/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_flash.h" #include "mk_clock.h" #include "mk_reset.h" #include "mk_trace.h" #include "mk_misc.h" #if FLASH_DMA_MODE_EN static void flash_dma_callback(void *ch, uint32_t err_code); static void flash_dma_write_nbytes_callback(void *ch, uint32_t err_code); #endif struct FLASH_HANDLE_T flash_handle[FLASH_MAX_NUM] = { { .base = FLASH_CTRL, .irq = FLASH_CTRL_IRQn, .dma_wr_ch = DMA_CH2, .dma_rd_ch = DMA_CH3, .config = { .timeout = 0xFFFFU, .cs_high_time = 0xFU, .dual_mode = false, .prefetch_dis = false, .cache_prefetch_dis = false, .feedback_clk_sel = false, .spi_sck_high = false, .spi_falling_edge_active = true, .dma_en = false, .int_en = false, .start_addr = FLASH_BASE, .total_size = FLASH_SIZE, .block_size = FLASH_BLOCK_SIZE, .sector_size = FLASH_SECTOR_SIZE, .page_size = FLASH_PAGE_SIZE, }, .callback = NULL, .flash_type = 0, .wrsr_type = 0, // MXIC automotive flash type need set to 1 .work_mode = 0, // high performance mode .promote_fclk = 0, // promote flash controller clock if 1 #ifndef XIP_EN .is_open = 0, #else .is_open = 1, // Flash has been opened by default in XIP mode #endif }, }; static const struct FLASH_CMD_T flash_cmd[FLASH_MAX_NUM][FLASH_OPCODE_NUM] = { { // QUAD //{false, FLASH_DATA_IN, FLASH_CMD_DATA_QUAD_DUAL, FLASH_CMD_OP_ADDR_3B, FLASH_SECTOR_SIZE, 1, 0x6B}, {false, FLASH_DATA_IN, FLASH_CMD_OP_SERIAL, FLASH_CMD_OP_ADDR_3B, FLASH_SECTOR_SIZE, 3, 0xEB}, {false, FLASH_DATA_OUT, FLASH_CMD_DATA_QUAD_DUAL, FLASH_CMD_OP_ADDR_3B, FLASH_PAGE_SIZE, 0, 0x32}, // DUAL //{false, FLASH_DATA_IN, FLASH_CMD_DATA_QUAD_DUAL, FLASH_CMD_OP_ADDR_3B, FLASH_SECTOR_SIZE, 1, 0x3B}, //{false, FLASH_DATA_IN, FLASH_CMD_OP_SERIAL, FLASH_CMD_OP_ADDR_3B, FLASH_SECTOR_SIZE, 1, 0xBB}, //{false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ADDR_3B, FLASH_PAGE_SIZE, 0, 0x02}, // STD //{false, FLASH_DATA_IN, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ADDR_3B, FLASH_SECTOR_SIZE, 0, 0x03}, //{false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ADDR_3B, FLASH_PAGE_SIZE, 0, 0x02}, {false, FLASH_DATA_IN, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 1, 0, 0x05}, {false, FLASH_DATA_IN, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 1, 0, 0x35}, {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ADDR_3B, 0, 0, 0x20}, {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ADDR_3B, 0, 0, 0xD8}, {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 0, 0, 0x06}, {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 2, 0, 0x01}, {false, FLASH_DATA_IN, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 3, 0, 0x9F}, {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 0, 0, 0xB9}, // Deep power down {false, FLASH_DATA_OUT, FLASH_CMD_ALL_SERIAL, FLASH_CMD_OP_ONLY, 0, 0, 0xAB}, // Release from Deep power down }, }; static void flash_wait_status(enum FLASH_DEV_T id, uint32_t mask, uint32_t status) { uint32_t start = sys_timer_get(); while ((flash_handle[id].base->STATUS & mask) == status) { if (sys_timer_get() - start > flash_handle[id].config.timeout) { break; } } } static void flash_reset_cmd(enum FLASH_DEV_T id) { flash_handle[id].base->STATUS = FLASH_STATUS_RESET_MSK; /* Wait for the RESET flag cleared by HW */ flash_wait_status(id, FLASH_STATUS_RESET_MSK, FLASH_STATUS_RESET_MSK); } static void flash_write_cmd(enum FLASH_DEV_T id, enum FLASH_OPCODE_T opcode) { /* Wait for the CMD and MCINT flag all be 0 */ flash_wait_status(id, FLASH_STATUS_MCINIT_MSK, FLASH_STATUS_MCINIT_MSK); flash_wait_status(id, FLASH_STATUS_CMD_MSK, FLASH_STATUS_CMD_MSK); uint8_t op_code = flash_cmd[id][opcode].opcode; enum FLASH_CMD_FORMAT_T cmd_format = flash_cmd[id][opcode].format; uint16_t data_len = flash_cmd[id][opcode].data_len; if (flash_handle[id].flash_type == 1) { if (opcode == FLASH_OPCODE_PROGRAM_PAGE) { op_code = 0x38; cmd_format = FLASH_CMD_OP_SERIAL; } if ((flash_handle[id].wrsr_type == 1) && (opcode == FLASH_OPCODE_WRITE_REGISTER)) { data_len = 3; } } flash_handle[id].base->CMD = FLASH_CMD_DATALEN(data_len) | FLASH_CMD_POLL(flash_cmd[id][opcode].polling_mode) | FLASH_CMD_DOUT(flash_cmd[id][opcode].data_dir) | FLASH_CMD_INTLEN(flash_cmd[id][opcode].dummy_len) | FLASH_CMD_FIELDFORM(cmd_format) | FLASH_CMD_FRAMEFORM(flash_cmd[id][opcode].type) | FLASH_CMD_OPCODE(op_code); if (data_len && (flash_cmd[id][opcode].data_dir == FLASH_DATA_OUT)) { /* Wait for the command written */ flash_wait_status(id, FLASH_STATUS_CMD_MSK, 0U); } } #if FLASH_WRITE_EN static void flash_write_variable_len_cmd(enum FLASH_DEV_T id, const uint32_t len) { /* Wait for the CMD and MCINT flag all be 0 */ flash_wait_status(id, FLASH_STATUS_MCINIT_MSK, FLASH_STATUS_MCINIT_MSK); flash_wait_status(id, FLASH_STATUS_CMD_MSK, FLASH_STATUS_CMD_MSK); uint8_t op_code = flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].opcode; enum FLASH_CMD_FORMAT_T cmd_format = flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].format; if (flash_handle[id].flash_type == 1) { op_code = 0x38; cmd_format = FLASH_CMD_OP_SERIAL; } flash_handle[id].base->CMD = FLASH_CMD_DATALEN(len) | FLASH_CMD_POLL(flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].polling_mode) | FLASH_CMD_DOUT(flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].data_dir) | FLASH_CMD_INTLEN(flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].dummy_len) | FLASH_CMD_FIELDFORM(cmd_format) | FLASH_CMD_FRAMEFORM(flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].type) | FLASH_CMD_OPCODE(op_code); if (len && (flash_cmd[id][FLASH_OPCODE_PROGRAM_PAGE].data_dir == FLASH_DATA_OUT)) { /* Wait for the command written */ flash_wait_status(id, FLASH_STATUS_CMD_MSK, 0U); } } #endif static void flash_write_mem_cmd(enum FLASH_DEV_T id, enum FLASH_OPCODE_T opcode) { /* Wait for the CMD and MCINT flag all be 0 */ flash_wait_status(id, FLASH_STATUS_MCINIT_MSK, FLASH_STATUS_MCINIT_MSK); flash_wait_status(id, FLASH_STATUS_CMD_MSK, FLASH_STATUS_CMD_MSK); flash_handle[id].base->MCMD = FLASH_MCMD_POLL(0U) | FLASH_MCMD_DOUT(0U) | FLASH_MCMD_INTLEN(flash_cmd[id][opcode].dummy_len) | FLASH_MCMD_FIELDFORM(flash_cmd[id][opcode].format) | FLASH_MCMD_FRAMEFORM(flash_cmd[id][opcode].type) | FLASH_MCMD_OPCODE(flash_cmd[id][opcode].opcode); } static uint8_t flash_read_status(enum FLASH_DEV_T id) { flash_write_cmd(id, FLASH_OPCODE_GET_STATUS); flash_wait_status(id, FLASH_STATUS_INTRQ_MSK, 0U); uint8_t val = flash_handle[id].base->DATA; return (val); } static uint8_t flash_read_status1(enum FLASH_DEV_T id) { flash_write_cmd(id, FLASH_OPCODE_GET_STATUS1); flash_wait_status(id, FLASH_STATUS_INTRQ_MSK, 0U); uint8_t val1 = flash_handle[id].base->DATA; return (val1); } static void flash_wait_done(enum FLASH_DEV_T id, uint32_t timeout) { uint32_t start = sys_timer_get(); /* Check WIP bit */ while (flash_read_status(id) & 0x01) { delay_us(100); if (sys_timer_get() - start > timeout) { break; } } } static void flash_write_quad_mode(enum FLASH_DEV_T id, uint8_t qe_bit) { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set write register command flash_write_cmd(id, FLASH_OPCODE_WRITE_REGISTER); // Enable Quad mode if (flash_handle[id].flash_type == 1) { flash_handle[id].base->DATA = qe_bit ? 0x40 : 0x00; flash_handle[id].base->DATA = 0x00; if (flash_handle[id].wrsr_type == 1) { // high performance mode flash_handle[id].base->DATA = flash_handle[id].work_mode == 0 ? 0x02 : 0; } } else { flash_handle[id].base->DATA = 0x00; flash_handle[id].base->DATA = qe_bit ? 0x02 : 0x00; } flash_wait_done(id, FLASH_OP_WRITE_STATUS_TIMEOUT); } static int flash_state_update(enum FLASH_DEV_T id, enum FLASH_STATE_T new_state) { int ret = DRV_OK; uint32_t lock = int_lock(); // update state switch (flash_handle[id].state) { case FLASH_STATE_READY: flash_handle[id].state = new_state; break; case FLASH_STATE_BUSY_READ: case FLASH_STATE_BUSY_ERASE: case FLASH_STATE_BUSY_WRITE: ret = DRV_BUSY; break; case FLASH_STATE_RESET: case FLASH_STATE_TIMEOUT: case FLASH_STATE_ERROR: ret = DRV_ERROR; break; } int_unlock(lock); return ret; } int flash_open(enum FLASH_DEV_T id, struct FLASH_CFG_T *config) { if (id >= FLASH_MAX_NUM) { return DRV_ERROR; } if (flash_handle[id].is_open) { return DRV_OK; } #if BOR_EN bor_open(NULL); #endif if (config) { memcpy(&flash_handle[id].config, config, sizeof(struct FLASH_CFG_T)); } flash_handle[id].code = 0; // enable flash controller clock clock_enable(CLOCK_FLASH_CTRL); reset_module(RESET_MODULE_FLASH_CTRL); // reset the command register flash_reset_cmd(id); // set time delay parameter flash_handle[id].base->CTRL = FLASH_CTRL_TIMEOUT(flash_handle[id].config.timeout) | FLASH_CTRL_CSHIGH(flash_handle[id].config.cs_high_time) | FLASH_CTRL_D_PRFTCH_DIS(flash_handle[id].config.prefetch_dis) | FLASH_CTRL_MODE3(flash_handle[id].config.spi_sck_high) | FLASH_CTRL_PRFTCH_DIS(flash_handle[id].config.cache_prefetch_dis) | FLASH_CTRL_DUAL(flash_handle[id].config.dual_mode) | FLASH_CTRL_RFCLK(flash_handle[id].config.spi_falling_edge_active) | FLASH_CTRL_FBCLK(flash_handle[id].config.feedback_clk_sel); // Release power down flash_write_cmd(id, FLASH_OPCODE_RELEASE_POWER_DOWN); delay_us(50); // Read Identification uint32_t jedec_id = 0; flash_write_cmd(id, FLASH_OPCODE_RDID); flash_wait_status(id, FLASH_STATUS_INTRQ_MSK, 0U); jedec_id = flash_handle[id].base->DATA; if (jedec_id == 0xC2) { flash_handle[id].flash_type = 1; } else { flash_handle[id].flash_type = 0; } jedec_id = (jedec_id << 8) + flash_handle[id].base->DATA; jedec_id = (jedec_id << 8) + flash_handle[id].base->DATA; LOG_INFO(TRACE_MODULE_DRIVER, "jedec_id %x\r\n", jedec_id); // Check Quad enable bit, its a non-volatile bit uint8_t qe_bit = 0; if (flash_handle[id].flash_type == 1) { // write quad mode anyway flash_write_quad_mode(id, !flash_handle[id].config.dual_mode); } else { qe_bit = (flash_read_status1(id) >> 1) & 0x1; // write quad mode if needed if (((flash_handle[id].config.dual_mode == false) && (qe_bit == 0)) || ((flash_handle[id].config.dual_mode == true) && (qe_bit == 1))) { flash_write_quad_mode(id, !qe_bit); } } if (flash_handle[id].promote_fclk == 1) { clock_set_divider(CLOCK_FLASH_CTRL_DIV, CLOCK_DIVIDED_BY_1); } // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); #if FLASH_INT_MODE_EN // enable IRQ if (flash_handle[id].config.int_en) { NVIC_SetPriority(flash_handle[id].irq, IRQ_PRIORITY_NORMAL); NVIC_ClearPendingIRQ(flash_handle[id].irq); NVIC_EnableIRQ(flash_handle[id].irq); } #endif flash_handle[id].state = FLASH_STATE_READY; flash_handle[id].is_open = 1; return DRV_OK; } int flash_close(enum FLASH_DEV_T id) { if (id >= FLASH_MAX_NUM) { return DRV_ERROR; } // If the XIP_EN macro is defined, the flash close operation is ignored #ifndef XIP_EN if (!flash_handle[id].is_open) { return DRV_DEV_UNAVAILABLE; } // power down flash_write_cmd(id, FLASH_OPCODE_POWER_DOWN); delay_us(15); // disable flash controller clock or power clock_disable(CLOCK_FLASH_CTRL); flash_handle[id].state = FLASH_STATE_RESET; flash_handle[id].is_open = 0; #if BOR_EN bor_close(); #endif #endif return DRV_OK; } int flash_open_for_xip(enum FLASH_DEV_T id) { flash_handle[id].code = 0; // enable flash controller clock SYSCON->SYS_CMU |= (1U << CLOCK_FLASH_CTRL); SYSCON->SYS_RMU &= ~(1U << RESET_MODULE_FLASH_CTRL); SYSCON->SYS_RMU |= (1U << RESET_MODULE_FLASH_CTRL); // reset the command register flash_handle[id].base->STATUS = FLASH_STATUS_RESET_MSK; /* Wait for the RESET flag cleared by HW */ uint8_t start = 0; while ((flash_handle[id].base->STATUS & FLASH_STATUS_RESET_MSK) == FLASH_STATUS_RESET_MSK) { delay_us(10); start++; if (start > 100) { break; } } // set time delay parameter flash_handle[id].base->CTRL = FLASH_CTRL_TIMEOUT(flash_handle[id].config.timeout) | FLASH_CTRL_CSHIGH(flash_handle[id].config.cs_high_time) | FLASH_CTRL_D_PRFTCH_DIS(flash_handle[id].config.prefetch_dis) | FLASH_CTRL_MODE3(flash_handle[id].config.spi_sck_high) | FLASH_CTRL_PRFTCH_DIS(flash_handle[id].config.cache_prefetch_dis) | FLASH_CTRL_DUAL(flash_handle[id].config.dual_mode) | FLASH_CTRL_RFCLK(flash_handle[id].config.spi_falling_edge_active) | FLASH_CTRL_FBCLK(flash_handle[id].config.feedback_clk_sel); /* Wait for the CMD and MCINT flag all be 0 */ start = 0; while ((flash_handle[id].base->STATUS & (FLASH_STATUS_MCINIT_MSK | FLASH_STATUS_CMD_MSK)) == (FLASH_STATUS_MCINIT_MSK | FLASH_STATUS_CMD_MSK)) { delay_us(10); start++; if (start > 100) { break; } } // setup memory command flash_handle[id].base->MCMD = FLASH_MCMD_POLL(0U) | FLASH_MCMD_DOUT(0U) | FLASH_MCMD_INTLEN(3) | FLASH_MCMD_FIELDFORM(FLASH_CMD_OP_SERIAL) | FLASH_MCMD_FRAMEFORM(FLASH_CMD_OP_ADDR_3B) | FLASH_MCMD_OPCODE(0xEB); flash_handle[id].state = FLASH_STATE_READY; flash_handle[id].is_open = 1; return DRV_OK; } void flash_power_up(enum FLASH_DEV_T id) { if (flash_handle[id].is_open) { // Release power down flash_handle[id].base->CMD = FLASH_CMD_DATALEN(0) | FLASH_CMD_POLL(false) | FLASH_CMD_DOUT(FLASH_DATA_OUT) | FLASH_CMD_INTLEN(0) | FLASH_CMD_FIELDFORM(FLASH_CMD_ALL_SERIAL) | FLASH_CMD_FRAMEFORM(FLASH_CMD_OP_ONLY) | FLASH_CMD_OPCODE(0xAB); delay_us(30); // flash_write_cmd(id, FLASH_OPCODE_RELEASE_POWER_DOWN); } } void