/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_trace.h" #include "mk_uwb.h" #include "mk_misc.h" #include "mk_power.h" #include "mk_sleep_timer.h" #include "lib_ranging.h" #include "board.h" #if defined(MK_DS_TWR_RESP) extern int simple_main(void); /* Ranging period */ #define RANGING_PERIOD_MS (1000) /* This is the delay from Frame RX POLL frame to send RESP Frame */ #define POLL_RX_TO_RESP_TX_DLY_US 750U #define RESP_TX_TO_FINAL_RX_DLY_US 500U /* RX sync window size 50 ms*/ #define RX_SYNC_WIN_US 50000U /* Receive poll timeout 500us*/ #define POLL_RX_TIMEOUT_US 500 /* Receive final timeout 500us */ #define FINAL_RX_TIMEOUT_US 500 /* RX window open in advance */ #define RX_WIN_IN_ADVANCE_US (150) /* Field index in frame */ #define MSG_SEQ_NUM_IDX 2 #define FINAL_MSG_POLL_TX_TS_IDX 10 #define FINAL_MSG_RESP_RX_TS_IDX 14 #define FINAL_MSG_FINAL_TX_TS_IDX 18 /* Length of the common part of the message */ #define MSG_COMMON_LEN 10 struct mk_uwb_configure { uint8_t phy_work_mode; /* PHY_TX / PHY_RX / PHT_TX|PHY_RX */ struct UWB_CONFIG_T phy_cfg; }; /* Default communication configuration. */ static struct mk_uwb_configure config = { .phy_work_mode = (uint8_t)(PHY_TX | PHY_RX), .phy_cfg.ch_num = 5, /* Channel number. */ .phy_cfg.code_index = 9, /* TX preamble code. */ .phy_cfg.mean_prf = MEAN_PRF_64M, /* Data rate 6.8M */ .phy_cfg.data_bit_rate = DATA_BR_6M8, /* data rate 6.8M. */ .phy_cfg.sync_sym = PREAM_LEN_128, /* Preamble duration, length of preamble 128 */ .phy_cfg.sfd_sym = BPRF_NSFD2_8, /* Identifier for SFD sequence */ .phy_cfg.ranging_bit = 1, /* ranging bit set. */ .phy_cfg.trx_mode = TRX_MODE_15_4Z_BPRF, /* IEEE802.15.4z - BPRF mode */ .phy_cfg.sts_pkt_cfg = STS_PKT_CFG_0, /* SP0 Frame */ .phy_cfg.sts_segnum = STS_SEGNUM_BPRF_1, /* Number of STS segments in the frame */ .phy_cfg.sts_seglen = STS_SEGLEN_BPRF_64, /* Number of symbols in an STS segment */ .phy_cfg.rx_ant_id = UWB_RX_ANT_3, /* UWB RX antenna port */ }; /* Buffer to store received frame */ static uint8_t rx_buf[128]; /* Frames used in the ranging process * Poll message: * - byte 0 - 1: 0x8841 to indicate a data frame using 16-bit addressing. * - byte 2: sequence number, incremented for each new frame. * - byte 3 - 4: PAN Id 0x4B4d * - byte 5 - 6: Destination address * - byte 7 - 8: Source address * - byte 9: Message type (0x02 RANGING_POLL / 0x03 RANGING_RESPONSE / 0x04 RANGING_FINAL) * Response message: * - byte 10: activity code (0x07 to tell the initiator to go on with the ranging exchange) * Final message: * - byte 10 - 13: poll message transmission timestamp. * - byte 14 - 17: response message reception timestamp. * - byte 18 - 21: final message transmission timestamp. */ static uint8_t rx_poll_msg[] = {0x41, 0x88, 0, 0x4D, 0x4B, 0x53, 0x45, 0x4D, 0x49, 0x02}; static uint8_t tx_resp_msg[] = {0x41, 0x88, 0, 0x4D, 0x4B, 0x4D, 0x49, 0x53, 0x45, 0x03, 0x07}; static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0x4D, 0x4B, 0x53, 0x45, 0x4D, 0x49, 0x04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* Count value of phy counter when transmitting and receiving frames */ static uint32_t poll_rx_en_start_u32; static uint32_t