From bdad051416564607f0b31df44732e3ea97b7174a Mon Sep 17 00:00:00 2001 From: zhyinch <zhyinch@gmail.com> Date: 星期日, 25 八月 2019 17:56:12 +0800 Subject: [PATCH] 华星火车项目测试完成 --- 源码/核心板/Src/application/dw_app.c | 305 +++++++++++++++++++++++--------------------------- 1 files changed, 139 insertions(+), 166 deletions(-) diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" index ddccda2..643eb8b 100644 --- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" +++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" @@ -3,12 +3,7 @@ * @file main.c * @brief Double-sided two-way ranging (DS TWR) initiator example code * - * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll" - * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example - * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to - * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX - * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air - * and, thus, the estimated distance between the two devices. + * * * @attention * @@ -51,9 +46,9 @@ #define POLL_TX_TO_RESP_RX_DLY_UUS 150 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the * frame length of approximately 2.66 ms with above configuration. */ -#define RESP_RX_TO_FINAL_TX_DLY_UUS 1500 +#define RESP_RX_TO_FINAL_TX_DLY_UUS 400 /* Receive response timeout. See NOTE 5 below. */ -#define RESP_RX_TIMEOUT_UUS 2700 +#define RESP_RX_TIMEOUT_UUS 600 #define POLL_RX_TO_RESP_TX_DLY_UUS 420 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ @@ -64,7 +59,6 @@ #define SPEED_OF_LIGHT 299702547 /* Indexes to access some of the fields in the frames defined above. */ -#define ALL_MSG_SN_IDX 2 #define FINAL_MSG_POLL_TX_TS_IDX 10 #define FINAL_MSG_RESP_RX_TS_IDX 14 #define FINAL_MSG_FINAL_TX_TS_IDX 18 @@ -72,10 +66,16 @@ #define GROUP_ID_IDX 0 #define ANCHOR_ID_IDX 1 -#define TAG_ID_IDX 3 -#define MESSAGE_TYPE_IDX 5 -#define DIST_IDX 6 -#define ANC_TYPE_IDX 7 +#define TAG_ID_IDX 5 +#define MESSAGE_TYPE_IDX 9 +#define DIST_IDX 10 +//Poll +#define ANC_TYPE_IDX 14 +#define BATTARY_IDX 15 +#define BUTTON_IDX 16 + +//respose +#define TIMECORRE 14 #define POLL 0x01 #define RESPONSE 0x02 @@ -97,12 +97,12 @@ }; /* Frames used in the ranging process. See NOTE 2 below. */ -static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; +static uint8_t tx_poll_msg[19] = {0}; //static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; -static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; +static uint8_t tx_resp_msg[18] = {0}; //static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* Frame sequence number, incremented after each transmission. */ @@ -129,9 +129,9 @@ static double tof; -uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS]; -uint8_t tag_id = 0; -uint8_t tag_id_recv = 0; +uint32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ; +uint32_t tag_id = 0; +uint32_t tag_id_recv = 0; uint8_t random_delay_tim = 0; double distance, dist_no_bias, dist_cm; @@ -140,7 +140,7 @@ float dis_after_filter; //当前距离值 LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器 -uint16_t g_Tagdist[256]; +uint16_t g_Tagdist[TAG_NUM_IN_SYS]; uint8_t g_flag_Taggetdist[256]; /*------------------------------------ Functions ------------------------------------------*/ @@ -260,8 +260,7 @@ /* Set expected response's delay and timeout. See NOTE 4 and 5 below. * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ - dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 - dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间 + //设置接收超时时间 } void Dw1000_App_Init(void) { @@ -269,11 +268,25 @@ tx_poll_msg[MESSAGE_TYPE_IDX]=POLL; tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE; tx_final_msg[MESSAGE_TYPE_IDX]=FINAL; - memcpy(&tx_poll_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_final_msg[TAG_ID_IDX], &g_com_map[DEV_ID], 2); - memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &g_com_map[DEV_ID], 2); + memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4); + memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4); } +uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) +{ + uint16_t sum = 0; + uint32_t i; + for(i=0; i<len; i++) + sum += pdata[i]; + sum = ~sum; + return sum; +} + +u16 tag_time_recv[TAG_NUM_IN_SYS]; +u8 usart_send[25]; +u8 battary,button; +extern uint8_t g_pairstart; void tag_sleep_configuraion(void) { dwt_configuresleep(0x940, 0x7); @@ -282,23 +295,27 @@ uint16_t g_Resttimer; uint8_t result; u8 tag_succ_times=0; +u32 hex_dist; +u16 checksum; +int8_t tag_delaytime; void Tag_App(void)//发送模式(TAG标签) { uint32_t frame_len; uint32_t final_tx_time; u32 start_poll; u8 i; - + //LED0_ON; + dwt_forcetrxoff(); g_Resttimer=0; - UART_CheckReceive(); - GPIO_ResetBits(SPIx_GPIO, SPIx_CS); - delay_us(2500); - GPIO_SetBits(SPIx_GPIO, SPIx_CS); + dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间 + dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); tag_succ_times = 0; - for(i=0;i<REPOET_ANC_NUM;i++) + tx_poll_msg[BATTARY_IDX] = Get_Battary(); + tx_poll_msg[BUTTON_IDX] = !READ_KEY0; + + for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++) { /* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */ - tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb; tx_poll_msg[ANC_TYPE_IDX] = i; dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去 @@ -312,11 +329,11 @@ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误 { if(time32_incr - start_poll>20) NVIC_SystemReset(); - + UART_CheckReceive(); + }; /* Increment frame sequence number after transmission of the poll message (modulo 256). */ - frame_seq_nb++; if(status_reg==0xffffffff) { NVIC_SystemReset(); @@ -335,15 +352,24 @@ /* Check that the frame is the expected response from the companion "DS TWR responder" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&rx_buffer[TAG_ID_IDX]==g_com_map[DEV_ID]) //判断接收到的数据是否是response数据 + + if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //判断接收到的数据是否是response数据 { /* Retrieve poll transmission and response reception timestamp. */ poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1 resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4 - memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[DIST_IDX], 2); - memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 2); + if(i==0) + { + tag_delaytime=rx_buffer[TIMECORRE]; + if(tag_delaytime>g_com_map[COM_INTERVAL]/2) + { + tag_delaytime=tag_delaytime-g_com_map[COM_INTERVAL]; + } + } + + memcpy(&anchor_dist_last_frm[0], &rx_buffer[DIST_IDX], 4); + memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4); /* Compute final message transmission time. See NOTE 9 below. */ final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2 dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5 @@ -357,13 +383,29 @@ final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); /* Write and send final message. See NOTE 7 below. */ - tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000 dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度 result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送 tag_succ_times++; + LED0_BLINK; + + + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb++;//数据段长度 + memcpy(&usart_send[5],&dev_id,2); + memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2); + hex_dist = anchor_dist_last_frm[0];; + memcpy(&usart_send[9],&hex_dist,4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ if(result==0) {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成 @@ -373,7 +415,7 @@ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位 /* Increment frame sequence number after transmission of the final message (modulo 256). */ - frame_seq_nb++; + random_delay_tim = 0; } else @@ -389,31 +431,17 @@ } // deca_sleep(10); } - if(tag_succ_times!=REPOET_ANC_NUM) +// dwt_entersleep(); + if(tag_succ_times<g_com_map[MIN_REPORT_ANC_NUM]) { - random_delay_tim =g_com_map[DEV_ID]*13+7; - }else{ - random_delay_tim=0; + //poll_timer +=time32_incr&0x7+3; } - LED0_BLINK; - deca_sleep(random_delay_tim); - RTC_SET_ALARM(1); - /* Execute a delay between ranging exchanges. */ - dwt_entersleep(); -} -uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) -{ - uint16_t sum = 0; - uint32_t i; - for(i=0; i<len; i++) - sum += pdata[i]; - sum = ~sum; - return sum; -} -u16 tag_time_recv[TOTAL_TAG_NUM]; -u8 usart_send[16]; -extern uint8_t g_pairstart; + /* Execute a delay between ranging exchanges. */ + +} +int8_t correction_time; +extern uint8_t g_start_send_flag; void Anchor_App(void) { uint32_t frame_len; @@ -426,10 +454,9 @@ dwt_rxenable(0);//打开接收 /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */ - while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误 + while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag)//不断查询芯片状态直到接收成功或者出现错误 { - UART_CheckReceive(); - UART_CheckSend(); + IdleTask(); g_Resttimer=0; }; @@ -446,19 +473,28 @@ /* Check that the frame is a poll sent by "DS TWR initiator" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; + //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据 - tag_id_recv = rx_buffer[TAG_ID_IDX]; - tx_resp_msg[TAG_ID_IDX] = tag_id_recv; - if(tag_recv_timer>tag_time_recv[tag_id_recv]) - { tag_recv_interval = tag_recv_timer - tag_time_recv[tag_id_recv]; - }else{ - tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv]; - } + //tag_id_recv = rx_buffer[TAG_ID_IDX]; + memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],4); + memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,4); + //tx_resp_msg[TAG_ID_IDX] = tag_id_recv; +// if(tag_recv_timer>tag_time_recv[tag_id_recv-TAG_ID_START]) +// { tag_recv_interval = tag_recv_timer - tag_time_recv[tag_id_recv]; +// }else{ +// tag_recv_interval = tag_recv_timer + 65535 - tag_time_recv[tag_id_recv]; +// } - if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&tag_id_recv!= g_com_map[PAIR_ID]&&(tag_recv_interval>g_com_map[COM_INTERVAL]/2)&&(g_com_map[DEV_ID]%REPOET_ANC_NUM == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据 + if (rx_buffer[MESSAGE_TYPE_IDX] == POLL&&(anchor_type == rx_buffer[ANC_TYPE_IDX])) //判断是否是poll包数据 { + correction_time=tag_timer-(tag_id_recv%GROUP_TAG_NUM)*3; + if(correction_time == g_com_map[COM_INTERVAL]) + correction_time = 0; + tx_resp_msg[TIMECORRE] = correction_time; +// if(correction_time>10) +// {correction_time++;} + /* Retrieve poll reception timestamp. */ poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2 @@ -471,12 +507,15 @@ dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间 /* Write and send the response message. See NOTE 9 below.*/ - memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv], 2); - tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb; + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) + memcpy(&tx_resp_msg[DIST_IDX], &anchor_dist_last_frm[tag_id_recv-TAG_ID_START], 4); + dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据 dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度 result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收 + battary = rx_buffer[BATTARY_IDX]; + button = rx_buffer[BUTTON_IDX]; /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout. * See NOTE 7 below. */ if(result==0) @@ -485,7 +524,6 @@ { }; } /* Increment frame sequence number after transmission of the response message (modulo 256). */ - frame_seq_nb++; if (status_reg & SYS_STATUS_RXFCG)//接收成功 { @@ -500,15 +538,14 @@ /* Check that the frame is a final message sent by "DS TWR initiator" example. * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */ - rx_buffer[ALL_MSG_SN_IDX] = 0; - if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&rx_buffer[TAG_ID_IDX]==tag_id_recv&&rx_buffer[ANCHOR_ID_IDX]==g_com_map[DEV_ID]) //判断是否为Final包 + + if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,4)&&!memcmp(&rx_buffer[ANCHOR_ID_IDX],&dev_id,4)) //判断是否为Final包 { uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts; uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32; double Ra, Rb, Da, Db; int64_t tof_dtu; - u32 hex_dist; - u16 checksum; + /* Retrieve response transmission and final reception timestamps. */ resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3 final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6 @@ -539,30 +576,29 @@ LED0_BLINK; //每成功一次通讯则闪烁一次 g_UWB_com_interval = 0; dis_after_filter=dist_cm; - g_Tagdist[tag_id_recv]=dist_cm; -// if(g_pairstart==1&&dist_cm<20) -// { -// g_pairstart=0; -// g_com_map[PAIR_ID]=tag_id_recv; -// save_com_map_to_flash(); -// BEEP2_ON; -// delay_ms(1000); -// printf("Pair Finish PairID: %d. \r\n",g_com_map[PAIR_ID]); -// } - tag_time_recv[tag_id_recv] = tag_recv_timer; - g_flag_Taggetdist[tag_id_recv]=0; - #ifdef HEX_OUTPUT - usart_send[2] = frame_seq_nb; - usart_send[6] = tag_id_recv; - usart_send[8] = g_com_map[DEV_ID]; + hex_dist = (int16_t)(dist_cm+g_com_map[DIST_OFFSET]); + if(tag_id_recv-TAG_ID_START<=TAG_NUM_IN_SYS) + if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000) + { + g_Tagdist[tag_id_recv-TAG_ID_START] = hex_dist; + anchor_dist_last_frm[tag_id_recv-TAG_ID_START] = hex_dist; + } + his_dist[tag_id_recv-TAG_ID_START]=hex_dist; + + usart_send[2] = 1;//正常模式 + usart_send[3] = 17;//数据段长度 + usart_send[4] = frame_seq_nb++;//数据段长度 + memcpy(&usart_send[5],&tag_id_recv,2); + memcpy(&usart_send[7],&dev_id,2); hex_dist = dist_cm; - memcpy(&usart_send[10],&hex_dist,4); - checksum = Checksum_u16(&usart_send[2],12); - memcpy(&usart_send[14],&checksum,2); - UART_PushFrame(usart_send,16); - #else - printf("Anchor ID: %d, Tag ID: %d, Dist = %d cm\n", g_com_map[DEV_ID], tag_id_recv, (uint16_t)dis_after_filter); - #endif + memcpy(&usart_send[9],&hex_dist,4); + usart_send[13] = battary; + usart_send[14] = button; + checksum = Checksum_u16(&usart_send[2],17); + memcpy(&usart_send[19],&checksum,2); + UART_PushFrame(usart_send,21); + + //dis_after_filter = LP_Frac_Update(p_Dis_Filter, dist_cm); } @@ -579,66 +615,3 @@ } } -/***************************************************************************************************************************************************** - * NOTES: - * - * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value - * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing - * range measurements. - * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE - * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are: - * - a poll message sent by the initiator to trigger the ranging exchange. - * - a response message sent by the responder allowing the initiator to go on with the process - * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the - * time-of-flight (distance) estimate. - * The first 10 bytes of those frame are common and are composed of the following fields: - * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing). - * - byte 2: sequence number, incremented for each new frame. - * - byte 3/4: PAN TAG_ID (0xDECA). - * - byte 5/6: destination address, see NOTE 3 below. - * - byte 7/8: source address, see NOTE 3 below. - * - byte 9: function code (specific values to indicate which message it is in the ranging process). - * The remaining bytes are specific to each message as follows: - * Poll message: - * - no more data - * Response message: - * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange). - * - byte 11/12: activity parameter, not used here for activity code 0x02. - * Final message: - * - byte 10 -> 13: poll message transmission timestamp. - * - byte 14 -> 17: response message reception timestamp. - * - byte 18 -> 21: final message transmission timestamp. - * All messages end with a 2-byte checksum automatically set by DW1000. - * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a - * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only - * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange. - * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator - * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more - * details about the timings involved in the ranging process. - * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value - * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the - * 110k data rate used (around 3 ms). - * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using - * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory. - * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is - * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not - * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using - * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the - * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent, - * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have - * been carefully defined to avoid this situation. - * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please - * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we - * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5 - * bytes. - * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000 - * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to - * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the - * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower - * 8 bits. - * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by - * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the - * time-of-flight computation) can be handled by a 32-bit subtraction. - * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the - * DW1000 API Guide for more details on the DW1000 driver functions. - ****************************************************************************************************************************************************/ -- Gitblit v1.9.3