From e129a69147731a8ff302413e009b792afee5fb2c Mon Sep 17 00:00:00 2001
From: zhyinch <zhyinch@gmail.com>
Date: 星期三, 04 十二月 2019 21:50:09 +0800
Subject: [PATCH] 配临近算法初步完成,未测试
---
源码/核心板/Src/application/dw_app.c | 946 +++++++++++++++++++++++++++++++++++++---------------------
1 files changed, 605 insertions(+), 341 deletions(-)
diff --git "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c" "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
index bd1960c..34f43ff 100644
--- "a/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
+++ "b/\346\272\220\347\240\201/\346\240\270\345\277\203\346\235\277/Src/application/dw_app.c"
@@ -1,148 +1,50 @@
-
-/*! ----------------------------------------------------------------------------
- * @file main.c
- * @brief Double-sided two-way ranging (DS TWR) initiator example code
- *
- * This is a simple code example which acts as the initiator in a DS TWR distance measurement exchange. This application sends a "poll"
- * frame (recording the TX time-stamp of the poll), and then waits for a "response" message expected from the "DS TWR responder" example
- * code (companion to this application). When the response is received its RX time-stamp is recorded and we send a "final" message to
- * complete the exchange. The final message contains all the time-stamps recorded by this application, including the calculated/predicted TX
- * time-stamp for the final message itself. The companion "DS TWR responder" example application works out the time-of-flight over-the-air
- * and, thus, the estimated distance between the two devices.
- *
- * @attention
- *
- * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland.
- *
- * All rights reserved.
- *
- * @author Decawave
- */
-
-#include <string.h>
#include "dw_app.h"
-#include "deca_device_api.h"
-#include "deca_regs.h"
-#include "dw_driver.h"
-#include "Spi.h"
-#include "led.h"
-#include "serial_at_cmd_app.h"
-#include "Usart.h"
-
-
-/*------------------------------------ Marcos ------------------------------------------*/
-/* Inter-ranging delay period, in milliseconds. */
-#define RNG_DELAY_MS 100
-
-/* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */
-#define TX_ANT_DLY 0
-#define RX_ANT_DLY 32899
-
-/* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor.
- * 1 uus = 512 / 499.2 祍 and 1 祍 = 499.2 * 128 dtu. */
-#define UUS_TO_DWT_TIME 65536
-
-/* Delay between frames, in UWB microseconds. See NOTE 4 below. */
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define POLL_TX_TO_RESP_RX_DLY_UUS 150
-/* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the
- * frame length of approximately 2.66 ms with above configuration. */
-#define RESP_RX_TO_FINAL_TX_DLY_UUS 4100
-/* Receive response timeout. See NOTE 5 below. */
-#define RESP_RX_TIMEOUT_UUS 14700
-
-#define POLL_RX_TO_RESP_TX_DLY_UUS 3600
-/* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */
-#define RESP_TX_TO_FINAL_RX_DLY_UUS 500
-/* Receive final timeout. See NOTE 5 below. */
-#define FINAL_RX_TIMEOUT_UUS 4300
-
-#define SPEED_OF_LIGHT 299702547
-
-/* Indexes to access some of the fields in the frames defined above. */
-#define ALL_MSG_SN_IDX 2
-#define FINAL_MSG_POLL_TX_TS_IDX 10
-#define FINAL_MSG_RESP_RX_TS_IDX 14
-#define FINAL_MSG_FINAL_TX_TS_IDX 18
-#define FINAL_MSG_TS_LEN 4
-
-#define GROUP_ID_IDX 0
-#define SOURCE_ID_IDX 1
-#define MESSAGE_TYPE_IDX 3
-
-#define POLL 0x01
-#define RESPONSE 0x02
-#define FINAL 0x03
-
-/*------------------------------------ Variables ------------------------------------------*/
-/* Default communication configuration. We use here EVK1000's default mode (mode 3). */
-static dwt_config_t config =
+enum enumtagstate
{
- 2, /* Channel number. */
- DWT_PRF_64M, /* Pulse repetition frequency. */
- DWT_PLEN_1024, /* Preamble length. */
- DWT_PAC32, /* Preamble acquisition chunk size. Used in RX only. */
- 9, /* TX preamble code. Used in TX only. */
- 9, /* RX preamble code. Used in RX only. */
- 1, /* Use non-standard SFD (Boolean) */
- DWT_BR_110K, /* Data rate. */
- DWT_PHRMODE_STD, /* PHY header mode. */
- (1025 + 64 - 32) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
+ DISCPOLL,
+ GETNEARMSG,
+ NEARPOLL,
+}tag_state;
+static dwt_config_t config = {
+ 2, /* Channel number. */
+ DWT_PRF_64M, /* Pulse repetition frequency. */
+ DWT_PLEN_128, /* Preamble length. */
+ DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */
+ 9, /* TX preamble code. Used in TX only. */
+ 9, /* RX preamble code. Used in RX only. */
+ 0, /* Use non-standard SFD (Boolean) */
+ DWT_BR_6M8, /* Data rate. */
+ DWT_PHRMODE_STD, /* PHY header mode. */
+ (129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */
};
+static uint8_t tx_poll_msg[20] = {0};
+static uint8_t tx_sync_msg[14] = {0};
+static uint8_t tx_final_msg[60] = {0};
+static uint8_t tx_resp_msg[22] = {0};
+static uint8_t tx_near_msg[80] = {0};
-/* Frames used in the ranging process. See NOTE 2 below. */
-static uint8_t tx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-//static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-static uint8_t tx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-
-//static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0};
-static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0};
-//static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
-
-/* Frame sequence number, incremented after each transmission. */
static uint32_t frame_seq_nb = 0;
-
-/* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */
static uint32_t status_reg = 0;
-
-/* Buffer to store received response message.
