From af4710835316cb2fd8dd70db7867e23147206f31 Mon Sep 17 00:00:00 2001 From: zhyinch <zhyinch@gmail.com> Date: 星期四, 17 二月 2022 09:33:48 +0800 Subject: [PATCH] 增加跳跃时间 --- 源码/核心板/Src/application/dw_app.c | 816 +++++++++++++++++++++++++++++++++++++++++++++++---------- 1 files changed, 665 insertions(+), 151 deletions(-) diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" index b28421b..03c53c7 100644 --- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" +++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" @@ -3,12 +3,7 @@ * @file main.c * @brief Double-sided two-way ranging (DS TWR) initiator example code * - * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" - * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example - * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to - * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX - * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air - * and, thus, the estimated distance between the two devices. + * * * @attention * @@ -20,6 +15,7 @@ */ #include <string.h> +#include <math.h> #include "dw_app.h" #include "deca_device_api.h" #include "deca_regs.h" @@ -31,9 +27,11 @@ #include "global_param.h" #include "filters.h" #include <stdio.h> - - - +#include "beep.h" +#include "modbus.h" +//#define DEBUG_OUTPUT +#define TDFILTER +#define CONSTANT_FILTER /*------------------------------------ Marcos ------------------------------------------*/ /* Inter-ranging delay period, in milliseconds. */ #define RNG_DELAY_MS 100 @@ -51,9 +49,9 @@ #define POLL_TX_TO_RESP_RX_DLY_UUS 150 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the * frame length of approximately 2.66 ms with above configuration. */ -#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500 +#define RESP_RX_TO_FINAL_TX_DLY_UUS 400 /* Receive response timeout. See NOTE 5 below. */ -#define RESP_RX_TIMEOUT_UUS 2700 +#define RESP_RX_TIMEOUT_UUS 9600 #define POLL_RX_TO_RESP_TX_DLY_UUS 420 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ @@ -64,55 +62,75 @@ #define SPEED_OF_LIGHT 299702547 /* Indexes to access some of the fields in the frames defined above. */ -#define ALL_MSG_SN_IDX 2 #define FINAL_MSG_POLL_TX_TS_IDX 10 #define FINAL_MSG_RESP_RX_TS_IDX 14 #define FINAL_MSG_FINAL_TX_TS_IDX 18 #define FINAL_MSG_TS_LEN 4 +#define SYNC_SEQ_IDX 5 +//common #define GROUP_ID_IDX 0 #define ANCHOR_ID_IDX 1 -#define TAG_ID_IDX 3 -#define MESSAGE_TYPE_IDX 5 -#define DIST_IDX 6 +#define TAG_ID_IDX 5 +#define MESSAGE_TYPE_IDX 9 + +//Poll +#define ANC_TYPE_IDX 14 +#define BATTARY_IDX 15 +#define BUTTON_IDX 16 +#define SEQUENCE_IDX 17 +//respose +#define DIST_IDX 10 +#define ANCTIMEMS 14 +#define ANCTIMEUS 16 +#define ANCSEND_INTERVAL 18 +#define SIGNALPOWER 20 +//DATA POLL +#define CURENTPACKNUM_IDX 7 +#define TOTALPACKNUM_IDX 8 +#define DATA_IDX 10 + #define POLL 0x01 #define RESPONSE 0x02 #define FINAL 0x03 - +#define SYNC 0x04 +#define DATA_POLL 0x21 +#define DATA_RESPONSE 0x22 /*------------------------------------ Variables ------------------------------------------*/ /* Default communication configuration. We use here EVK1000's default mode (mode 3). */ static dwt_config_t config = { - 5, /* Channel number. */ + 2, /* Channel number. */ DWT_PRF_64M, /* Pulse repetition frequency. */ DWT_PLEN_128, /* Preamble length. */ DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ 9, /* TX preamble code. Used in TX only. */ 9, /* RX preamble code. Used in RX only. */ - 0, /* Use non-standard SFD (Boolean) */ + 1, /* Use non-standard SFD (Boolean) */ DWT_BR_6M8, /* Data rate. */ DWT_PHRMODE_STD, /* PHY header mode. */ (129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ }; /* Frames used in the ranging process. See NOTE 2 below. */ -static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; +static uint8_t tx_poll_msg[20] = {0}; +static uint8_t tx_sync_msg[140] = {0}; //static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; -static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; +static uint8_t tx_final_msg[24] = {0}; //static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; +static