/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_rtc.h" #include "mk_clock.h" #include "mk_reset.h" #include "mk_trace.h" #include "mk_sleep_timer.h" #include "mk_trace.h" #if RTC_FREE_COUNTER_EN static struct RTC_HANDLE_T rtc_handle[RTC_MAX_NUM] = { { .base = RTC, .alarm_irq = RTC_ALARM_IRQn, .rtc_open_flag = 0, }, }; int rtc_open(enum RTC_DEV_T id) { if (id >= RTC_MAX_NUM) { return DRV_ERROR; } // RTC counter clock source uint32_t val = REG_READ(0x40000234); REG_WRITE(0x40000234, val | (1U << 10)); // enable RTC clock clock_enable(CLOCK_RTC); rtc_handle[id].rtc_open_flag = 1; if ((rtc_handle[id].base->CTRL & RTC_CTRL_START_MSK) == 0) { rtc_handle[id].base->CTRL = RTC_CTRL_START_MSK; } return DRV_OK; } int rtc_close(enum RTC_DEV_T id) { if (id >= RTC_MAX_NUM) { return DRV_ERROR; } if (rtc_handle[id].base->CTRL & RTC_CTRL_START_MSK) { rtc_handle[id].base->CTRL = 0; } rtc_handle[id].rtc_open_flag = 0; NVIC_DisableIRQ(rtc_handle[id].alarm_irq); NVIC_ClearPendingIRQ(rtc_handle[id].alarm_irq); // disable RTC clock clock_disable(CLOCK_RTC); return DRV_OK; } uint32_t rtc_get(enum RTC_DEV_T id) { return rtc_handle[id].base->DATA; } int rtc_set_alarm(enum RTC_DEV_T id, uint32_t target, drv_callback_t callback) { ASSERT(id < RTC_MAX_NUM, "RTC wrong parameter"); if ((rtc_handle[id].base->CTRL & RTC_CTRL_START_MSK) == 0) { return DRV_ERROR; } rtc_handle[id].alarm_callback = callback; rtc_handle[id].base->MATCH = target; rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; rtc_handle[id].base->INTR_EN = RTC_INTR_EN_MSK; NVIC_SetPriority(rtc_handle[id].alarm_irq, IRQ_PRIORITY_NORMAL); NVIC_ClearPendingIRQ(rtc_handle[id].alarm_irq); NVIC_EnableIRQ(rtc_handle[id].alarm_irq); return DRV_OK; } void rtc_clear_alarm(enum RTC_DEV_T id) { ASSERT(id < RTC_MAX_NUM, "RTC wrong parameter"); rtc_handle[id].base->INTR_EN = 0; rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; } void RTC_ALARM_IRQHandler(void) { enum RTC_DEV_T id = RTC_ID0; if (rtc_handle[id].base->INTR_STATUS & RTC_INTR_STATUS_MSK) { rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; if (rtc_handle[id].alarm_callback != NULL) { uint32_t value = rtc_handle[id].base->DATA; rtc_handle[id].alarm_callback(&value, 0); } } } #else static struct RTC_HANDLE_T rtc_handle[RTC_MAX_NUM] = { { .base = RTC, .tick_irq = RTC_TICK_IRQn, .alarm_irq = RTC_ALARM_IRQn, .tick_int_en = true, .rtc_open_flag = 0, }, }; static const uint8_t rtc_days_in_month[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; #define LEAP_NUM(y) ((y) / 4 - (y) / 100 + (y) / 400) static inline int is_leap_year(uint16_t year) { return (!(year % 4) && (year % 100)) || !(year % 400); } /* * The number of days in the month. */ static uint8_t rtc_month_days(uint8_t month, uint16_t year) { return rtc_days_in_month[month - 1] + (is_leap_year(year) && month == 2); } /* * Does the rtc_time represent a valid date-time? */ static int rtc_check_parameter(struct RTC_TIME_T *time) { if (time == 0) { return DRV_ERROR; } if (time->year < 1970 || time->month < 1 || time->month > 12 || time->day < 1 || time->day > rtc_month_days(time->month, time->year) || time->hour >= 24 || time->minute >= 60 || time->second >= 60) { return DRV_ERROR; } return DRV_OK; } /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * */ static uint32_t mktime(const uint32_t year0, const uint32_t mon0, const uint32_t day, const uint32_t hour, const uint32_t min, const uint32_t sec) { uint32_t mon = mon0, year = year0; /* 1..12 -> 11,12,1..10 */ if (0 >= (int)(mon -= 2)) { mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } uint32_t val = (LEAP_NUM(year) + 367 * mon / 12 + day) + year * 365 - 719499; val = val * 24 + hour; val = val * 60 + min; val = val * 60 + sec; return val; } /* * Convert Gregorian date to seconds since 01-01-1970 00:00:00. */ static uint32_t rtc_time_to_second(struct RTC_TIME_T *time) { uint32_t val = mktime(time->year, time->month, time->day, time->hour, time->minute, time->second); return val; } /* * Convert seconds since 01-01-1970 00:00:00 to Gregorian date. */ static void rtc_second_to_time(uint32_t second, struct RTC_TIME_T *time) { uint8_t month; uint16_t year; int days; days = second / 86400; second -= (uint32_t)days * 86400; year = 1970 + (uint16_t)(days / 365); days -= (year - 1970) * 365 + LEAP_NUM(year - 1) - LEAP_NUM(1970 - 1); if (days < 0) { year -= 1; days += 365 + is_leap_year(year); } time->year = year; for (month = 1; month < 12; month++) { int newdays = days - rtc_month_days(month, year); if (newdays < 0) { break; } days = newdays; } time->month = month; time->day = (uint8_t)days + 1; time->hour = (uint8_t)(second / 3600); second -= time->hour * 3600; time->minute = (uint8_t)(second / 60); time->second = (uint8_t)(second - time->minute * 60); } int rtc_open(enum RTC_DEV_T id, drv_callback_t callback) { if (id >= RTC_MAX_NUM) { return DRV_ERROR; } // enable RTC clock clock_enable(CLOCK_RTC); rtc_handle[id].rtc_open_flag = 1; if (rtc_handle[id].tick_int_en) { rtc_handle[id].tick_callback = callback; NVIC_SetPriority(rtc_handle[id].tick_irq, IRQ_PRIORITY_NORMAL); NVIC_ClearPendingIRQ(rtc_handle[id].tick_irq); NVIC_EnableIRQ(rtc_handle[id].tick_irq); rtc_handle[id].base->TICK_INTR = RTC_TICK_INTR_EN_MSK; } if ((rtc_handle[id].base->CTRL & RTC_CTRL_START_MSK) == 0) { rtc_handle[id].base->CTRL = RTC_CTRL_START_MSK; } return DRV_OK; } int rtc_close(enum RTC_DEV_T id) { if (id >= RTC_MAX_NUM) { return DRV_ERROR; } if (rtc_handle[id].base->CTRL & RTC_CTRL_START_MSK) { rtc_handle[id].base->CTRL = 0; } rtc_handle[id].rtc_open_flag = 0; if (rtc_handle[id].tick_int_en) { rtc_handle[id].base->TICK_INTR = 0; NVIC_DisableIRQ(rtc_handle[id].tick_irq); NVIC_ClearPendingIRQ(rtc_handle[id].tick_irq); } NVIC_DisableIRQ(rtc_handle[id].alarm_irq); NVIC_ClearPendingIRQ(rtc_handle[id].alarm_irq); // disable RTC clock clock_disable(CLOCK_RTC); return DRV_OK; } int rtc_set(enum RTC_DEV_T id, struct RTC_TIME_T *time) { if (rtc_check_parameter(time)) { return DRV_ERROR; } uint32_t val = rtc_time_to_second(time); rtc_handle[id].base->LOAD = val; return DRV_OK; } int rtc_get(enum RTC_DEV_T id, struct RTC_TIME_T *time) { if (time == NULL) { return DRV_ERROR; } uint32_t val = rtc_handle[id].base->DATA; rtc_second_to_time(val, time); return DRV_OK; } int rtc_set_alarm(enum RTC_DEV_T id, struct RTC_TIME_T *time, drv_callback_t