flash_power_down(enum FLASH_DEV_T id) { if (flash_handle[id].is_open) { // Power down flash_handle[id].base->CMD = FLASH_CMD_DATALEN(0) | FLASH_CMD_POLL(false) | FLASH_CMD_DOUT(FLASH_DATA_OUT) | FLASH_CMD_INTLEN(0) | FLASH_CMD_FIELDFORM(FLASH_CMD_ALL_SERIAL) | FLASH_CMD_FRAMEFORM(FLASH_CMD_OP_ONLY) | FLASH_CMD_OPCODE(0xB9); // flash_write_cmd(id, FLASH_OPCODE_POWER_DOWN); delay_us(15); } } #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif #if FLASH_WRITE_EN static int flash_page_write_nbytes(enum FLASH_DEV_T id, uint32_t addr, const uint8_t *buf, uint32_t len) { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = addr; // program page flash_write_variable_len_cmd(id, len); for (uint32_t i = 0; i < len; i++) { flash_handle[id].base->DATA = buf[i]; } flash_wait_done(id, FLASH_OP_WRITE_PAGE_TIMEOUT); return DRV_OK; } static int flash_page_write(enum FLASH_DEV_T id, uint32_t page, const uint8_t *buf) { LOG_INFO(TRACE_MODULE_DRIVER, "flash_page_write %d\r\n", page); // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].config.start_addr + (page * flash_handle[id].config.page_size); // program page flash_write_cmd(id, FLASH_OPCODE_PROGRAM_PAGE); for (uint32_t i = 0; i < flash_handle[id].config.page_size; i++) { flash_handle[id].base->DATA = buf[i]; } flash_wait_done(id, FLASH_OP_WRITE_PAGE_TIMEOUT); return DRV_OK; } int flash_sector_erase(enum FLASH_DEV_T id, uint32_t sector_idx) { // LOG_INFO(TRACE_MODULE_DRIVER, "flash_sector_erase %d\r\n", sector_idx); ASSERT(sector_idx < (flash_handle[id].config.total_size / flash_handle[id].config.sector_size), "sector idx is over range\r\n"); int ret = flash_state_update(id, FLASH_STATE_BUSY_ERASE); if (ret != DRV_OK) { return ret; } // Reset the flash controller to switch to command mode flash_reset_cmd(id); // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].config.start_addr + (sector_idx * flash_handle[id].config.sector_size); #if FLASH_INT_MODE_EN if (flash_handle[id].config.int_en) { // clear interrupt flash_handle[id].base->STATUS |= FLASH_STATUS_INTRQ_MSK; // enable INT flash_handle[id].base->CTRL |= FLASH_CTRL_INTEN_MSK; flash_handle[id].code = FLASH_OP_ERASE; } #endif // Erase sector flash_write_cmd(id, FLASH_OPCODE_ERASE_SECTOR); if (flash_handle[id].config.int_en == 0) { flash_wait_done(id, FLASH_OP_ERASE_SECTOR_TIMEOUT); // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state flash_handle[id].state = FLASH_STATE_READY; } return DRV_OK; } int flash_block_erase(enum FLASH_DEV_T id, uint32_t block_idx) { // LOG_INFO(TRACE_MODULE_DRIVER, "flash_sector_erase %d\r\n", block_idx); ASSERT(block_idx < (flash_handle[id].config.total_size / flash_handle[id].config.block_size), "block idx is over range\r\n"); int ret = flash_state_update(id, FLASH_STATE_BUSY_ERASE); if (ret != DRV_OK) { return ret; } // Reset the flash controller to switch to command mode flash_reset_cmd(id); // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].config.start_addr + (block_idx * flash_handle[id].config.block_size); #if FLASH_INT_MODE_EN if (flash_handle[id].config.int_en) { // clear interrupt flash_handle[id].base->STATUS |= FLASH_STATUS_INTRQ_MSK; // enable INT flash_handle[id].base->CTRL |= FLASH_CTRL_INTEN_MSK; flash_handle[id].code = FLASH_OP_ERASE; } #endif // Erase block flash_write_cmd(id, FLASH_OPCODE_ERASE_BLOCK); if (flash_handle[id].config.int_en == 0) { flash_wait_done(id, FLASH_OP_ERASE_BLOCK_TIMEOUT); // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state flash_handle[id].state = FLASH_STATE_READY; } return DRV_OK; } // limitation: start address and len should alagin with sector size int flash_erase(enum FLASH_DEV_T id, uint32_t start_addr, uint32_t len) { if ((start_addr < FLASH_BASE) || (start_addr > FLASH_BASE + FLASH_SIZE - len) || (len == 0)) { return DRV_ERROR; } if ((start_addr % flash_handle[id].config.sector_size) || (len % flash_handle[id].config.sector_size)) { return DRV_ERROR; } uint32_t offset_addr = start_addr - flash_handle[id].config.start_addr; uint32_t sector_start = offset_addr / flash_handle[id].config.sector_size; uint32_t sector_end = (offset_addr + len) / flash_handle[id].config.sector_size; uint32_t sectors_per_block = flash_handle[id].config.block_size / flash_handle[id].config.sector_size; if ((sector_end - sector_start) < sectors_per_block) { for (uint32_t i = sector_start; i < sector_end; i++) { flash_sector_erase(id, i); while (flash_check_busy(id)) { } } } else { uint32_t block_start = offset_addr / flash_handle[id].config.block_size; uint32_t block_end = (offset_addr + len) / flash_handle[id].config.block_size; if (offset_addr % flash_handle[id].config.block_size) { block_start += 1; } uint32_t sector_tail_num = ((offset_addr + len) % flash_handle[id].config.block_size) / flash_handle[id].config.sector_size; for (uint32_t i = sector_start; i < block_start * sectors_per_block; i++) { flash_sector_erase(id, i); while (flash_check_busy(id)) { } } for (uint32_t i = block_start; i < block_end; i++) { flash_block_erase(id, i); while (flash_check_busy(id)) { } } uint32_t sector_tail_start = block_end * sectors_per_block; for (uint32_t i = 0; i < sector_tail_num; i++) { flash_sector_erase(id, sector_tail_start + i); while (flash_check_busy(id)) { } } } return DRV_OK; } static void flash_init_write_nbytes_cfg(enum FLASH_DEV_T id, const uint32_t dest_addr, const uint8_t *src_addr, const uint32_t write_len) { flash_handle[id].wr_nbyte_cfg.src_addr = src_addr; flash_handle[id].wr_nbyte_cfg.src_buf_pos = 0; flash_handle[id].wr_nbyte_cfg.dest_tmp_addr = dest_addr; flash_handle[id].wr_nbyte_cfg.write_start_addr = dest_addr; flash_handle[id].wr_nbyte_cfg.write_end_addr = dest_addr + write_len - 0x01U; flash_handle[id].wr_nbyte_cfg.offset_addr = dest_addr - flash_handle[id].config.start_addr; flash_handle[id].wr_nbyte_cfg.page_start = flash_handle[id].wr_nbyte_cfg.offset_addr / flash_handle[id].config.page_size; flash_handle[id].wr_nbyte_cfg.page_end = (flash_handle[id].wr_nbyte_cfg.offset_addr + write_len - 0x01U) / flash_handle[id].config.page_size; flash_handle[id].wr_nbyte_cfg.page_count = flash_handle[id].wr_nbyte_cfg.page_end - flash_handle[id].wr_nbyte_cfg.page_start; flash_handle[id].wr_nbyte_cfg.write_num = flash_handle[id].wr_nbyte_cfg.page_count + 0x01U; flash_handle[id].wr_nbyte_cfg.write_count = 0x0U; if (0 == flash_handle[id].wr_nbyte_cfg.page_count) { flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len = write_len; flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len = 0x0U; } else { flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len = flash_handle[id].config.page_size - (dest_addr - (flash_handle[id].wr_nbyte_cfg.page_start * flash_handle[id].config.page_size + flash_handle[id].config.start_addr)); flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len = flash_handle[id].wr_nbyte_cfg.write_end_addr - (flash_handle[id].wr_nbyte_cfg.page_end * flash_handle[id].config.page_size + flash_handle[id].config.start_addr) + 0x01U; } } int flash_write_nbytes(enum FLASH_DEV_T id, uint32_t start_addr, const uint8_t *buf, uint32_t len) { #define WRITE_ONE_PAGES 0x00U #define WRITE_TWO_PAGES 0x01U if ((start_addr < FLASH_BASE) || (start_addr > FLASH_BASE + FLASH_SIZE - len) || (len == 0)) { return DRV_ERROR; } int ret = flash_state_update(id, FLASH_STATE_BUSY_WRITE); if (ret != DRV_OK) { return ret; } flash_init_write_nbytes_cfg(id, start_addr, buf, len); // Reset the flash controller to switch to command mode flash_reset_cmd(id); if (flash_handle[id].config.dma_en) { #if FLASH_DMA_MODE_EN struct DMA_CH_CFG_T flash_wr_dma_cfg = { .fifo_th = DMA_FIFO_TH_1, .src_burst_size = DMA_SRC_BURST_SIZE_1, .src_width = DMA_WIDTH_1B, .dst_width = DMA_WIDTH_1B, .src_addr_ctrl = DMA_ADDR_INC, .dst_addr_ctrl = DMA_ADDR_FIXED, .src_req_sel = DMA_REQ_MEM, .dst_req_sel = DMA_REQ_FLASH, }; // enable DMA flash_handle[id].base->CTRL |= FLASH_CTRL_DMAEN_MSK; dma_open(flash_handle[id].dma_wr_ch, &flash_wr_dma_cfg); flash_handle[id].dma_op.start_addr = flash_handle[id].wr_nbyte_cfg.dest_tmp_addr; flash_handle[id].dma_op.buf = flash_handle[id].wr_nbyte_cfg.src_addr; flash_handle[id].dma_op.len = len; flash_handle[id].dma_op.count = 0; flash_handle[id].code = FLASH_OP_WRITE; flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; flash_handle[id].wr_nbyte_cfg.dest_tmp_addr += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; flash_handle[id].wr_nbyte_cfg.write_count += 0x01U; if (0x01U == flash_handle[id].wr_nbyte_cfg.write_count) { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // program n bytes flash_write_variable_len_cmd(id, flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len); dma_transfer(flash_handle[id].dma_wr_ch, (uint8_t *)flash_handle[id].dma_op.buf, (uint8_t *)&flash_handle[id].base->DATA, flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len, flash_dma_write_nbytes_callback); } #endif } else { for (flash_handle[id].wr_nbyte_cfg.write_count = 0x01U; flash_handle[id].wr_nbyte_cfg.write_count <= flash_handle[id].wr_nbyte_cfg.write_num; flash_handle[id].wr_nbyte_cfg.write_count++) { switch (flash_handle[id].wr_nbyte_cfg.page_count) { case WRITE_ONE_PAGES: flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len); break; case WRITE_TWO_PAGES: if (0x01U == flash_handle[id].wr_nbyte_cfg.write_count) { flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len); flash_handle[id].wr_nbyte_cfg.dest_tmp_addr += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; } else if (flash_handle[id].wr_nbyte_cfg.write_count == flash_handle[id].wr_nbyte_cfg.write_num) { flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len); } break; default: if (0x01U == flash_handle[id].wr_nbyte_cfg.write_count) { flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len); flash_handle[id].wr_nbyte_cfg.dest_tmp_addr += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].wr_nbyte_cfg.start_page_inc_data_len; } else if (flash_handle[id].wr_nbyte_cfg.write_count == flash_handle[id].wr_nbyte_cfg.write_num) { flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len); } else { flash_page_write_nbytes(id, flash_handle[id].wr_nbyte_cfg.dest_tmp_addr, &buf[flash_handle[id].wr_nbyte_cfg.src_buf_pos], flash_handle[id].config.page_size); flash_handle[id].wr_nbyte_cfg.dest_tmp_addr += flash_handle[id].config.page_size; flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].config.page_size; } break; } } // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state flash_handle[id].state = FLASH_STATE_READY; } return DRV_OK; } // limitation: start address and len should alagin with page size int flash_write(enum FLASH_DEV_T id, uint32_t start_addr, const uint8_t *buf, uint32_t len) { if ((start_addr < FLASH_BASE) || (start_addr > FLASH_BASE + FLASH_SIZE - len) || (len == 0)) { return DRV_ERROR; } if ((start_addr % flash_handle[id].config.page_size) || (len % flash_handle[id].config.page_size)) { return DRV_ERROR; } int ret = flash_state_update(id, FLASH_STATE_BUSY_WRITE); if (ret != DRV_OK) { return ret; } uint32_t offset_addr = start_addr - flash_handle[id].config.start_addr; uint32_t page_start = offset_addr / flash_handle[id].config.page_size; uint32_t page_end = (offset_addr + len) / flash_handle[id].config.page_size; // Reset the flash controller to switch to command mode flash_reset_cmd(id); if (flash_handle[id].config.dma_en) { #if FLASH_DMA_MODE_EN // enable DMA flash_handle[id].base->CTRL |= FLASH_CTRL_DMAEN_MSK; flash_handle[id].dma_op.start_addr = start_addr; flash_handle[id].dma_op.buf = buf; flash_handle[id].dma_op.len = len; flash_handle[id].dma_op.count = 0; flash_handle[id].code = FLASH_OP_WRITE; // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // program page flash_write_cmd(id, FLASH_OPCODE_PROGRAM_PAGE); struct DMA_CH_CFG_T flash_wr_dma_cfg = { .fifo_th = DMA_FIFO_TH_4, .src_burst_size = DMA_SRC_BURST_SIZE_256, .src_width = DMA_WIDTH_4B, .dst_width = DMA_WIDTH_4B, .src_addr_ctrl = DMA_ADDR_INC, .dst_addr_ctrl = DMA_ADDR_FIXED, .src_req_sel = DMA_REQ_MEM, .dst_req_sel = DMA_REQ_FLASH, }; dma_open(flash_handle[id].dma_wr_ch, &flash_wr_dma_cfg); dma_transfer(flash_handle[id].dma_wr_ch, (uint8_t *)flash_handle[id].dma_op.buf, (uint8_t *)&flash_handle[id].base->DATA, flash_handle[id].config.page_size / 4, flash_dma_callback); #endif } else { for (uint32_t i = page_start; i < page_end; i++) { flash_page_write(id, i, buf + (i - page_start) * flash_handle[id].config.page_size); } // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state flash_handle[id].state = FLASH_STATE_READY; } return DRV_OK; } #else __WEAK int flash_erase(enum FLASH_DEV_T id, uint32_t start_addr, uint32_t len) { return DRV_ERROR; } __WEAK int flash_write_nbytes(enum FLASH_DEV_T id, uint32_t start_addr, const uint8_t *buf, uint32_t len) { return DRV_ERROR; } #endif // limitation: for DMA read, the length should be the multiple