uint8_t tx_resp_msg[23] = {0}; //static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* Frame sequence number, incremented after each transmission. */ -static uint32_t frame_seq_nb = 0; +static uint32_t frame_seq_nb = 0,frame_seq_nb2=0; /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ static uint32_t status_reg = 0; /* Buffer to store received response message. * Its size is adjusted to longest frame that this example code is supposed to handle. */ -#define RX_BUF_LEN 24 +#define RX_BUF_LEN 224 static uint8_t rx_buffer[RX_BUF_LEN]; /* Time-stamps of frames transmission/reception, expressed in device time units. @@ -128,9 +146,9 @@ static double tof; -uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS]; -uint8_t tag_id = 0; -uint8_t tag_id_recv = 0; +int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ; +uint32_t tag_id = 0; +uint32_t tag_id_recv = 0; uint8_t random_delay_tim = 0; double distance, dist_no_bias, dist_cm; @@ -139,7 +157,7 @@ float dis_after_filter; //当前距离值 LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器 -uint16_t g_Tagdist[256]; +int32_t g_Tagdist[TAG_NUM_IN_SYS]; uint8_t g_flag_Taggetdist[256]; /*------------------------------------ Functions ------------------------------------------*/ @@ -229,12 +247,14 @@ if(clear_judge_cnt++>1000) //设定1S分频,每秒进一次。判断标志位大于等于2,2s没收到数据就把数据变成0xffff,不触发警报。 { clear_judge_cnt=0; - for(i=0;i<255;i++) + for(i=0;i<100;i++) { g_flag_Taggetdist[i]++; if(g_flag_Taggetdist[i]>=2) { g_Tagdist[i]=0xffff; + Modbus_HoldReg[i*2]=1; + Modbus_HoldReg[i*2+1]=0xffff; } } } @@ -259,53 +279,163 @@ /* Set expected response's delay and timeout. See NOTE 4 and 5 below. * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ - dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 - dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间 + //设置接收超时时间 } void Dw1000_App_Init(void) { -// g_com_map[DEV_ID] = 0x02; +//g_com_map[DEV_ID] = 0x0b; tx_poll_msg[MESSAGE_TYPE_IDX]=POLL; tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE; tx_final_msg[MESSAGE_TYPE_IDX]=FINAL; - memcpy(&tx_poll_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_final_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &g_com_map[DEV_ID], 2); + tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC; + memcpy(&tx_poll_msg[GROUP_ID_IDX], &group_id, 1); + memcpy(&tx_final_msg[GROUP_ID_IDX], &group_id, 1); + memcpy(&tx_resp_msg[GROUP_ID_IDX], &group_id, 1); + + memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4); + memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4); + memcpy(&tx_sync_msg[TAG_ID_IDX], &dev_id, 4); + + memcpy(&tx_resp_msg[ANCSEND_INTERVAL], &g_com_map[COM_INTERVAL], 2); } +uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) +{ + uint16_t sum = 0; + uint32_t i; + for(i=0; i<len; i++) + sum += pdata[i]; + sum = ~sum; + return sum; +} + +u16 tag_time_recv[TAG_NUM_IN_SYS]; +u8 usart_send[25]; +u8 battary,button; +extern uint8_t g_pairstart; void tag_sleep_configuraion(void) { dwt_configuresleep(0x940, 0x7); dwt_entersleep(); } +extern uint8_t g_start_send_flag; +u8 g_start_sync_flag; +void SyncPoll(u8 sync_seq) +{ + g_start_sync_flag=1; + dwt_forcetrxoff(); + tx_sync_msg[SYNC_SEQ_IDX]=sync_seq; + dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE); +} + double firstpath_power, rx_power,rec_firstpath_power; + double f1, f2, r1, r2; +uint16_t F1,F2,F3,N,C; +double B = 131072; +double A = 121.74; +double min_power; + dwt_rxdiag_t d1; +double LOS(dwt_rxdiag_t *dia) { + F1 = dia->firstPathAmp1; + F2 = dia->firstPathAmp2; + F3 = dia->firstPathAmp3; + N = dia->rxPreamCount; + C = dia->maxGrowthCIR; + + firstpath_power=10* log10((F1*F1+F2*F2+F3*F3)/(N*N))-A; +// rx_power=10*log10(C*B/(N*N))-A; + + // min_power = - 10 * log10((F1 *F1 + F2 * F2 + F3 * F3) / (C *B)); + return min_power; + } +#define CONSTANT_LEN 50 +extern u16 dist_threshold; +int32_t ConstantFilter(int32_t currentdist,u8 channel) + { + static int32_t cs_lastdist[10],cs_lastvalid[10]; + static u8 cfstart_flag[10] = {1}; + static