- * Its size is adjusted to longest frame that this example code is supposed to handle. */
-#define RX_BUF_LEN 24
-static uint8_t rx_buffer[RX_BUF_LEN];
-
-/* Time-stamps of frames transmission/reception, expressed in device time units.
- * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */
+static uint8_t rx_buffer[100];
static uint64_t poll_tx_ts;
static uint64_t resp_rx_ts;
static uint64_t final_tx_ts;
-
-/* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */
static uint64_t poll_rx_ts;
static uint64_t resp_tx_ts;
static uint64_t final_rx_ts;
-
static double tof;
-
-uint16_t anchor_dist_last_frm[TAG_NUM_IN_SYS];
-uint8_t tag_id = 0;
-uint8_t tag_id_recv = 0;
+int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ;
+uint32_t tag_id = 0;
+uint32_t tag_id_recv = 0;
+uint32_t anc_id_recv = 0;
uint8_t random_delay_tim = 0;
-
double distance, dist_no_bias, dist_cm;
+uint32_t g_UWB_com_interval = 0;
+float dis_after_filter; //当前距离值
+LPFilter_Frac* p_Dis_Filter; //测距用的低通滤波器
+uint16_t g_Tagdist[TAG_NUM_IN_SYS];
+uint8_t g_flag_Taggetdist[256];
-/*------------------------------------ Functions ------------------------------------------*/
-
-
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_tx_timestamp_u64()
- *
- * @brief Get the TX time-stamp in a 64-bit variable.
- * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param none
- *
- * @return 64-bit value of the read time-stamp.
- */
static uint64_t get_tx_timestamp_u64(void)
{
uint8_t ts_tab[5];
@@ -157,16 +59,6 @@
return ts;
}
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn get_rx_timestamp_u64()
- *
- * @brief Get the RX time-stamp in a 64-bit variable.
- * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX!
- *
- * @param none
- *
- * @return 64-bit value of the read time-stamp.
- */
static uint64_t get_rx_timestamp_u64(void)
{
uint8_t ts_tab[5];
@@ -181,17 +73,6 @@
return ts;
}
-/*! ------------------------------------------------------------------------------------------------------------------
- * @fn final_msg_set_ts()
- *
- * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final
- * message, the least significant byte is at the lower address.
- *
- * @param ts_field pointer on the first byte of the timestamp field to fill
- * ts timestamp value
- *
- * @return none
- */
static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts)
{
int i;
@@ -211,7 +92,23 @@
*ts += ts_field[i] << (i * 8);
}
}
-
+void TagDistClear(void)
+{
+ static uint16_t clear_judge_cnt;
+ uint16_t i;
+ if(clear_judge_cnt++>1000) //设定1S分频,每秒进一次。判断标志位大于等于2,2s没收到数据就把数据变成0xffff,不触发警报。
+ {
+ clear_judge_cnt=0;
+ for(i=0;i<255;i++)
+ {
+ g_flag_Taggetdist[i]++;
+ if(g_flag_Taggetdist[i]>=2)
+ {
+ g_Tagdist[i]=0xffff;
+ }
+ }
+ }
+}
void Dw1000_Init(void)
{
/* Reset and initialise DW1000.
@@ -223,87 +120,162 @@
/* Configure DW1000. See NOTE 6 below. */
dwt_configure(&config);//配置DW1000
+
+
/* Apply default antenna delay value. See NOTE 1 below. */
dwt_setrxantennadelay(RX_ANT_DLY); //设置接收天线延迟
dwt_settxantennadelay(TX_ANT_DLY); //设置发射天线延迟
/* Set expected response's delay and timeout. See NOTE 4 and 5 below.
* As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */
- dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
- dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS); //设置接收超时时间
+ //设置接收超时时间
+}
+void Dw1000_App_Init(void)
+{
+//g_com_map[DEV_ID] = 0x0b;
+ tag_state=DISCPOLL;
+ tx_poll_msg[MESSAGE_TYPE_IDX]=POLL;
+ tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE;
+ tx_final_msg[MESSAGE_TYPE_IDX]=FINAL;
+ tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC;
+
+ memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 2);
+ memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 2);
+ memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 2);
+ memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 2);
+ memcpy(&tx_near_msg[ANCHOR_ID_IDX], &dev_id, 2);
+ memcpy(&tx_near_msg[TAG_ID_IDX], &dev_id, 2);
+}
+uint16_t Checksum_u16(uint8_t* pdata, uint32_t len)
+{
+ uint16_t sum = 0;
+ uint32_t i;
+ for(i=0; i<len; i++)
+ sum += pdata[i];
+ sum = ~sum;
+ return sum;
}
-void Tag_App(void)//发送模式(TAG标签)
+u16 tag_time_recv[TAG_NUM_IN_SYS];
+u8 usart_send[25];
+u8 battary,button;
+extern uint8_t g_pairstart;
+void tag_sleep_configuraion(void)
+{
+ dwt_configuresleep(0x940, 0x7);
+ dwt_entersleep();
+}
+extern uint8_t g_start_send_flag;
+u8 g_start_sync_flag;
+void SyncPoll(u8 sync_seq)
+{
+ g_start_sync_flag=1;
+ dwt_forcetrxoff();
+ tx_sync_msg[SYNC_SEQ_IDX]=sync_seq;
+ dwt_writetxdata(sizeof(tx_sync_msg), tx_sync_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+ dwt_writetxfctrl(sizeof(tx_sync_msg), 0);//设置超宽带发送数据长度
+ dwt_starttx(DWT_START_TX_IMMEDIATE);
+}
+uint16_t g_Resttimer;
+uint8_t result;
+u8 tag_succ_times=0;
+int32_t hex_dist;
+u16 checksum;
+int8_t tag_delaytime;
+extern uint16_t sync_timer;
+u16 tmp_time;
+int32_t temp_dist;
+u16 tagslotpos;
+
+u16 anclist_num=0,anclist_pos; //list 总数量和当前位置
+u16 ancid_list[TAG_NUM_IN_SYS];
+u8 nearbase_num;
+u16 nearbaseid_list[10],mainbase_id;
+int32_t mainbase_dist,nearbase_distlist[10];
+void Poll(void)
{
uint32_t frame_len;
uint32_t final_tx_time;
-
+ u32 start_poll;
+ int32_t mindist=999999,minid=-1,temp_dist;
+ u8 i,getsync_flag=0;
+ dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
+ dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
+ tag_succ_times = 0;