callback) { if (rtc_check_parameter(time)) { return DRV_ERROR; } rtc_handle[id].alarm_callback = callback; uint32_t value = rtc_time_to_second(time); rtc_handle[id].base->MATCH = value; rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; rtc_handle[id].base->INTR_EN = RTC_INTR_EN_MSK; NVIC_SetPriority(rtc_handle[id].alarm_irq, IRQ_PRIORITY_NORMAL); NVIC_ClearPendingIRQ(rtc_handle[id].alarm_irq); NVIC_EnableIRQ(rtc_handle[id].alarm_irq); return DRV_OK; } void rtc_clear_alarm(enum RTC_DEV_T id) { rtc_handle[id].base->INTR_EN = 0; rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; } void RTC_TICK_IRQHandler(void) { enum RTC_DEV_T id = RTC_ID0; struct RTC_TIME_T time; if (rtc_handle[id].base->TICK_INTR & RTC_TICK_INTR_STATUS_MSK) { rtc_handle[id].base->TICK_INTR |= RTC_TICK_INTR_CLR_MSK; if (rtc_handle[id].tick_callback != NULL) { uint32_t value = rtc_handle[id].base->DATA; rtc_second_to_time(value, &time); rtc_handle[id].tick_callback(&time, 0); } } } void RTC_ALARM_IRQHandler(void) { enum RTC_DEV_T id = RTC_ID0; struct RTC_TIME_T time; if (rtc_handle[id].base->INTR_STATUS & RTC_INTR_STATUS_MSK) { rtc_handle[id].base->INTR_CLR = RTC_INTR_CLR_MSK; if (rtc_handle[id].alarm_callback != NULL) { uint32_t value = rtc_handle[id].base->DATA; rtc_second_to_time(value, &time); rtc_handle[id].alarm_callback(&time, 0); } } } #endif void rco32k_clk_calibrate(enum RCO32_MEAS_TIME_T time) { enum RTC_DEV_T id = RTC_ID0; if (rtc_handle[id].rtc_open_flag == 0) { // enable RTC clock clock_enable(CLOCK_RTC); rtc_handle[id].base->CTRL = RTC_CTRL_START_MSK; } NVIC_SetPriority(RCO32K_CAL_IRQn, IRQ_PRIORITY_NORMAL); NVIC_ClearPendingIRQ(RCO32K_CAL_IRQn); NVIC_EnableIRQ(RCO32K_CAL_IRQn); rtc_handle[id].base->MEASURE = 0; rtc_handle[id].base->MEASURE = RTC_MEASURE_TIME(time) | RTC_MEASURE_EN_MSK; } void RCO32K_CAL_IRQHandler(void) { enum RTC_DEV_T id = RTC_ID0; if ((rtc_handle[id].base->MEASURE & RTC_MEASURE_DONE_MSK) == 0) { uint32_t measure_cycles = 8U << GET_BIT_FIELD(rtc_handle[id].base->MEASURE, RTC_MEASURE_TIME_MSK, RTC_MEASURE_TIME_POS); uint32_t measure_cnt = rtc_handle[id].base->MEASURE & RTC_MEASURE_CNT_MSK; uint32_t pclk = clock_get_frequency(CLOCK_APB_CLK); uint32_t ppm_target_cnt = measure_cycles * pclk / 32768; int32_t ppm = (int32_t)((int32_t)(ppm_target_cnt - measure_cnt) * 1000000 / (int32_t)ppm_target_cnt); sleep_timer_ppm_set(ppm); LOG_INFO(TRACE_MODULE_DRIVER, "RCO32K ppm %d\r\n", ppm); if (rtc_handle[id].rtc_open_flag == 0) { rtc_handle[id].base->CTRL = 0; // disable RTC clock clock_disable(CLOCK_RTC); } else { // 1s target count uint32_t target_32s = (32 * pclk / measure_cnt) * measure_cycles; uint32_t target = target_32s / 32; uint8_t int_pol, frac_pol, frac_adj; uint32_t int_adj; frac_adj = target_32s % 32; if (frac_adj > 0xf) { frac_pol = 1; frac_adj = 32 - frac_adj; target += 1; } else { frac_pol = 0; } if (target >= 0x7fff) { int_pol = 0; int_adj = target - 0x7fff; } else { int_pol = 1; int_adj = 0x7fff - target; } rtc_handle[id].base->CALIB = RTC_CALIB_EN_MSK | RTC_CALIB_INTEGER_POL(int_pol) | RTC_CALIB_INTEGER_ADJ(int_adj) | RTC_CALIB_FRACTION_POL(frac_pol) | RTC_CALIB_FRACTION_ADJ(frac_adj); } } }