u8 constant_count[10] = {100}; + if(cfstart_flag[channel]) + { + cfstart_flag[channel] = 0; + cs_lastdist[channel] = currentdist; + } + if( abs(currentdist - cs_lastdist[channel])<100) + { + if(constant_count[channel]<CONSTANT_LEN) + constant_count[channel]++; + }else{ + constant_count[channel] = 0; + } + if(constant_count[channel] == CONSTANT_LEN) + { + cs_lastvalid[channel] = currentdist; + } + cs_lastdist[channel] = currentdist; + return cs_lastvalid[channel]; + } + uint16_t g_Resttimer; uint8_t result; +u8 tag_succ_times=0; +int32_t hex_dist,hex_dist2; +u16 checksum; +int8_t tag_delaytime; +extern uint16_t sync_timer; +u16 tmp_time; +u32 start_poll; +extern float dw_vbat; +extern u16 slottime,max_slotnum,current_slotpos,tyncpoll_time; void Tag_App(void)//发送模式(TAG标签) { uint32_t frame_len; uint32_t final_tx_time; - - g_Resttimer=0; - UART_CheckReceive(); - GPIO_ResetBits(SPIx_GPIO, SPIx_CS); - delay_us(2500); - GPIO_SetBits(SPIx_GPIO, SPIx_CS); - + + u8 i,getsync_flag=0; + u8 bat_percent; + //LED0_ON; + dwt_forcetrxoff(); + dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 + dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); + tag_succ_times = 0; + bat_percent=(dw_vbat-2.8)/0.5*100; + if(bat_percent>100) + bat_percent=100; + tx_poll_msg[BATTARY_IDX] = bat_percent;//Get_Battary(); + tx_poll_msg[BUTTON_IDX] = !READ_KEY0; + tx_poll_msg[SEQUENCE_IDX] = frame_seq_nb++; + GPIO_WriteBit(GPIOA, GPIO_Pin_9, Bit_RESET); + for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++) + { /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ - tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + tx_poll_msg[ANC_TYPE_IDX] = i; + dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度 /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay * set by dwt_setrxaftertxdelay() has elapsed. */ dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置 - + start_poll = time32_incr; + #ifdef DEBUG_OUTPUT + printf("P包发送,基站ID: %d .\r\n",i); + #endif /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 - { }; + { if(time32_incr - start_poll>20) + NVIC_SystemReset(); + IdleTask(); + + }; /* Increment frame sequence number after transmission of the poll message (modulo 256). */ - frame_seq_nb++; + if(status_reg==0xffffffff) + { + NVIC_SystemReset(); + } if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 { @@ -320,15 +450,40 @@ /* Check that the frame is the expected response from the companion "DS TWR responder" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE) //判断接收到的数据是否是response数据 - { + + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据 + { u16 anc_id_recv,rec_com_interval; /* Retrieve poll transmission and response reception timestamp. */ poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 - memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2); - memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2); + if(getsync_flag==0&&g_com_map[DEV_ROLE]) + { + getsync_flag=1; + memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2); + memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2); + tmp_time=tmp_time+450; + if(tmp_time>999) + { + tmp_time-=999; + sync_timer++; + if(sync_timer>=1010) + {sync_timer=0;} + } + TIM3->CNT=tmp_time; + } + memcpy(&hex_dist2, &rx_buffer[DIST_IDX], 4); + rec_firstpath_power = rx_buffer[SIGNALPOWER]; + memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4); + memcpy(&rec_com_interval,&rx_buffer[ANCSEND_INTERVAL], 2); + if(rec_com_interval>4&&rec_com_interval!=g_com_map[COM_INTERVAL]) + { + g_com_map[COM_INTERVAL]=rec_com_interval; + save_com_map_to_flash(); + delay_ms(100); + SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //软复位回到bootloader + } + /* Compute final message transmission time. See NOTE 9 below. */ final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2 dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 @@ -342,22 +497,56 @@ final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); /* Write and send final message. See NOTE 7 below. */ - tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000 dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度 result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 + #ifdef DEBUG_OUTPUT + printf("F包发送,基站ID: %d .