+ GPIO_WriteBit(GPIOA, GPIO_Pin_9, Bit_RESET);
+ for(i=0;i<g_com_map[MAX_REPORT_ANC_NUM];i++)
+ {
/* Write frame data to DW1000 and prepare transmission. See NOTE 7 below. */
- tx_poll_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+ tx_poll_msg[ANC_TYPE_IDX] = i;
dwt_writetxdata(sizeof(tx_poll_msg), tx_poll_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
dwt_writetxfctrl(sizeof(tx_poll_msg), 0);//设置超宽带发送数据长度
-
- /* Start transmission, indicating that a response is expected so that reception is enabled automatically after the frame is sent and the delay
- * set by dwt_setrxaftertxdelay() has elapsed. */
dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
-
+ start_poll = time32_incr;
/* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
- { };
-
- /* Increment frame sequence number after transmission of the poll message (modulo 256). */
- frame_seq_nb++;
-
+ { if(time32_incr - start_poll>20)
+ NVIC_SystemReset();
+ };
+ if(status_reg==0xffffffff)
+ {
+ NVIC_SystemReset();
+ }
if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
{
- /* Clear good RX frame event and TX frame sent in the DW1000 status register. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
-
- /* A frame has been received, read it into the local buffer. */
frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度
-
dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据
-
-
- /* Check that the frame is the expected response from the companion "DS TWR responder" example.
- * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
- if (rx_buffer[9] == 0x10) //判断接收到的数据是否是response数据
+ if (rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据
{
- /* Retrieve poll transmission and response reception timestamp. */
poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1
- resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4
-
- memcpy(&anchor_dist_last_frm[tag_id], &rx_buffer[11], 2);
-
+ resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4
+ if(getsync_flag==0)
+ {
+ getsync_flag=1;
+ memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
+ memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
+ memcpy(&tagslotpos,&rx_buffer[TAGSLOTPOS],2);
+ tmp_time=tmp_time+450;
+ if(tmp_time>999)
+ {
+ tmp_time-=999;
+ sync_timer++;
+ if(sync_timer>=1010)
+ {sync_timer=0;}
+ }
+ TIM3->CNT=tmp_time;
+ if(tagslotpos>max_slotpos)
+ tagslotpos=tagslotpos%(max_slotpos+1);
+ tyncpoll_time=(tagslotpos-1)*slottime;
+ }
+
+ memcpy(&temp_dist, &rx_buffer[DIST_IDX], 4);
+ memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4);
/* Compute final message transmission time. See NOTE 9 below. */
final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算final包发送时间,T5=T4+Treply2
dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
-
- /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */
final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
-
- /* Write all timestamps in the final message. See NOTE 10 below. */
final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts);
final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
-
- /* Write and send final message. See NOTE 7 below. */
- tx_final_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//将发送数据写入DW1000
dwt_writetxfctrl(sizeof(tx_final_msg), 0);//设定发送数据长度
- dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+ result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+ tag_succ_times++;
+ LED0_BLINK;
- /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */
- while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
+ if(temp_dist<mindist)
+ {
+ memcpy(&minid, &rx_buffer[ANCHOR_ID_IDX], 4);
+ tag_state=GETNEARMSG;
+ }
+ if(result==0)
+ {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
{ };
-
+ }
/* Clear TXFRS event. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//清除标志位
-
- /* Increment frame sequence number after transmission of the final message (modulo 256). */
- frame_seq_nb++;
random_delay_tim = 0;
}
else
@@ -313,112 +285,306 @@
}
else
{
- /* Clear RX error events in the DW1000 status register. */
- dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
random_delay_tim = DFT_RAND_DLY_TIM_MS;
}
- LED0_BLINK;
- /* Execute a delay between ranging exchanges. */
- deca_sleep(RNG_DELAY_MS + random_delay_tim); //休眠固定时间
+}
+ if(getsync_flag==0)
+ {
+ tagslotpos--;
+ if(tagslotpos==0||tagslotpos>max_slotpos)
+ {
+ tagslotpos=max_slotpos;
+ }
+ tyncpoll_time=(tagslotpos-1)*slottime;
+ }
+ mainbase_id=minid;
}
-void Anchor_App(void)
+u8 FindNearBasePos(u16 baseid)
{
- uint32_t frame_len;
- uint32_t resp_tx_time;
-
- /* Clear reception timeout to start next ranging process. */
- dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
-
- /* Activate reception immediately. */
- dwt_rxenable(0);//打开接收
-
- /* Poll for reception of a frame or error/timeout. See NOTE 7 below. */
- while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到接收成功或者出现错误
- {
- UART_CheckReceive();
- UART_CheckSend();
- };
-
- if (status_reg & SYS_STATUS_RXFCG)//成功接收
+ u8 i;
+ for(i=0;i<nearbase_num;i++)
{
- /* Clear good RX frame event in the DW1000 status register. */
- dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
-
- /* A frame has been received, read it into the local buffer. */
- frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度
-
- dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-
-
- /* Check that the frame is a poll sent by "DS TWR initiator" example.
- * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
-
- //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
- tag_id_recv = rx_buffer[5];
- tx_resp_msg[5] = tag_id_recv;
-
-
- if (rx_buffer[9] == 0x21) //判断是否是poll包数据
+ if(baseid==nearbaseid_list[i])
+ return i;
+ }
+}
+#define CHANGE_BASE_THRESHOLD 5
+void NearAncSelect(void)
+{static u16 last_mainbase_id,change_base_count;
+ int32_t nearbase_mindist=99999, nearbase_minpos;
+ u8 i;
+ for(i=0;i<nearbase_num;i++)
+ {
+ if(nearbase_mindist<nearbase_distlist[i])
{
- /* Retrieve poll reception timestamp. */
+ nearbase_mindist=nearbase_distlist[i];
+ nearbase_minpos=i;
+ }
+ }
+ if(nearbase_mindist<mainbase_dist-THRESHOLD_CHANGE_MAINBASE_DIST)
+ {
+ if(last_mainbase_id==nearbaseid_list[nearbase_minpos])
+ {
+ change_base_count++;
+ if(change_base_count>CHANGE_BASE_THRESHOLD)
+ {
+ mainbase_id=last_mainbase_id;
+ tag_state=GETNEARMSG;
+ }
+ }else{
+ change_base_count=0;
+ }
+ last_mainbase_id=nearbaseid_list[nearbase_minpos];
+ }else{
+ change_base_count=0;
+ }
+}
+void NearPoll(void)
+{
+ static u8 mainbase_lost_count=0;
+ uint32_t frame_len;
+ uint32_t final_tx_time;
+ u32 start_poll;
+ u8 i,getsync_flag=0,recbase_num,timeout;
+ dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
+ dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
+ tag_succ_times = 0;
+ tx_near_msg[BATTARY_IDX] = Get_Battary();
+ tx_near_msg[BUTTON_IDX] = !READ_KEY0;
+ tx_near_msg[SEQUENCE_IDX] = frame_seq_nb++;
+ tx_near_msg[NEARBASENUM_INDEX] = nearbase_num;
+ memcpy(&tx_near_msg[NEARBASEID_INDEX],&nearbaseid_list,nearbase_num*2);
+ tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_POLL;
+ memcpy(&tx_near_msg[ANCHOR_ID_IDX],&mainbase_id,2);
+ dwt_writetxdata(24, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+ dwt_writetxfctrl(24, 0);//设置超宽带发送数据长度
+ dwt_starttx(DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED);//开启发送,发送完成后等待一段时间开启接收,等待时间在dwt_setrxaftertxdelay中设置
+
+ neartimout_timer=0;
+ recbase_num=0;
+ timeout=nearbase_num/4+12;
+ mainbase_dist=100000;
+ mainbase_lost_count++;
+ while(neartimout_timer<timeout&&recbase_num<nearbase_num+1)
+ {
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
+ {
+ if(neartimout_timer>timeout)
+ break;
+ };
+ if(status_reg==0xffffffff)
+ {
+ NVIC_SystemReset();
+ }
+ if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
+ {
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
+ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度
+ dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据
+ dwt_setrxtimeout(DELAY_BETWEEN_TWO_FRAME_UUS+120);//设定接收超时时间,0位没有超时时间
+ dwt_rxenable(0);//打开接收
+ if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据
+ { u16 rec_nearbaseid,rec_nearbasepos;
+ poll_tx_ts = get_tx_timestamp_u64(); //获得POLL发送时间T1
+ resp_rx_ts = get_rx_timestamp_u64(); //获得RESPONSE接收时间T4
+ recbase_num++;
+ memcpy(&rec_nearbaseid,&rx_buffer[ANCHOR_ID_IDX],2);
+ if(rec_nearbaseid==mainbase_id)
+ {
+ //////////////////////////////////时间同步
+ memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2);
+ memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2);
+ memcpy(&tagslotpos,&rx_buffer[TAGSLOTPOS],2);
+ tmp_time=tmp_time+450;
+ if(tmp_time>999)
+ {
+ tmp_time-=999;
+ sync_timer++;
+ if(sync_timer>=1010)
+ {sync_timer=0;}
+ }
+ TIM3->CNT=tmp_time;
+ if(tagslotpos>max_slotpos)
+ tagslotpos=tagslotpos%(max_slotpos+1);
+ tyncpoll_time=(tagslotpos-1)*slottime;
+ ////////////////////////////
+ mainbase_lost_count=0;
+ memcpy(&mainbase_dist,&rx_buffer[DIST_IDX],4);
+ final_tx_time = (resp_rx_ts + ((RESP_RX_TO_FINAL_TX_DLY_UUS+DELAY_BETWEEN_TWO_FRAME_UUS*nearbase_num+130) * UUS_TO_DWT_TIME)) >> 8;
+ dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
+ final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final包实际发送时间是计算时间加上发送天线delay
+ final_msg_set_ts(&tx_near_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//将T1,T4,T5写入发送数据
+ final_msg_set_ts(&tx_near_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX], resp_rx_ts);
+ final_msg_set_ts(&tx_near_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts);
+ tx_near_msg[MESSAGE_TYPE_IDX]=NEAR_FINAL;
+ dwt_writetxdata(28+nearbase_num*4, tx_near_msg, 0);//将发送数据写入DW1000
+ dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度
+ result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+ }else{
+ rec_nearbasepos=FindNearBasePos(rec_nearbaseid);
+ final_msg_set_ts(&tx_near_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4], resp_rx_ts);