of 4 int flash_read(enum FLASH_DEV_T id, uint32_t start_addr, uint8_t *buf, uint32_t len) { ASSERT(((flash_handle[id].config.dma_en) ? ((len & 0x3) == 0) : 1), "The DMA read length should be the multiple of 4\r\n"); if ((start_addr < FLASH_BASE) || (start_addr > FLASH_BASE + FLASH_SIZE - len) || (len == 0)) { return DRV_ERROR; } int ret = flash_state_update(id, FLASH_STATE_BUSY_READ); if (ret != DRV_OK) { return ret; } // Reset the flash controller to switch to command mode flash_reset_cmd(id); if (flash_handle[id].config.dma_en) { #if FLASH_DMA_MODE_EN // enable DMA flash_handle[id].base->CTRL |= FLASH_CTRL_DMAEN_MSK; flash_handle[id].dma_op.start_addr = start_addr; flash_handle[id].dma_op.buf = buf; flash_handle[id].dma_op.len = len; flash_handle[id].dma_op.count = 0; flash_handle[id].code = FLASH_OP_READ; // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = start_addr; // read data bytes flash_write_cmd(id, FLASH_OPCODE_READ); struct DMA_CH_CFG_T flash_rd_dma_cfg = { .fifo_th = DMA_FIFO_TH_4, .src_burst_size = DMA_SRC_BURST_SIZE_4, .src_width = DMA_WIDTH_4B, .dst_width = DMA_WIDTH_4B, .src_addr_ctrl = DMA_ADDR_FIXED, .dst_addr_ctrl = DMA_ADDR_INC, .src_req_sel = DMA_REQ_FLASH, .dst_req_sel = DMA_REQ_MEM, }; if (len > flash_handle[id].config.sector_size) { len = flash_handle[id].config.sector_size; } dma_open(flash_handle[id].dma_rd_ch, &flash_rd_dma_cfg); dma_transfer(flash_handle[id].dma_rd_ch, (uint8_t *)&flash_handle[id].base->DATA, buf, len / 4, flash_dma_callback); // update parameters for next transfer flash_handle[id].dma_op.count += len; flash_handle[id].dma_op.buf += len; flash_handle[id].dma_op.start_addr += len; #endif } else { uint32_t sector_num = len / flash_handle[id].config.sector_size; uint32_t sector_tail = len % flash_handle[id].config.sector_size; for (uint32_t i = 0; i < sector_num; i++) { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = start_addr + i * flash_handle[id].config.sector_size; // read data bytes flash_write_cmd(id, FLASH_OPCODE_READ); for (uint32_t j = 0; j < flash_handle[id].config.sector_size; j++) { buf[i * flash_handle[id].config.sector_size + j] = flash_handle[id].base->DATA; } } if (sector_tail) { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = start_addr + sector_num * flash_handle[id].config.sector_size; // read data bytes flash_write_cmd(id, FLASH_OPCODE_READ); for (uint32_t j = 0; j < sector_tail; j++) { buf[sector_num * flash_handle[id].config.sector_size + j] = flash_handle[id].base->DATA; } } // Reset the flash controller to switch to command mode flash_reset_cmd(id); // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state flash_handle[id].state = FLASH_STATE_READY; } return DRV_OK; } #if FLASH_DMA_MODE_EN // flash dma write flash operation done goes to here static void flash_dma_write_nbytes_callback(void *ch, uint32_t err_code) { enum FLASH_DEV_T id = FLASH_ID0; uint8_t ch_num = *(uint8_t *)ch; uint8_t done = 0; if (ch_num == flash_handle[id].dma_wr_ch) { if (err_code == DMA_INT_TYPE_DONE) { flash_handle[id].dma_op.buf = flash_handle[id].wr_nbyte_cfg.src_addr + flash_handle[id].wr_nbyte_cfg.src_buf_pos; flash_handle[id].dma_op.start_addr = flash_handle[id].wr_nbyte_cfg.dest_tmp_addr; flash_handle[id].dma_op.count = flash_handle[id].wr_nbyte_cfg.src_buf_pos; flash_handle[id].wr_nbyte_cfg.write_count += 0x01U; if (flash_handle[id].dma_op.len <= flash_handle[id].dma_op.count) { done = 1; } else { // wait until the flash writing operation is complete delay_us(350); if ((flash_handle[id].wr_nbyte_cfg.write_count == flash_handle[id].wr_nbyte_cfg.write_num) && (flash_handle[id].wr_nbyte_cfg.write_count > 0x01U)) { flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].config.page_size; // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // program n bytes flash_write_variable_len_cmd(id, flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len); dma_transfer(flash_handle[id].dma_wr_ch, (uint8_t *)flash_handle[id].dma_op.buf, (uint8_t *)&flash_handle[id].base->DATA, flash_handle[id].wr_nbyte_cfg.end_page_inc_data_len, flash_dma_write_nbytes_callback); } else if ((flash_handle[id].wr_nbyte_cfg.write_count < flash_handle[id].wr_nbyte_cfg.write_num) && (flash_handle[id].wr_nbyte_cfg.write_count > 0x01U)) { flash_handle[id].wr_nbyte_cfg.src_buf_pos += flash_handle[id].config.page_size; flash_handle[id].wr_nbyte_cfg.dest_tmp_addr += flash_handle[id].config.page_size; // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // program n bytes flash_write_variable_len_cmd(id, flash_handle[id].config.page_size); dma_transfer(flash_handle[id].dma_wr_ch, (uint8_t *)flash_handle[id].dma_op.buf, (uint8_t *)&flash_handle[id].base->DATA, flash_handle[id].config.page_size, flash_dma_write_nbytes_callback); } } } else { done = 1; } } else { ASSERT(0, "Unexpected dma channel\r\n"); } if (done) { // disable DMA flash_handle[id].base->CTRL &= ~FLASH_CTRL_DMAEN_MSK; flash_handle[id].code = (err_code << 16) | (1 << 8) | flash_handle[id].code; // TODO: need to check operation done } } // flash dma operation done goes to here static void flash_dma_callback(void *ch, uint32_t err_code) { enum FLASH_DEV_T id = FLASH_ID0; uint8_t ch_num = *(uint8_t *)ch; uint8_t done = 0; if (ch_num == flash_handle[id].dma_rd_ch) { if (err_code == DMA_INT_TYPE_DONE) { if (flash_handle[id].dma_op.len <= flash_handle[id].dma_op.count) { // Reset the flash controller to switch to command mode flash_reset_cmd(id); done = 1; } else { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // read data bytes flash_write_cmd(id, FLASH_OPCODE_READ); uint32_t len = flash_handle[id].dma_op.len - flash_handle[id].dma_op.count; if (len > flash_handle[id].config.sector_size) { len = flash_handle[id].config.sector_size; } dma_transfer(flash_handle[id].dma_rd_ch, (uint8_t *)&flash_handle[id].base->DATA, (uint8_t *)flash_handle[id].dma_op.buf, len / 4, flash_dma_callback); // update parameters for next transfer flash_handle[id].dma_op.count += len; flash_handle[id].dma_op.buf += len; flash_handle[id].dma_op.start_addr += len; } } else { // Reset the flash controller to switch to command mode flash_reset_cmd(id); done = 1; } } else if (ch_num == flash_handle[id].dma_wr_ch) { if (err_code == DMA_INT_TYPE_DONE) { flash_handle[id].dma_op.start_addr += flash_handle[id].config.page_size; flash_handle[id].dma_op.buf += flash_handle[id].config.page_size; flash_handle[id].dma_op.count += flash_handle[id].config.page_size; if (flash_handle[id].dma_op.len <= flash_handle[id].dma_op.count) { done = 1; } else { // Write enable flash_write_cmd(id, FLASH_OPCODE_WRITE_ENABLE); // Set address flash_handle[id].base->ADDR = flash_handle[id].dma_op.start_addr; // program page flash_write_cmd(id, FLASH_OPCODE_PROGRAM_PAGE); dma_transfer(flash_handle[id].dma_wr_ch, (uint8_t *)flash_handle[id].dma_op.buf, (uint8_t *)&flash_handle[id].base->DATA, flash_handle[id].config.page_size / 4, flash_dma_callback); } } else { done = 1; } } else { ASSERT(0, "Unexpected dma channel\r\n"); } if (done) { // disable DMA flash_handle[id].base->CTRL &= ~FLASH_CTRL_DMAEN_MSK; flash_handle[id].code = (err_code << 16) | (1 << 8) | flash_handle[id].code; // TODO: need to check operation done } } #endif #if defined(__GNUC__) #pragma GCC diagnostic pop #endif void FLASH_CTRL_IRQHandler(void) { #if FLASH_INT_MODE_EN enum FLASH_DEV_T id = FLASH_ID0; // clear interrupt flash_handle[id].base->STATUS |= FLASH_STATUS_INTRQ_MSK; if (flash_handle[id].state == FLASH_STATE_BUSY_ERASE) { // disable INT flash_handle[id].base->CTRL &= ~FLASH_CTRL_INTEN_MSK; flash_handle[id].code = (2 << 8) | flash_handle[id].code; // TODO: need to check operation done } #endif } // for interrupt enable or DMA enable mode to check operation done // this function should be excuted in command mode bool flash_check_busy(enum FLASH_DEV_T id) { uint8_t busy = 0; uint8_t op_code = flash_handle[id].code & 0xff; uint8_t int_flag = (flash_handle[id].code >> 8) & 0xff; uint8_t err_code = (flash_handle[id].code >> 16) & 0xff; if ((op_code == FLASH_OP_ERASE) || (op_code == FLASH_OP_WRITE)) { if (int_flag == 0) { busy = 1; } else { // WIP busy = flash_read_status(id) & 0x1; } } else if (op_code == FLASH_OP_READ) { if (int_flag == 0) { busy = 1; } } else { return busy; } if (busy == 0) { // clear op code flash_handle[id].code = 0; // setup memory command flash_write_mem_cmd(id, FLASH_OPCODE_READ); // update state if ((err_code == DMA_INT_TYPE_DONE) || (err_code == 0)) { flash_handle[id].state = FLASH_STATE_READY; } else { flash_handle[id].state = FLASH_STATE_ERROR; } if (flash_handle[id].callback) { flash_handle[id].callback(&id, op_code); } } return busy; }