\r\n",i); + #endif + + tag_succ_times++; + LED0_BLINK; + g_Resttimer=0; + memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2); + if(hex_dist2!=0xffff) + { + g_Tagdist[anc_id_recv]= hex_dist2; + g_flag_Taggetdist[anc_id_recv]=0; + + if(!g_com_map[MODBUS_MODE]) + { + hex_dist2 = hex_dist2; + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb;//数据段长度 + memcpy(&usart_send[5],&dev_id,2); + memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2); + + memcpy(&usart_send[9],&hex_dist2,4); + usart_send[13] = bat_percent; + usart_send[14] = button; + usart_send[15] = rec_firstpath_power; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + } + } + // memcpy(&Modbus_HoldReg[anc_id_recv*2],&hex_dist,4); /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ if(result==0) - {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 + { + + while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 { }; } /* Clear TXFRS event. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位 /* Increment frame sequence number after transmission of the final message (modulo 256). */ - frame_seq_nb++; + random_delay_tim = 0; } else @@ -367,21 +556,36 @@ } else { + #ifdef DEBUG_OUTPUT + printf("R包失败错误信息: %x .\r\n",status_reg); + #endif /* Clear RX error events in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); random_delay_tim = DFT_RAND_DLY_TIM_MS; } - LED0_BLINK; +// deca_sleep(10); +} +// dwt_entersleep(); + if(tag_succ_times<1) + { + tyncpoll_time=(current_slotpos--%max_slotnum)*slottime; + } + /* Execute a delay between ranging exchanges. */ - dwt_entersleep(); } -extern uint8_t g_pairstart; + +int8_t correction_time; +extern uint8_t sync_seq; + +//#define CHECK_UID +extern uint8_t UID_ERROR; + +u8 misdist_num[TAG_NUM_IN_SYS]; void Anchor_App(void) { uint32_t frame_len; uint32_t resp_tx_time; - /* Clear reception timeout to start next ranging process. */ dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 @@ -389,14 +593,13 @@ dwt_rxenable(0);//打开接收 /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误 + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误 { - UART_CheckReceive(); - g_Resttimer=0; + IdleTask(); }; if (status_reg & SYS_STATUS_RXFCG)//成功接收 - { + { u16 tag_recv_interval; /* Clear good RX frame event in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位 @@ -408,15 +611,28 @@ /* Check that the frame is a poll sent by "DS TWR initiator" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; + //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 - tag_id_recv = rx_buffer[TAG_ID_IDX]; - tx_resp_msg[TAG_ID_IDX] = tag_id_recv; - + //tag_id_recv = rx_buffer[TAG_ID_IDX]; + memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4); + memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4); + //tx_resp_msg[TAG_ID_IDX] = tag_id_recv; +// if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START]) +// { tag_recv_interval = tag_recv_timer - tag_time_recv[tag_id_recv]; +// }else{ +// tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv]; +// } - if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&tag_id_recv!= g_com_map[PAIR_ID]) //判断是否是poll包数据 + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据 { + tmp_time=TIM3->CNT; + memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2); + memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2); + +// if(correction_time>10) +// {correction_time++;} + /* Retrieve poll reception timestamp. */ poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 @@ -429,21 +645,28 @@ dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 /* Write and send the response message. See NOTE 9 below.