+ memcpy(&nearbase_distlist[rec_nearbasepos],&rx_buffer[DIST_IDX],4);
+ dwt_writetxdata(28+nearbase_num*4, tx_near_msg, 0);//将发送数据写入DW1000
+ dwt_writetxfctrl(28+nearbase_num*4, 0);//设定发送数据长度
+ LED0_BLINK;
+ //dwt_setdelayedtrxtime(final_tx_time);//设置final包发送时间T5
+ // result=dwt_starttx(DWT_START_TX_DELAYED);//设定为延迟发送
+ //dwt_writetxdata(4,&tx_near_msg[FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4], FINAL_MSG_RESP_RX_NEARBASE_IDX+(rec_nearbasepos+1)*4);//将发送数据写入DW1000
+ }
+ }
+ }
+ }
+ if(mainbase_lost_count>5)
+ {
+ tag_state=DISCPOLL;
+ }
+ NearAncSelect();
+// if(result==0)
+// {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//不断查询芯片状态直到发送完成
+// { };
+//
+// }
+// else
+// {
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+// }
+
+}
+
+void GetNearMsg(void)
+{
+ u32 start_poll,frame_len;
+ memcpy(&tx_near_msg[ANCHOR_ID_IDX],&mainbase_id,2);
+ memcpy(&tx_near_msg[TAG_ID_IDX],&dev_id,2);
+ tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG;
+
+ dwt_setrxaftertxdelay(POLL_TX_TO_RESP_RX_DLY_UUS); //设置发送后开启接收,并设定延迟时间
+ dwt_setrxtimeout(RESP_RX_TIMEOUT_UUS);
+ dwt_writetxdata(12, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+ dwt_writetxfctrl(12, 0);//设置超宽带发送数据长度
+ dwt_starttx(DWT_START_TX_IMMEDIATE| DWT_RESPONSE_EXPECTED);
+ start_poll = time32_incr;
+ /* We assume that the transmission is achieved correctly, poll for reception of a frame or error/timeout. See NOTE 8 below. */
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))//不断查询芯片状态直到成功接收或者发生错误
+ { if(time32_incr - start_poll>20)
+ NVIC_SystemReset();
+ };
+ if(status_reg==0xffffffff)
+ {
+ NVIC_SystemReset();
+ }
+ if (status_reg & SYS_STATUS_RXFCG)//如果成功接收
+ {
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚寄存器标志位
+ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //获得接收到的数据长度
+ dwt_readrxdata(rx_buffer, frame_len, 0); //读取接收数据
+ if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_MSG&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,2)) //判断接收到的数据是否是response数据
+ {
+ nearbase_num=rx_buffer[NEARBASENUM_INDEX];
+ tagslotpos=rx_buffer[TAGSLOTPOS];
+ memcpy(nearbaseid_list,&rx_buffer[NEARBASEID_INDEX],nearbase_num*2);
+ slottime=ceil((nearbase_num+2)*0.3)+1;
+ tyncpoll_time=tagslotpos*slottime;
+ tag_state=NEARPOLL;
+ }
+ }
+}
+void Tag_App(void)//发送模式(TAG标签)
+{
+ //LED0_ON;
+ dwt_forcetrxoff();
+ g_Resttimer=0;
+ switch(tag_state)
+ {
+ case DISCPOLL:
+ Poll();
+ break;
+ case GETNEARMSG:
+ GetNearMsg();
+ break;
+ case NEARPOLL:
+ NearPoll();
+ break;
+ }
+}
+
+int8_t correction_time;
+extern uint8_t sync_seq;
+u16 taglist_num=0,taglist_pos;
+u16 tagid_list[TAG_NUM_IN_SYS];
+u8 tagofflinetime[TAG_NUM_IN_SYS];
+int32_t tagdist_list[TAG_NUM_IN_SYS];
+void TagListUpdate(void)
+{
+ u16 i,j=0,temp[TAG_NUM_IN_SYS];
+ for(i=0;i<taglist_num;i++)
+ {
+ if(tagofflinetime[i]++<QUIT_SLOT_TIME)
+ {
+ tagid_list[j]=tagid_list[i];
+ tagofflinetime[j++]=tagofflinetime[i];
+ }
+ }
+ taglist_num=j;
+}
+u16 CmpTagInList(u16 tagid)
+{u16 i;
+ for(i=0;i<taglist_num;i++)
+ {
+ if(memcmp(&tagid,&tagid_list[i],2)==0)
+ return i+1;
+ }
+ return 0;
+}
+uint32_t frame_len;
+uint32_t resp_tx_time;
+void Anchor_RecPoll(void)
+{
+ tmp_time=TIM3->CNT;
+ memcpy(&tx_resp_msg[ANCTIMEMS],&sync_timer,2);
+ memcpy(&tx_resp_msg[ANCTIMEUS],&tmp_time,2);
+ memcpy(&tx_resp_msg[TAGSLOTPOS],&taglist_pos,1);
+
poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
- /* Set send time for response. See NOTE 8 below. */
resp_tx_time = (poll_rx_ts + (POLL_RX_TO_RESP_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。
dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3
-
- /* Set expected delay and timeout for final message reception. */
dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS);//设置发送完成后开启接收延迟时间
dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
-
- /* Write and send the response message. See NOTE 9 below.*/
- memcpy(&tx_resp_msg[11], &anchor_dist_last_frm[tag_id_recv], 2);
- tx_resp_msg[ALL_MSG_SN_IDX] = frame_seq_nb;
+
+ memcpy(&tx_resp_msg[DIST_IDX], &tagdist_list[taglist_pos], 4);
+ memcpy(&tx_resp_msg[TAG_ID_IDX],&tag_id_recv,2);
+
dwt_writetxdata(sizeof(tx_resp_msg), tx_resp_msg, 0);//写入发送数据
dwt_writetxfctrl(sizeof(tx_resp_msg), 0);//设定发送长度
- dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
+ result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
- /* We assume that the transmission is achieved correctly, now poll for reception of expected "final" frame or error/timeout.
