- *    Poll message:
- *     - no more data
- *    Response message:
- *     - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange).
- *     - byte 11/12: activity parameter, not used here for activity code 0x02.
- *    Final message:
- *     - byte 10 -> 13: poll message transmission timestamp.
- *     - byte 14 -> 17: response message reception timestamp.
- *     - byte 18 -> 21: final message transmission timestamp.
- *    All messages end with a 2-byte checksum automatically set by DW1000.
- * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a
- *    unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only
- *    after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange.
- * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator
- *    and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more
- *    details about the timings involved in the ranging process.
- * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value
- *    is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the
- *    110k data rate used (around 3 ms).
- * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using
- *    the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory.
- * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is
- *    automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not
- *    work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using
- *    delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the
- *    transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent,
- *    this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have
- *    been carefully defined to avoid this situation.
- * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please
- *    refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we
- *    use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5
- *    bytes.
- * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000
- *    register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to
- *    response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the
- *    lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower
- *    8 bits.
- * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by
- *     more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the
- *     time-of-flight computation) can be handled by a 32-bit subtraction.
- * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the
- *     DW1000 API Guide for more details on the DW1000 driver functions.
- ****************************************************************************************************************************************************/

--
Gitblit v1.9.3