*/ - memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2); - tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) + memcpy(&tx_resp_msg[DIST_IDX], &g_Tagdist[tag_id_recv], 4); + tx_resp_msg[SIGNALPOWER] = firstpath_power; + dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据 dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度 result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 + battary = rx_buffer[BATTARY_IDX]; + button = rx_buffer[BUTTON_IDX]; + frame_seq_nb2 = rx_buffer[SEQUENCE_IDX]; /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. * See NOTE 7 below. */ + #ifdef DEBUG_OUTPUT + printf("收到POLL包,标签ID: %d .\r\n",tag_id_recv); + #endif if(result==0) { while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误 { }; } /* Increment frame sequence number after transmission of the response message (modulo 256). */ - frame_seq_nb++; if (status_reg & SYS_STATUS_RXFCG)//接收成功 { @@ -458,14 +681,14 @@ /* Check that the frame is a final message sent by "DS TWR initiator" example. * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&rx_buffer[TAG_ID_IDX]==tag_id_recv&&rx_buffer[ANCHOR_ID_IDX]==g_com_map[DEV_ID]) //判断是否为Final包 + + if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包 { uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts; uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; double Ra, Rb, Da, Db; int64_t tof_dtu; - + /* Retrieve response transmission and final reception timestamps. */ resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 @@ -475,6 +698,10 @@ final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts); final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts); + #ifdef CHECK_UID + if(UID_ERROR==1) + poll_rx_ts=0; + #endif /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */ poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算 resp_tx_ts_32 = (uint32_t)resp_tx_ts; @@ -489,101 +716,388 @@ distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间 dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数 - dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离 + dist_cm = dist_no_bias * 1000; //dis 为单位为cm的距离 // dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定 - + dwt_readdiagnostics(&d1); + LOS(&d1); /*--------------------------以下为非测距逻辑------------------------*/ + #ifdef DEBUG_OUTPUT + printf("收到FINAL包,标签ID: %d .\r\n",tag_id_recv); + #endif LED0_BLINK; //每成功一次通讯则闪烁一次 g_UWB_com_interval = 0; - dis_after_filter=dist_cm; - g_Tagdist[tag_id_recv]=dist_cm; - if(g_pairstart==1&&dist_cm<20) + g_Resttimer=0; + hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET]*10; + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) { - g_pairstart=0; - g_com_map[PAIR_ID]=tag_id_recv; - save_com_map_to_flash(); - printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]); - } - g_flag_Taggetdist[tag_id_recv]=0; - printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter); - //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm); + if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<dist_threshold||misdist_num[tag_id_recv-TAG_ID_START]>4) + { + int32_t filter_dist; + misdist_num[tag_id_recv-TAG_ID_START]=0; + if(hex_dist<1000000&&hex_dist>-10000) + { + #ifdef TDFILTER + NewTrackingDiffUpdate(tag_id_recv-TAG_ID_START, (float)hex_dist); + filter_dist=pos_predict[tag_id_recv-TAG_ID_START]/10; + #else + filter_dist=hex_dist/10; + #endif + + #ifdef CONSTANT_FILTER + filter_dist = ConstantFilter(filter_dist,tag_id_recv-TAG_ID_START); + #endif + anchor_dist_last_frm[tag_id_recv-TAG_ID_START]=filter_dist; + g_Tagdist[tag_id_recv]= filter_dist; + + + his_dist[tag_id_recv-TAG_ID_START]=hex_dist; + g_flag_Taggetdist[tag_id_recv]=0; + if(!g_com_map[MODBUS_MODE]) + { + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb2;//数据段长度 + memcpy(&usart_send[5],&tag_id_recv,2); + memcpy(&usart_send[7],&dev_id,2); + + memcpy(&usart_send[9],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4); + usart_send[13] = battary; + usart_send[14] = button; + usart_send[15] = firstpath_power; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + } + // memcpy(&Modbus_HoldReg[tag_id_recv*2],&anchor_dist_last_frm[tag_id_recv-TAG_ID_START],4); + Modbus_HoldReg[tag_id_recv*2]=g_Tagdist[tag_id_recv-TAG_ID_START]>>16; + Modbus_HoldReg[tag_id_recv*2+1]=g_Tagdist[tag_id_recv-TAG_ID_START]; + //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm); + } + + } + else{ + misdist_num[tag_id_recv-TAG_ID_START]++; + } } - } - else - { + } + }else{ /* Clear RX error events in the DW1000 status register. */ + #ifdef DEBUG_OUTPUT + printf("F包失败错误信息: %x .