- * See NOTE 7 below. */
- while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
+ battary = rx_buffer[BATTARY_IDX];
+ button = rx_buffer[BUTTON_IDX];
+ frame_seq_nb = rx_buffer[SEQUENCE_IDX];
+ if(result==0)
+ {
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
{ };
-
- /* Increment frame sequence number after transmission of the response message (modulo 256). */
- frame_seq_nb++;
-
+ }
if (status_reg & SYS_STATUS_RXFCG)//接收成功
{
- /* Clear good RX frame event and TX frame sent in the DW1000 status register. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位
-
- /* A frame has been received, read it into the local buffer. */
frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度
-
dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
-
-
- /* Check that the frame is a final message sent by "DS TWR initiator" example.
- * As the sequence number field of the frame is not used in this example, it can be zeroed to ease the validation of the frame. */
- rx_buffer[ALL_MSG_SN_IDX] = 0;
- if (rx_buffer[9] == 0x23) //判断是否为Final包
+ if (rx_buffer[MESSAGE_TYPE_IDX] == FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包
{
uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
double Ra, Rb, Da, Db;
int64_t tof_dtu;
-
- /* Retrieve response transmission and final reception timestamps. */
resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
-
- /* Get timestamps embedded in the final message. */
final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5
final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_TS_IDX], &resp_rx_ts);
final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
-
- /* Compute time of flight. 32-bit subtractions give correct answers even if clock has wrapped. See NOTE 10 below. */
poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算
resp_tx_ts_32 = (uint32_t)resp_tx_ts;
final_rx_ts_32 = (uint32_t)final_rx_ts;
@@ -427,92 +593,190 @@
Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4
Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2
tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
-
tof = tof_dtu * DWT_TIME_UNITS;
distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数
-
- dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离
-// dist[TAG_ID] = LP(dis, TAG_ID); //LP 为低通滤波器,让数据更稳定
+ dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离
+ /*--------------------------以下为非测距逻辑------------------------*/
+ //dist_cm=33000;
LED0_BLINK; //每成功一次通讯则闪烁一次
-
+ dis_after_filter=dist_cm;
+ hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET];
+ if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000)
+ {
+ tagdist_list[taglist_pos] = hex_dist;
+ }
+ his_dist[taglist_pos]=hex_dist;
}
- }
- else
- {
- /* Clear RX error events in the DW1000 status register. */
+ }else{
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
}
+}
+
+void Anchor_RecNearPoll(u8 ancrec_nearbasepos) //0 mainbase 1 first near_base
+{
+ tmp_time=TIM3->CNT;
+ memcpy(&tx_near_msg[ANCTIMEMS],&sync_timer,2);
+ memcpy(&tx_near_msg[ANCTIMEUS],&tmp_time,2);
+ memcpy(&tx_near_msg[TAGSLOTPOS],&taglist_pos,1);
+ memcpy(&tx_near_msg[TAG_ID_IDX],&tag_id_recv,2);
+ poll_rx_ts = get_rx_timestamp_u64();//获得Poll包接收时间T2
+
+ resp_tx_time = (poll_rx_ts + ((POLL_RX_TO_RESP_TX_DLY_UUS+ancrec_nearbasepos*DELAY_BETWEEN_TWO_FRAME_UUS) * UUS_TO_DWT_TIME)) >> 8;//计算Response发送时间T3。
+ dwt_setdelayedtrxtime(resp_tx_time);//设置Response发送时间T3
+ dwt_setrxaftertxdelay(RESP_TX_TO_FINAL_RX_DLY_UUS+(nearbase_num-ancrec_nearbasepos)*DELAY_BETWEEN_TWO_FRAME_UUS);//设置发送完成后开启接收延迟时间
+ dwt_setrxtimeout(FINAL_RX_TIMEOUT_UUS);//接收超时时间
+
+ memcpy(&tx_near_msg[DIST_IDX], &tagdist_list[taglist_pos], 4);
+ tx_near_msg[MESSAGE_TYPE_IDX]=NEAR_RESPONSE;
+ dwt_writetxdata(17, tx_near_msg, 0);//写入发送数据
+ dwt_writetxfctrl(17, 0);//设定发送长度
+ result = dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED);//延迟发送,等待接收
+
+ battary = rx_buffer[BATTARY_IDX];
+ button = rx_buffer[BUTTON_IDX];
+ frame_seq_nb = rx_buffer[SEQUENCE_IDX];
+ if(result==0)
+ {
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR)))///不断查询芯片状态直到接收成功或者出现错误
+ { };
}
+ if (status_reg & SYS_STATUS_RXFCG)//接收成功
+ {
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//清楚标志位
+ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK;//数据长度
+ dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
+ if (rx_buffer[MESSAGE_TYPE_IDX] == NEAR_FINAL&&!memcmp(&rx_buffer[TAG_ID_IDX],&tag_id_recv,2)) //判断是否为Final包
+ {
+ uint32_t poll_tx_ts, resp_rx_ts, final_tx_ts;
+ uint32_t poll_rx_ts_32, resp_tx_ts_32, final_rx_ts_32;
+ double Ra, Rb, Da, Db;
+ int64_t tof_dtu;
+ resp_tx_ts = get_tx_timestamp_u64();//获得response发送时间T3