resp_tx_en_start_u32; /* 41 bits timestamps of frames transmission/reception. */ static int64_t poll_rx_ts_i64; static int64_t resp_tx_ts_i64; static int64_t final_rx_ts_i64; /* Frame sequence number, incremented after each transmission. */ static uint8_t frame_seq_nb = 0; /* MAC report data structure */ static struct MAC_HW_REPORT_T rx_rpt; enum SIMPLE_FSM_T { SIMPLE_IDLE = 0, SIMPLE_POLL = 1, SIMPLE_RESPONSE = 2, SIMPLE_FINAL = 3, }; static enum SIMPLE_FSM_T state = SIMPLE_IDLE; /** * @brief Correct TX timestamp of the ranging frame. * * @param[in] timestamp PHY timer count of TX * @return TX timestamp (unit: 15.65ps) */ static int64_t ranging_tx_time_correct(uint32_t timestamp) { int64_t tx_timestamp = ranging_tx_time(timestamp); // correct antenna delay (TX using the same antenna as RX) tx_timestamp += ranging_ant_delays_get(config.phy_cfg.rx_ant_id) / 2; return tx_timestamp; } /** * @brief Correct RX timestamp of the ranging frame. * * @param[in] ind MAC RX report * @return RX timestamp (unit: 15.65ps) */ static int64_t ranging_rx_time_correct(const struct MAC_HW_REPORT_T *ind) { int64_t rx_timestamp = ranging_rx_time(ind); // correct antenna delay rx_timestamp -= ranging_ant_delays_get(config.phy_cfg.rx_ant_id) / 2; return rx_timestamp; } /* RX done process handler. */ static void rx_int_callback(struct MAC_HW_REPORT_T *rx_report) { // Power off radio power_off_radio(); /** UWB RX success */ if (rx_report->err_code == UWB_RX_OK) { /* Received data does not contain FCS */ memcpy(rx_buf, rx_report->pkt_data, rx_report->pkt_len); memcpy(&rx_rpt, rx_report, sizeof(struct MAC_HW_REPORT_T)); } else { /* UWB_PLD_ERR payload error */ /* UWB_PHR_ERR PHR error */ /* UWB_SFD_ERR Sfd error */ /* UWB_BD_ERR Preamble detection error */ /* UWB_TO_ERR Receive timeout */ /* UWB_STS_ERR STS error */ memcpy(&rx_rpt, rx_report, sizeof(struct MAC_HW_REPORT_T)); } } /* TX done process handler. */ static void tx_int_callback(struct MAC_HW_REPORT_T *tx_report) { // Power off radio power_off_radio(); /** UWB TX success */ if (tx_report->err_code == UWB_TX_OK) { } } int simple_main(void) { // The following peripherals will be initialized in the uwb_open function // phy/mac/aes/lsp/phy timers initialized uwb_open(); // Set calibration parameters uwb_calibration_params_set(config.phy_cfg.ch_num); // set advanced parameters struct PHY_ADV_CONFIG_T adv_config = { .thres_fap_detect = 40, .nth_scale_factor = 4, .ranging_performance_mode = 0, .skip_weakest_port_en = 0, }; phy_adv_params_configure(&adv_config); // uwb configure uwb_configure(config.phy_work_mode, board_param.tx_power_fcc[CALIB_CH(config.phy_cfg.ch_num)], &config.phy_cfg); ranging_lib_init(); ranging_frame_type_set(config.phy_cfg.sts_pkt_cfg); // Register rx interrupt callback function mac_register_process_handler(tx_int_callback, rx_int_callback); // Initialize low power mode power_init(); #if LOW_POWER_EN // Enable sleep timer sleep_timer_open(true, SLEEP_TIMER_MODE_ONESHOT, NULL); #endif state = SIMPLE_IDLE; while (1) { switch (state) { case SIMPLE_IDLE: case SIMPLE_POLL: { // Target time equals 0 means recv immediately // Program the MAC to receive UWB packet if (state == SIMPLE_IDLE) { uwb_rx(0, 0, RX_SYNC_WIN_US); } else { poll_rx_en_start_u32 += MS_TO_PHY_TIMER_COUNT(RANGING_PERIOD_MS); uwb_rx(1, poll_rx_en_start_u32 - US_TO_PHY_TIMER_COUNT(RX_WIN_IN_ADVANCE_US), POLL_RX_TIMEOUT_US); } // Check the MAC busy state while (mac_is_busy()) { } if (rx_rpt.err_code == UWB_RX_OK) { state = SIMPLE_RESPONSE; } else if (state == SIMPLE_POLL) { state = SIMPLE_IDLE; } } break; case SIMPLE_RESPONSE: { rx_buf[MSG_SEQ_NUM_IDX] = rx_poll_msg[MSG_SEQ_NUM_IDX]; if (0 == memcmp(rx_poll_msg, rx_buf, MSG_COMMON_LEN)) { poll_rx_en_start_u32 = rx_rpt.timestamp - phy_shr_duration(); poll_rx_ts_i64 = ranging_rx_time_correct(&rx_rpt); // (resp_tx_en_start_u32) is the moment when TX enable resp_tx_en_start_u32 = poll_rx_en_start_u32 + US_TO_PHY_TIMER_COUNT(POLL_RX_TO_RESP_TX_DLY_US); tx_resp_msg[MSG_SEQ_NUM_IDX] = frame_seq_nb++; uwb_tx(tx_resp_msg, sizeof(tx_resp_msg), 1, resp_tx_en_start_u32); // resp_tx_ts_i64 is the timestamp(RMARKER) of the TX response packet resp_tx_ts_i64 = ranging_tx_time_correct(resp_tx_en_start_u32 + phy_shr_duration()); // Check the MAC busy state while (mac_is_busy()) { } state = SIMPLE_FINAL; } else { state = SIMPLE_IDLE; } } break; case SIMPLE_FINAL: { uint32_t final_rx_en_start_u32 = resp_tx_en_start_u32 + US_TO_PHY_TIMER_COUNT(RESP_TX_TO_FINAL_RX_DLY_US); uwb_rx(1, final_rx_en_start_u32, FINAL_RX_TIMEOUT_US); // Check the MAC busy state while (mac_is_busy()) { } if (rx_rpt.err_code == UWB_RX_OK) { uint8_t seq_num = rx_buf[MSG_SEQ_NUM_IDX]; rx_buf[MSG_SEQ_NUM_IDX] = rx_final_msg[MSG_SEQ_NUM_IDX]; if (0 == memcmp(rx_final_msg, rx_buf, MSG_COMMON_LEN)) { final_rx_ts_i64 = ranging_rx_time_correct(&rx_rpt); int32_t poll_tx_ts = 0; int32_t resp_rx_ts = 0; int32_t final_tx_ts = 0; int32_t poll_rx_ts_i32 = 0; int32_t resp_tx_ts_i32 = 0; int32_t final_rx_ts_i32 = 0; double tof; int64_t Ra, Rb, Da, Db, tof_dtu; uint32_t distance; for (int32_t i = 0; i < 4; i++) { poll_tx_ts += ((int32_t)rx_buf[FINAL_MSG_POLL_TX_TS_IDX + i] << (i * 8)); } for (int32_t i = 0; i < 4; i++) { resp_rx_ts += ((int32_t)rx_buf[FINAL_MSG_RESP_RX_TS_IDX + i] << (i * 8)); } for (int32_t i = 0; i < 4; i++) { final_tx_ts += ((int32_t)rx_buf[FINAL_MSG_FINAL_TX_TS_IDX + i] << (i * 8)); } poll_rx_ts_i32 = (int32_t)poll_rx_ts_i64; resp_tx_ts_i32 = (int32_t)resp_tx_ts_i64; final_rx_ts_i32 = (int32_t)final_rx_ts_i64; Ra = (int64_t)(resp_rx_ts - poll_tx_ts); Rb = (int64_t)(final_rx_ts_i32 - resp_tx_ts_i32); Da = (int64_t)(final_tx_ts - resp_rx_ts); Db = (int64_t)(resp_tx_ts_i32 - poll_rx_ts_i32); tof_dtu = (int64_t)((Ra * Rb - Da * Db) / (Ra + Rb + Da + Db)); if (tof_dtu < 0) { tof_dtu = 0; } tof = (double)tof_dtu * (1.0 / 499.2e6 / 128.0); distance = (uint32_t)((tof * 299702547) * VP_VAL); LOG_INFO(TRACE_MODULE_APP, "SEQ NUM %u Distance %ucm\r\n", seq_num, distance); } } state = SIMPLE_POLL; } break; } if (state == SIMPLE_POLL) { #if LOW_POWER_EN trace_flush(); uint32_t lock = int_lock(); sleep_timer_start(__MS_TO_32K_CNT(RANGING_PERIOD_MS - 4)); power_enter_power_down_mode(0); int_unlock(lock); #else /* Execute a delay between ranging exchanges. */ sys_timer_delay_ms(RANGING_PERIOD_MS - 4); #endif } } } #endif