\r\n",status_reg); + #endif dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); + } + }else if(rx_buffer[MESSAGE_TYPE_IDX] == SYNC) + { + if(rx_buffer[SYNC_SEQ_IDX]<sync_seq&&sync_mainbase==0) + { + sync_seq=rx_buffer[SYNC_SEQ_IDX]+1; + TIM3->CNT = sync_seq*325%1000+15; + sync_timer = sync_seq*325/1000; + SyncPoll(sync_seq); } } } else { + #ifdef DEBUG_OUTPUT + printf("P包失败错误信息: %x .\r\n",status_reg); + #endif /* Clear RX error events in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); } } +u8 frame_len,jumptime; +u8 rec_gpsdata[1000]; +extern u8 RTCMdata[2000]; +u16 recgpsdata_i,recdata_len; +void UWBSendOnePackData(u8* data_addr,u8 len) +{ + delay_ms(jumptime); + g_Resttimer = 0; + LED0_BLINK; + g_start_sync_flag=1; + dwt_forcetrxoff(); + dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 + dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); + tx_sync_msg[MESSAGE_TYPE_IDX]=DATA_POLL; + memcpy(&tx_sync_msg[DATA_IDX],data_addr,len); + dwt_writetxdata(len+14, tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(len+14, 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE| DWT_RESPONSE_EXPECTED); + start_poll = time32_incr; + recgpsdata_i = 0; + while(time32_incr - start_poll<100) + { + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 + { + }; + if(status_reg==0xffffffff) + { + NVIC_SystemReset(); + } -/***************************************************************************************************************************************************** - * NOTES: - * - * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value - * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing - * range measurements. - * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE - * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: - * - a poll message sent by the initiator to trigger the ranging exchange. - * - a response message sent by the responder allowing the initiator to go on with the process - * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the - * time-of-flight (distance) estimate. - * The first 10 bytes of those frame are common and are composed of the following fields: - * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). - * - byte 2: sequence number, incremented for each new frame. - * - byte 3/4: PAN TAG_ID (0xDECA). - * - byte 5/6: destination address, see NOTE 3 below. - * - byte 7/8: source address, see NOTE 3 below. - * - byte 9: function code (specific values to indicate which message it is in the ranging process). - * The remaining bytes are specific to each message as follows: - * Poll message: - * - no more data - * Response message: - * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). - * - byte 11/12: activity parameter, not used here for activity code 0x02. - * Final message: - * - byte 10 -> 13: poll message transmission timestamp. - * - byte 14 -> 17: response message reception timestamp. - * - byte 18 -> 21: final message transmission timestamp. - * All messages end with a 2-byte checksum automatically set by DW1000. - * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a - * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only - * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. - * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator - * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more - * details about the timings involved in the ranging process. - * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value - * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the - * 110k data rate used (around 3 ms). - * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using - * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. - * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is - * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not - * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using - * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the - * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, - * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have - * been carefully defined to avoid this situation. - * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please - * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we - * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 - * bytes. - * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 - * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to - * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the - * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower - * 8 bits. - * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by - * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the - * time-of-flight computation) can be handled by a 32-bit subtraction. - * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the - * DW1000 API Guide for more details on the DW1000 driver functions. - ****************************************************************************************************************************************************/ + if (status_reg & SYS_STATUS_RXFCG)//如果成功接收 + { + /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位 + + /* A frame has been received, read it into the local buffer. */ + frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度 + + dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据 + + dwt_rxenable(0); + /* Check that the frame is the expected response from the companion "DS TWR responder" example. + * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ + + if (rx_buffer[MESSAGE_TYPE_IDX] == DATA_RESPONSE ) //判断接收到的数据是否是response数据 + { + recdata_len = frame_len-14; + memcpy(&rec_gpsdata[recgpsdata_i],&rx_buffer[DATA_IDX],recdata_len); + recgpsdata_i+=recdata_len; + if(rx_buffer[CURENTPACKNUM_IDX]==1) + { + USART_puts(rec_gpsdata,recgpsdata_i); + break; + } + }else{ + jumptime=time32_incr%20; + } + }else{ + jumptime=time32_incr%20; + } +} +} + +char *HIDO_UtilStrnchr(const char *_pcStr, char _cChr, HIDO_UINT32 u32N) +{ + int32_t i = 0; + for (i = 0; i < u32N; i++) + { + if (_pcStr[i] == _cChr) + { + return (char *) (_pcStr + i); + } + } + + return NULL; +} + +HIDO_UINT8 HIDO_UtilCharToHex(HIDO_CHAR _cCh) +{ + return (_cCh >= '0' && _cCh <= '9') ? + (_cCh - '0') : + (_cCh >= 'A' && _cCh <= 'F' ? + (_cCh - 'A' + 0x0A) : + (_cCh >= 'a' && _cCh <= 'f' ? _cCh - 'a' + 0x0A : 0)); +} + +HIDO_UINT32 HIDO_UtilStrBufToInt(HIDO_CHAR *_pcStringBuf, HIDO_UINT32 _u32BufLen) + { + HIDO_UINT32 u32Temp = 0; + + while (_u32BufLen != 0) + { + u32Temp = u32Temp * 10 + HIDO_UtilCharToHex(*_pcStringBuf); + _pcStringBuf++; + _u32BufLen--; + } + + return u32Temp; +} + +/****************************************************************************** + Description : Get gps latitude from gps data + parameter : data: gps data pointer, len: gps data length, gps: ST_GPS pointer + Return : TRUE on success, FALSE on fail + author : DuJian + history : 2012-7-27 new + ******************************************************************************/ +static int32_t GPS_ParseLat(HIDO_DataStruct *_pstLatData, double *lat) +{ + uint32_t u32Len = _pstLatData->m_u32Len; + char *pcStart = (char *) _pstLatData->m_pData; + char *pcDot = NULL; + uint32_t u32TempLen = 0; + double dd; + double mmmm; + double mm; + + if (u32Len < 9) + { + return HIDO_ERR; + } + + pcDot = HIDO_UtilStrnchr(pcStart, '.', u32Len); + if (NULL == pcDot || (pcDot - pcStart) != 4) + { + return HIDO_ERR; + } + + dd = HIDO_UtilStrBufToInt(pcStart, 2); + mm = HIDO_UtilStrBufToInt(pcStart + 2, 2); + u32TempLen = u32Len - (pcDot + 1 - pcStart); + mmmm = HIDO_UtilStrBufToInt(pcDot + 1, u32TempLen); + while(u32TempLen != 0) + { + mmmm /= 10.0; + u32TempLen--; + } + + mm = mm + mmmm; + *lat = dd + (mm / 60.0); + + return HIDO_OK; +} +static int32_t GPS_ParseHeight(HIDO_DataStruct *_pstLatData, double *height) +{ + uint32_t u32Len = _pstLatData->m_u32Len; + char *pcStart = (char *) _pstLatData->m_pData; + char *pcDot = NULL; + uint32_t u32TempLen = 0; + double dd; + double mmmm; + double mm; + + pcDot = HIDO_UtilStrnchr(pcStart, '.', u32Len); + u32TempLen = pcDot - pcStart; + mm = HIDO_UtilStrBufToInt(pcStart, u32TempLen); + u32TempLen = u32Len - (pcDot + 1 - pcStart); + mmmm = HIDO_UtilStrBufToInt(pcDot + 1, u32TempLen); + while(u32TempLen != 0) + { + mmmm /= 10.0; + u32TempLen--; + } + *height = mm + mmmm; + return HIDO_OK; +} +/****************************************************************************** + Description : Get gps longitude from gps data + parameter : data: gps data pointer, len: gps data length, gps: ST_GPS pointer + Return : TRUE on success, FALSE on fail + author : DuJian + history : 2012-7-27 new + ******************************************************************************/ +static int32_t GPS_ParseLon(HIDO_DataStruct *_pstLonData, double *lon) +{ + uint32_t u32Len = _pstLonData->m_u32Len; + char *pcStart = (char *) _pstLonData->m_pData; + char *pcDot = NULL; + uint32_t u32TempLen = 0; + double ddd; + double mmmm; + double mm; + + if (u32Len < 10) + { + return HIDO_ERR; + } + + pcDot = HIDO_UtilStrnchr(pcStart, '.', u32Len); + if (NULL == pcDot || (pcDot - pcStart) != 5) + { + return HIDO_ERR; + } + + ddd = HIDO_UtilStrBufToInt(pcStart, 3); + mm = HIDO_UtilStrBufToInt(pcStart + 3, 2); + u32TempLen = u32Len - (pcDot + 1 - pcStart); + mmmm = HIDO_UtilStrBufToInt(pcDot + 1, u32TempLen); + while(u32TempLen != 0) + { + mmmm /= 10.0; + u32TempLen--; + } + + mm = mm + mmmm; + *lon = ddd + (mm / 60.0); + + return HIDO_OK; +} + +extern u8 gpsdataready_flag; +extern u16 gps_packlen; +u8 totalpack_num,currentpack_num; +void RecOnePackData(void) +{ + dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间 + + /* Activate reception immediately. */ + dwt_rxenable(0);//打开接收 + + /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误 + { + IdleTask(); + }; + + if (status_reg & SYS_STATUS_RXFCG)//成功接收 + { + u16 tag_recv_interval,send_i=0,remain_i=0; + /* Clear good RX frame event in the DW1000 status register. */ + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位 + + /* A frame has been received, read it into the local buffer. */ + frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度 + g_Resttimer = 0; + dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据 + if (rx_buffer[MESSAGE_TYPE_IDX] == DATA_POLL ) //判断接收到的数据是否是response数据 + { + recdata_len = frame_len-14; + memcpy(rec_gpsdata,&rx_buffer[DATA_IDX],recdata_len); + if(gpsdataready_flag) + { + gpsdataready_flag = 0; + tx_sync_msg[MESSAGE_TYPE_IDX]=DATA_RESPONSE; + remain_i = gps_packlen; + currentpack_num = 0; + totalpack_num = gps_packlen/110; + while(remain_i>0) + { + if(remain_i>=110) + { + tx_sync_msg[CURENTPACKNUM_IDX] = 0; + memcpy(&tx_sync_msg[DATA_IDX],&RTCMdata[send_i],110); + send_i+=110; + remain_i-=110; + dwt_writetxdata(110+14, tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(110+14, 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE); + }else{ + tx_sync_msg[CURENTPACKNUM_IDX] = 1; + memcpy(&tx_sync_msg[DATA_IDX],&RTCMdata[send_i],remain_i); + dwt_writetxdata(remain_i+14, tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 + dwt_writetxfctrl(remain_i+14, 0);//设置超宽带发送数据长度 + dwt_starttx(DWT_START_TX_IMMEDIATE); + remain_i = 0; + } + delay_us(1000); + } + } + LED0_BLINK; + + extern HIDO_DataStruct stPosState[4]; + + GPS_ParseGGA(rec_gpsdata,recdata_len); + + const char *fmt = "{\"battery\":4.2,\"dev_type\":\"11\",\"device_sn\":\"15625394\",\"gps_type\":%d,\"high\":%.8lf,\"lat\":%.8lf,\"lng\":%.8lf}"; + + double lat = 0; + double lon = 0; + double high = 0; + uint8_t gps_type; + gps_type = HIDO_UtilStrBufToInt(stPosState[2].m_pData,1); + GPS_ParseLon(&stPosState[1], &lon); + GPS_ParseLat(&stPosState[0], &lat); + GPS_ParseHeight(&stPosState[3], &high); + printf(fmt,gps_type, high, lat, lon); + //USART_puts(rec_gpsdata,recdata_len); + } + }else{ + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); + } + +} \ No newline at end of file -- Gitblit v1.9.3