+ final_rx_ts = get_rx_timestamp_u64();//获得final接收时间T6
+ final_msg_get_ts(&rx_buffer[FINAL_MSG_POLL_TX_TS_IDX], &poll_tx_ts);//从接收数据中读取T1,T4,T5
+ final_msg_get_ts(&rx_buffer[FINAL_MSG_RESP_RX_NEARBASE_IDX+ancrec_nearbasepos*4], &resp_rx_ts);
+ final_msg_get_ts(&rx_buffer[FINAL_MSG_FINAL_TX_TS_IDX], &final_tx_ts);
+
+ poll_rx_ts_32 = (uint32_t)poll_rx_ts;//使用32位数据计算
+ resp_tx_ts_32 = (uint32_t)resp_tx_ts;
+ final_rx_ts_32 = (uint32_t)final_rx_ts;
+ Ra = (double)(resp_rx_ts - poll_tx_ts);//Tround1 = T4 - T1
+ Rb = (double)(final_rx_ts_32 - resp_tx_ts_32);//Tround2 = T6 - T3
+ Da = (double)(final_tx_ts - resp_rx_ts);//Treply2 = T5 - T4
+ Db = (double)(resp_tx_ts_32 - poll_rx_ts_32);//Treply1 = T3 - T2
+ tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db));//计算公式
+ tof = tof_dtu * DWT_TIME_UNITS;
+ distance = tof * SPEED_OF_LIGHT;//距离=光速*飞行时间
+ dist_no_bias = distance - dwt_getrangebias(config.chan, (float)distance, config.prf); //距离减去矫正系数
+ dist_cm = dist_no_bias * 100; //dis 为单位为cm的距离
+ /*--------------------------以下为非测距逻辑------------------------*/
+ //dist_cm=33000;
+
+ LED0_BLINK; //每成功一次通讯则闪烁一次
+ dis_after_filter=dist_cm;
+ hex_dist = dist_cm+(int16_t)g_com_map[DIST_OFFSET];
+ if(abs(hex_dist-his_dist[tag_id_recv-TAG_ID_START])<1000)
+ {
+ tagdist_list[taglist_pos] = hex_dist;
+ }
+ his_dist[taglist_pos]=hex_dist;
+ usart_send[2] = 1;//正常模式
+ usart_send[3] = 17;//数据段长度
+ usart_send[4] = frame_seq_nb;//数据段长度
+ memcpy(&usart_send[5],&tag_id_recv,2);
+ memcpy(&usart_send[7],&dev_id,2);
+ memcpy(&usart_send[9],&tagdist_list[taglist_pos],4);
+ usart_send[13] = battary;
+ usart_send[14] = button;
+ checksum = Checksum_u16(&usart_send[2],17);
+ memcpy(&usart_send[19],&checksum,2);
+ UART_PushFrame(usart_send,21);
+ }
+ }else{
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
+ }
+}
+void Anchor_App(void)
+{
+ u8 send_len,i;
+ u16 tempid;
+ dwt_setrxtimeout(0);//设定接收超时时间,0位没有超时时间
+ dwt_rxenable(0);//打开接收
+ while (!((status_reg = dwt_read32bitreg(SYS_STATUS_ID)) & (SYS_STATUS_RXFCG | SYS_STATUS_ALL_RX_ERR))&&!g_start_send_flag&&!g_start_sync_flag)//不断查询芯片状态直到接收成功或者出现错误
+ {
+ IdleTask();
+ g_Resttimer=0;
+ };
+
+ if (status_reg & SYS_STATUS_RXFCG)//成功接收
+ { u16 tag_recv_interval;
+ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG);//清除标志位
+ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFL_MASK_1023;//获得接收数据长度
+ dwt_readrxdata(rx_buffer, frame_len, 0);//读取接收数据
+ //将收到的tag_id分别写入各次通讯的包中,为多标签通讯服务,防止一次通讯中接收到不同ID标签的数据
+ //tag_id_recv = rx_buffer[TAG_ID_IDX];
+ memcpy(&tag_id_recv,&rx_buffer[TAG_ID_IDX],2);
+ memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2);
+ taglist_pos=CmpTagInList(tag_id_recv);
+ if(taglist_pos==0)
+ {
+ tagid_list[taglist_num++]=tag_id_recv;
+ taglist_pos=taglist_num;
+ }
+ tagofflinetime[taglist_pos-1]=0;
+ switch(rx_buffer[MESSAGE_TYPE_IDX])
+ {
+ case POLL:
+ if (anchor_type == rx_buffer[ANC_TYPE_IDX])
+ Anchor_RecPoll();
+ break;
+ case SYNC:
+ if(rx_buffer[SYNC_SEQ_IDX]<sync_seq)
+ {
+ sync_seq=rx_buffer[SYNC_SEQ_IDX]+1;
+ TIM3->CNT = sync_seq*325%1000+15;
+ sync_timer = sync_seq*325/1000;
+ SyncPoll(sync_seq);
+ }
+ break;
+ case NEAR_MSG:
+ if(anc_id_recv==dev_id)
+ {
+ rx_buffer[TAGSLOTPOS]=taglist_pos;
+ tx_near_msg[MESSAGE_TYPE_IDX] = NEAR_MSG;
+ memcpy(&tx_near_msg[TAG_ID_IDX],&tag_id_recv,2);
+ tx_near_msg[NEARBASENUM_INDEX]=g_com_map[NEARBASE_NUM];
+ memcpy(&tx_near_msg[NEARBASEID_INDEX],&g_com_map[NEARBASE_ID1],g_com_map[NEARBASE_NUM]*2);
+ send_len=11+g_com_map[NEARBASE_NUM]*2+2;
+ dwt_writetxdata(send_len, tx_near_msg, 0);//将Poll包数据传给DW1000,将在开启发送时传出去
+ dwt_writetxfctrl(send_len, 0);//设置超宽带发送数据长度
+ dwt_starttx(DWT_START_TX_IMMEDIATE);
+ }
+ break;
+
+ case NEAR_POLL:
+ nearbase_num=rx_buffer[NEARBASENUM_INDEX];
+ if(anc_id_recv==dev_id)
+ {
+ Anchor_RecNearPoll(0);
+ }else{
+ for(i=0;i<nearbase_num;i++)
+ {
+ memcpy(&tempid,&rx_buffer[NEARBASEID_INDEX+i*2],2);
+ if(tempid==dev_id)
+ Anchor_RecNearPoll(i+1);
+ }
+ }
+ break;
+
+ }
+
}
else
{
- /* Clear RX error events in the DW1000 status register. */
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR);
}
}
-/*****************************************************************************************************************************************************
- * NOTES:
- *
- * 1. The sum of the values is the TX to RX antenna delay, experimentally determined by a calibration process. Here we use a hard coded typical value
- * but, in a real application, each device should have its own antenna delay properly calibrated to get the best possible precision when performing
- * range measurements.
- * 2. The messages here are similar to those used in the DecaRanging ARM application (shipped with EVK1000 kit). They comply with the IEEE
- * 802.15.4 standard MAC data frame encoding and they are following the ISO/IEC:24730-62:2013 standard. The messages used are:
- * - a poll message sent by the initiator to trigger the ranging exchange.
- * - a response message sent by the responder allowing the initiator to go on with the process
- * - a final message sent by the initiator to complete the exchange and provide all information needed by the responder to compute the
- * time-of-flight (distance) estimate.
- * The first 10 bytes of those frame are common and are composed of the following fields:
- * - byte 0/1: frame control (0x8841 to indicate a data frame using 16-bit addressing).
- * - byte 2: sequence number, incremented for each new frame.
- * - byte 3/4: PAN TAG_ID (0xDECA).
- * - byte 5/6: destination address, see NOTE 3 below.
- * - byte 7/8: source address, see NOTE 3 below.
- * - byte 9: function code (specific values to indicate which message it is in the ranging process).
- * The remaining bytes are specific to each message as follows:
- * Poll message:
- * - no more data
- * Response message:
- * - byte 10: activity code (0x02 to tell the initiator to go on with the ranging exchange).
- * - byte 11/12: activity parameter, not used here for activity code 0x02.
- * Final message:
- * - byte 10 -> 13: poll message transmission timestamp.
- * - byte 14 -> 17: response message reception timestamp.
- * - byte 18 -> 21: final message transmission timestamp.
- * All messages end with a 2-byte checksum automatically set by DW1000.
- * 3. Source and destination addresses are hard coded constants in this example to keep it simple but for a real product every device should have a
- * unique TAG_ID. Here, 16-bit addressing is used to keep the messages as short as possible but, in an actual application, this should be done only
- * after an exchange of specific messages used to define those short addresses for each device participating to the ranging exchange.
- * 4. Delays between frames have been chosen here to ensure proper synchronisation of transmission and reception of the frames between the initiator
- * and the responder and to ensure a correct accuracy of the computed distance. The user is referred to DecaRanging ARM Source Code Guide for more
- * details about the timings involved in the ranging process.
- * 5. This timeout is for complete reception of a frame, i.e. timeout duration must take into account the length of the expected frame. Here the value
- * is arbitrary but chosen large enough to make sure that there is enough time to receive the complete response frame sent by the responder at the
- * 110k data rate used (around 3 ms).
- * 6. In a real application, for optimum performance within regulatory limits, it may be necessary to set TX pulse bandwidth and TX power, (using
- * the dwt_configuretxrf API call) to per device calibrated values saved in the target system or the DW1000 OTP memory.
- * 7. dwt_writetxdata() takes the full size of the message as a parameter but only copies (size - 2) bytes as the check-sum at the end of the frame is
- * automatically appended by the DW1000. This means that our variable could be two bytes shorter without losing any data (but the sizeof would not
- * work anymore then as we would still have to indicate the full length of the frame to dwt_writetxdata()). It is also to be noted that, when using
- * delayed send, the time set for transmission must be far enough in the future so that the DW1000 IC has the time to process and start the
- * transmission of the frame at the wanted time. If the transmission command is issued too late compared to when the frame is supposed to be sent,
- * this is indicated by an error code returned by dwt_starttx() API call. Here it is not tested, as the values of the delays between frames have
- * been carefully defined to avoid this situation.
- * 8. We use polled mode of operation here to keep the example as simple as possible but all status events can be used to generate interrupts. Please
- * refer to DW1000 User Manual for more details on "interrupts". It is also to be noted that STATUS register is 5 bytes long but, as the event we
- * use are all in the first bytes of the register, we can use the simple dwt_read32bitreg() API call to access it instead of reading the whole 5
- * bytes.
- * 9. As we want to send final TX timestamp in the final message, we have to compute it in advance instead of relying on the reading of DW1000
- * register. Timestamps and delayed transmission time are both expressed in device time units so we just have to add the desired response delay to
- * response RX timestamp to get final transmission time. The delayed transmission time resolution is 512 device time units which means that the
- * lower 9 bits of the obtained value must be zeroed. This also allows to encode the 40-bit value in a 32-bit words by shifting the all-zero lower
- * 8 bits.
- * 10. In this operation, the high order byte of each 40-bit timestamps is discarded. This is acceptable as those time-stamps are not separated by
- * more than 2**32 device time units (which is around 67 ms) which means that the calculation of the round-trip delays (needed in the
- * time-of-flight computation) can be handled by a 32-bit subtraction.
- * 11. The user is referred to DecaRanging ARM application (distributed with EVK1000 product) for additional practical example of usage, and to the
- * DW1000 API Guide for more details on the DW1000 driver functions.
- ****************************************************************************************************************************************************/
--
Gitblit v1.9.3